
BULLETIN OF THE POLISH ACADEMY OF SCIENCES

TECHNICAL SCIENCES, Vol. 61, No. 3, 2013

DOI: 10.2478/bpasts-2013-0060

Prediction of corrections for the Polish time scale UTC(PL)

using artificial neural networks

M. LUZAR1∗ , Ł. SOBOLEWSKI2, W. MICZULSKI2, and J. KORBICZ1

1 Institute of Control and Computation Engineering, University of Zielona Góra, 50 Podgórna St., 65-246 Zielona Góra, Poland
2 Institute of Electrical Metrology, Faculty of Electrical Engineering, Computer Science and Telecommunications,

University of Zielona Góra, 50 Podgórna St., 65-246 Zielona Góra, Poland

Abstract. In this paper, the effectiveness of using Artificial Neural Networks (ANNs) for predicting the corrections of the Polish time scale

UTC(PL) (Universal Coordinated Time) is presented. In particular, prediction results for the different types of neural networks, i.e., the

MLP (MultiLayer Perceprton), the RBF (Radial Basis Function) and the GMDH (Group Method of Data Handling) are shown. The main

advantages and disadvantages of using such types of neural networks are discussed. The prediction of corrections is performed using two

methods: the time series analysis method and the regression method. The input data were prepared suitable for the above mentioned methods,

based on two time series, ts1 and ts2. The designation of prediction errors for specified days and the influence of data quantity for the

prediction error are considered. The paper consists of five sections. After Introduction, in Sec. 2, the theoretical background for different

types of neural networks is presented. Section 3 shows data preparation for the appropriate type of neural network. The experimental results

are presented in Sec. 4. Finally, Sec. 5 concludes the paper.
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1. Introduction

With the increasing amount of accurate devices based on pre-

cise time, a coordination method for the universal time clock

is needed. The Polish time scale UTC(PL) is a local real-

ization of Universal Coordinated Time (UTC). It is the basis

for the dissemination of standard frequency and time signals

in Poland. UTC(PL) is implemented by the Central Office of

Measures (Główny Urząd Miar, GUM) with a type 5071A

caesium-beam atomic clock (called Cs2) and a control device

(Microstepper Austron 2055). Depending on the control de-

vice, it is possible to make corrections, to be sure that the

difference between UTC and UTC(PL) is minimal (Fig. 1,

Station 1).

Fig. 1. Realization of the UTC(PL) scale and its comparison to the 1pps signal generated by the atomic clock
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The quality of national timescales UTC(k), including

UTC(PL), is determined by BIPM (Bureau International

des Poids et Mesures). Each month, for individual UTC(k),

BIPM designates the corrections defining the divergence of

timescales in relation to UTC. For individual UTC(k), BIPM

designates the corrections which define the difference between

national timescales and UTC. The values of these corrections

are published by BIPM in the Circular T bulletin, more or less

on the 10th day of the subsequent month. UTC(k) for coun-

tries whose corrections do not exceed the value of ±10 ns are

the best group of timescales. The other timescales groups are

defined with correction values of ±20 ns and ±50 ns. The

main task of GUM is to keep the UTC(PL) level, in relation to

UTC, below ±10 ns. When there is a significant delay in the

publication of Circular T, between 8 and 12 days, the problem

of keeping the best compatibility between UTC(PL) and UTC

might be solved by predicting the corrections. The prediction

method for UTC(k) is used by several national metrology lab-

oratories [1].

GUM uses a laborious procedure of predicting the cor-

rections based on the analytical linear regression method [2].

It requires the results of the previous work of the clocks in

the laboratory. Moreover, during the prediction process, it is

necessary to arbitrarily choose which correction are the most

reliable and which are useless in the particular month out

of all the obtained ones. Other prediction methods are based

on linear regression with stochastic differential equations [3],

Allan deviations [4] or the Kalman filter [5].

