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Decoupling zeros of positive continuous-time linear systems
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Abstract. Necessary and sufficient conditions for the reachability and observability of the positive continuous-time linear systems are

established. Definitions of the input-decoupling zeros, output-decoupling zeros and input-output decoupling zeros are proposed. Some

properties of the decoupling zeros are discussed.
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1. Introduction

In positive systems inputs, state variables and outputs take on-

ly non-negative values. Examples of positive systems are in-

dustrial processes involving chemical reactors, heat exchang-

ers and distillation columns, storage systems, compartmental

systems, water and atmospheric pollution models [1–19]. A

variety of models having positive linear behavior can be found

in engineering, management science, economics, social sci-

ences, biology and medicine, etc. An overview of state of the

art in positive linear theory is given in the monographs [2, 3].

The notions of controllability and observability and the

decomposition of linear systems have been introduced by

Kalman [13, 14]. Those notions are the basic concepts of

the modern control theory [1, 2, 4, 12, 15, 19]. They have

been also extended to positive linear systems [2, 3].

The reachability and controllability to zero of standard

and positive fractional discrete-time linear systems have been

investigated in [9] and controllability and observability of

electrical circuits in [6, 8, 10]. The decomposition of posi-

tive discrete-time linear systems has been addressed in [5].

The notion of decoupling zeros of standard linear systems

have been introduced by Rosenbrock [15]. The zeros of lin-

ear standard discrete-time system have been addressed in [18]

and zeros of positive continuous-time and discrete-time linear

systems have been defined in [16, 17]. The decoupling zeros

of positive discrete-time linear systems have been introduced

in [7].

In this paper the notions of decoupling zeros is extended

for positive continuous-time linear systems.

The paper is organized as follows. In Sec. 2 the basic

definitions and theorems concerning reachability and observ-

ability of positive discrete-time linear systems are given. The

decomposition of the pair (A, B) and (A, C) of positive linear

system is addressed in Sec. 3. The main result of the paper is

given in Sec. 4 where the definitions of the decoupling-zeros

are proposed. Concluding remarks are given in Sec. 5.

The following notation is used: ℜ – the set of real num-

bers, ℜn×m – the set of n×m real matrices, ℜn×m
+ - the set

of n×m matrices with nonnegative entries and ℜn
+ = ℜn×1

+ ,

Mn – the set of n × n Metzler matrices (real matrices with

nonnegative off-diagonal entries), In – the n×n identity ma-

trix.

2. Reachability and observability of positive

continuous-time linear systems

2.1. Reachability of positive systems. Consider the linear

continuous-time system.

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(1)

where x(t) ∈ ℜn, u(t) ∈ ℜm, y(t) ∈ ℜp are the state, input

and output vectors and A ∈ ℜn×n, B ∈ ℜn×m, C ∈ ℜp×n,

D ∈ ℜp×m, m ≤ n.

Definition 1. [2, 3] The linear system (