An increase in the use of artificial neural networks in

different fields has recently been observed, particularly for

prediction tasks, i.e., fault prediction [6] or systems response

prediction [7]. Moreover, special types of neural networks are

used for adaptive synthesis of the wavelet transform [8], im-

age segmentations [9] and systems identification and diagnosis

[10, 11], which proves that ANNs can be used in many techni-

cal areas. Based on this fact, for the prediction of corrections,

the method based on artificial neural networks is examined in

detail in this paper.

The main objective of this work is to compare the results

of predicted corrections obtained with different types of ar-

tificial neural networks. The difference is in their structure.

There are three types under consideration:

1. MultiLayer Perceptron (MLP),

2. Radial Basis Function (RBF),

3. Group Method of Data Handling (GMDH).

The results of the work [12] prove that the use of the MLP

and RBF neural networks gives a good prediction quality for

UTC(PL). The main disadvantage of using such networks is

the considerable amount of time needed to obtain a result

[13]. The reason is the need to fit the specific structure of the

network and the number of neurons to the nature of the in-

put data during the training process. This disadvantage might

be eliminated using GMDH neural networks, which are self-

organizing networks [14].

2. Artificial neural networks

The main advantage of artificial neural networks is the ability

to generalize knowledge to new, previously unknown infor-

mation, which is not presented during training. An essential

component of an artificial neural network is the neuron, whose

model (Fig. 2) was developed in 1943 by McCulloch and Pitts

and was based on the construction of a nerve cell.

Fig. 2. Artificial neuron model

In Fig. 2 the artificial neuron model is presented, where

u1...un, n ∈ ℜ, are the input data, w1...wn, n ∈ ℜ, denotes

the neuron weights, res =
∑

w · u stand for membrane po-

tential and f(·) is the activation function, whose result is the y

output from the neuron. Also it is possible to add the bias val-

ue, which receives the response of the neuron. The activation

function is selected according to the problem considered. In

the task of predicting the corrections, the sigmoidal function

is applied. The task of neural network training is to determine

the weight values [15]. After the training process, the neural

network output value should be consistent with the expected

value, called the training set.

2.1. Multilayer perceptron. The multilayer perceptron is a

typical example of the feed-forward neural network. It con-

sists of multiple layers of neurons, where simultaneously the

output of the previous layer is the input in the next layer. The

main objective of a single neuron is to classify the input da-

ta and to set the appropriate output values, according to the

inputs. Before using the perceptron, it is necessary to train it

by providing sample input data, and modify the input weights

and the connections weights between the layers of neurons so

that the output value is the expected value.

2.2. Neural network with the radial basis function. Neural

networks with radial activation functions are commonly used

for nonlinear approximation of numerical variables. They are

used in prediction tasks as well.

The neural architecture of such a network consists most-

ly of only three layers, i.e., the input layer, one hidden layer

with radial neurons and the output layer with a linear neuron

(Fig. 3). The task of the linear neuron is weight summation

of the signals from the hidden layer. The information pieces

in an RBF neural network is propagated forward and do not

refer to each other between the neurons of the same layer. The

neurons in a hidden layer of an RBF neural network perform a

special function. This function changes radially around a cho-

sen center c and has nonzero values only in the close area of

the center. The task of each neuron is to project the neuron ra-

dial space around a given point or around the cluster, which is
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the group of points. Next, using the output neuron, the super-

position for all signals from the hidden layer is made. Thanks

to that it is possible to project the whole multidimensional

space.

Fig. 3. Structure of the RBF neural network

2.3. GMDH neural networks. For the correction prediction

problem, the GMDH neural network can be applied [16].

Such networks are used in many areas, mainly related to da-

ta collection, prediction, systems modeling and optimization.

This method was proposed in 1968 by A.G. Ivakhnenko from

the Institute of Cybernetics in Kiev. GMDH algorithms allow

us to automatically find correlation in the data. The idea of

the GMDH can be usefully applied in the design of artificial

neural networks.

The main problem in designing artificial neural networks

is the selection of the optimum structure of the network so as

to give the best results. This is a great challenge, because the

structure of the network consists of a number of neurons in

different layers of the network, a number of layers, and a num-

ber of inputs and outputs. Another problem is the preparation

of the training and testing data sets. The final stage in solving

the prediction problem using neural network is to train it.

The application of the GMDH in the design of artificial

neural networks allows predicting the next sample and over-

coming the main problem mentioned above. This is because

the network structure is generated automatically, based on pre-

viously prepared training and testing sets. That is why it is

very important to prepare it in a good way, which is discussed

in the next section in detail.

The main idea of GMDH neural networks is to replace

the single, comprehensive model for a hierarchical structure,

consisting of polynomial partial models [17]. The synthesis of

a GMDH model is based on alternating estimation of partial

models parameters and combining these models using selec-

tion methods in such a way that the network structure evolves

to the form in which the output signals are the best approxima-

tion to the expected values, in the sense of the some criterion.

Partial models parameters are estimated separately, before

their inclusion in the neural network structure. Each of these

models is trained in such a way that only one model can gener-

ate the response close to the expected output value as much as

possible. Then each model must pass the quality test, during

which some of the models are eliminated from the network

structure, based on certain conditions. This process is called

selection (Fig. 4).

Fig. 4. Selection phase during GMDH model synthesis (light grey

circles stand for eliminated neurons)

There are several selection methods, for example, evolu-

tionary methods such as the decreasing population method

or the optimum population method. However, the most popu-

lar is the constant population method, due to implementation

simplicity. Using this method, partial models with the biggest

processing error are eliminated and not taken into account

during further synthesis of the neural network.

In order to determine the error processing value for each

partial model, it is necessary to define the evaluation criterion.

To be sure that the model has ability to generalize, the crite-

rion is calculated using the testing data set. There are several

criterions. Choosing the appropriate one for the prediction

task is a challenging problem. For predicting the corrections,

the criterion without data split is used. In such a criterion, for

parameter estimation and partial models evaluation, the com-

plete data set is used. Models obtained in such a way have

good prediction properties, which is crucial for the present

research. An important condition for using such a criterion is

that the measurement data used for training and model eval-

uation must have similar characteristics, i.e., a similar mean

value, trend and variance.

GMDH model synthesis continues until the network reach-

es the optimal structure, according to an appropriately defined

criterion. The criterion is to determine the processing error

Q(ŷ
(l)
n ) for every n partial models from the lth layer,

Q
(l)
min = min

n=1,...y
Q(ŷ(l)

n ), (1)

where Q(ŷ
(l)
n )can be obtained based on previously defined

evaluate criterions used in the selection phase. Values Q
(l)
minare

determined for each model layer. The network structure, ob-

tained during the synthesis process, is optimal if the following

condition is satisfied:

Q
(L)
opt = min

i=1,...L
Q

(l)
min, (2)

where L stands for the number of all layers. The process

of adding additional layers of the network stops when the

processing error of the best partial model in the layer begins
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to grow. The value Qopt represents the processing error of the

best partial model in the whole network, which as the same

time is the output of the network.

When the final neural network structure is determined, it

is possible to improve the final prediction results by train-

ing the network again, but this time as a whole structure, not

individual partial models [18].

3. Data preparation for GMDH neural networks

3.1. General characteristics of the data. Predicting the cor-

rections for UTC(PL) based on neural networks requires a

training process. It depends on the number of input training

data and the data preparation method [19]. Data preparation

for the GMDH neural network was based on the historical

results of measurements of the phase time between UTC(PL)

and Cs2 clock (Fig. 1, Station 2), defined for each day ac-

cording to the relation

xa(t) = UTC(PL)− clock. (3)

The data were collected for the period from 53736 MJD (Mod-

ified Julian Date) (January 1st, 2006) to 54617 MJD (end of

May 2008). For the same period of time, the values of correc-

tions for UTC(PL) relative to UTC were available, with the

relation

xb(t) = UTC − UTC(PL) (4)

defined at the interval of five days and published in the Cir-

cular T bulletin. Using the PCHIP (Piecewise Cubic Hermite

Interpolating Polynomial) interpolation function available in

MATLAB for the data set from BIPM, a mathematical model

was determined, which extends the training data set by calcu-

lating the values of corrections for UTC(PL) relative to UTC

for each day of the analyzed period of time.

The final input data set for the GMDH neural network was

calculated as follows:

x(t) = xa(t) + xb(t) = UTC − clock. (5)

3.2. Input data with and without trend elimination. The

final data set x(t)is the time series ts1 which reflect the time

instability of the Cs2 clock for each day with reference to

UTC. In the time series ts1 there is a linear trend xr(t) and a

variable component (Fig. 5). A GMDH neural network train-

ing process and prediction of the corrections for UTC(PL)

were performed based on ts1, which was the first data set.

Fig. 5. Sample set of the phase time x(t) and the trend xr(t) for

one month period

Moreover, the additional time series ts2 was prepared. Its

final value is obtained by eliminating the long-term trend of

the phase-time changes xr(t) described by the linear regres-

sion equation (Fig. 5). All time series ts2 values, which are

deviations of the trend xd(t), were calculated as follows:

xd(t) = x(t) − xr(t). (6)

Such a method was used because of the small values of the

trend deviations (±9ns, which is 0.5% xr(t)). Such a situ-

ation may cause the neural network to take the trend as an

important information in the training process, and this may

affect the deterioration of the prediction results of UTC(PL).

However, when the data series ts2 is added to network input,

a model which describes the deviation from the trend is taken

into account during the neural network training process. This

method of input data preparation for a neural network is rec-

ommended and gives better prediction results for UTC(PL).

4. Experiment

4.1. Experiment conditions. The prediction of corrections is

performed using two methods: the time series analysis method

and the regression method. The prediction was made on the

15th day of five consecutive months of 2008 (from January

to May). The reason for taking into account such a period of

time is that then there was the largest trend deviation for the

Cs2 clock in relation to UTC, which may influence the value

of predicted corrections. The GMDH neural network training

process and predicting the corrections may be performed with

a free GMDH application such as GMDH Toolbox [20, 21],

or using a commercial one. It this case, the GMDH Shell 2.2.

tool is used. Before the experiment, the following assumptions

were taken into account:

1. For the time series analysis, the size of the training data

frame is set as maximal on every day of prediction, i.e.,

for day MJD 54479 the frame contains 713 elements and

for day MJD 54599 it contains 833 elements.

2. The validation method in both methods of predicting the

corrections is ”whole data testing”, which means that the

input data are split into two parts, a training part and a val-

idation part, but for testing the whole set of data is used.

3. The ratio parameter defines the relationship in which the

data set is divided into training data and test data. The ratio

of training data to the test data was changed every one step

from the value of 70/30 to 80/20.

4. The transfer function of the neuron in the GMDH Shell

tool is a polynomial whose degree was changed from the

value of 1 to 4.

5. The polynomial degree of the transfer function of the neu-

ron and the ratio of training data to test data were selected

individually for each day of the prediction.

As input data, the time series ts1 and ts2 were taken. The

predicted value for day t0+m is the network output, where t0
is the last day of the month preceding the prediction. Based

on it, calculating the correction for UTC(PL) is possible. The

first step is to calculate the prediction value for the time series

ts1:
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xpred(t0 + m) = (UTC − clock)pred. (7)

Based on this value, the prediction value (UTC(PL) −

UTC)pred is calculated. Such a prediction value is the cor-

rection value, which can be used during UTC(PL) correction

in order to ensure the best compatibility of UTC(PL) with

UTC. The next step for the time series ts2 was to calculate

the prediction value of the trend deviation

xdpred(t0 + m) = (x(t0 + m) − xr(t0 + m))pred, (8)

which was added to the trend prediction value obtained us-

ing regression equations. The result is the prediction value

(UTC − clock)pred. Further calculations aimed at achieving

the prediction correction value were carried out on the time

series ts1 in the same way.

In order to compare the values of predicted corrections for

UTC(PL) obtained for the time series ts1 and ts2 (GMDH

neural networks) and the predictions made by GUM using

the analytical linear regression method, the prediction error

∆pred was calculated according to (9),

∆pred = (UTC(PL) − UTC)pred

−(UTC(PL)− UTC)cirt.
(9)

It defines the difference between the predicted value

(UTC(PL) − UTC)pred and the value (UTC(PL) −

UTC)cirt read from the Circular T bulletin for the same

day of prediction.

4.2. Experimental results. As has already been mentioned,

the prediction of the corrections for UTC(PL) was made on

the 15th day for each of five consecutive months. The last

prediction value is obtained for the month in which the data

set was ended. In Fig. 6 the prediction errors are presented.

In the case of determining the corrections prediction for

UTC(PL) using the time series analysis method (Fig. 6a), it

can be noted that the preparation way of both time series

(ts1 and ts2) has no significant influence on predicting qual-

ity. For the time series ts1, the obtained prediction errors in

the analyzed period of five months do not exceed the value

of ±3.1 ns, and for the time series ts2, ±0.4 ns. Prediction

errors obtained for the same period by GUM, using the ana-

lytical linear regression method to predict the corrections for

UTC(PL), exceed the value of ±12 ns. In the case of the re-

gression method (Fig. 6a), the obtained prediction errors for

the time series ts1 are in the range of ±6 ns. For the time

series ts2 and predictions made by GUM, prediction errors

exceed the value of ±12 ns.

a)

b)

Fig. 6. Prediction errors on the 15th day of five consecutive months

using (a) time series analysis method, (b) regression method

Table 1 presents prediction errors obtained using several

methods of predicting the corrections for UTC(PL). The re-

sults obtained using the analytical linear regression method

used in GUM, MLP, RBF and GMDH neural networks were

brought together. In the case of GMDH neural networks, to

predict the corrections, two methods were used: time series

analysis and the regression method. The smallest prediction

error was obtained for GMDH networks and time series analy-

sis methods for the time series ts2. The maximum error of

prediction for the time series ts2 does not exceed the value

of ±0.4 ns and was much smaller than the maximum errors

obtained with other methods.

Table 1

Prediction errors using prediction with the GMDH neural network, the MLP, the RBF and the linear regression method used in GUM

∆pred [ns]

GMDH MLP RBF GUM

time series analysis method regression method regression method regression method analytical linear regression method

MJD ts1 ts2 ts1 ts2 ts1 ts2 ts2

54479 −0.02 0.00 0.51 −0.59 −0.40 0.00 0.20 −2.00

54509 3.08 0.09 −5.11 0.92 −1.70 −3.40 −0.70 5.10

54539 0.00 −0.07 −0.18 0.63 26.30 −1.20 3.10 1.20

54569 0.30 0.07 3.45 14.51 2.10 3.90 3.30 12.30

54599 −0.60 0.40 0.60 9.34 −3.70 5.40 0.80 7.00
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5. Conclusions

The objective of this paper was to compare the results of cor-

rections prediction for UTC(PL) using different types of arti-

ficial neural networks. The proposed neural networks include:

the group method of data handling, the multilayer percep-

tron and the radial basis function. The obtained results prove,

that it is possible to predict the corrections for UTC(PL) us-

ing neural networks in effective way. The best results were

obtained using the GMDH neural network and the time se-

ries analysis method. Moreover, an important advantage of

using GMDH neural networks is their automatic adjustment

of the structure and the number of neurons to the nature of

the time series changes applied to the input of the network in

the training process. This results in a very small amount of

time needed to receive the predicted correction for UTC(PL)

(tens of seconds). In the case of predicting the corrections for

UTC(PL), based on MLP and RBF neural networks, the per-

son leading the training process adjusts its structure and the

number of neurons in the hidden layer, which greatly extends

the time needed to receive the final result of the predicted

correction (up to several hours).
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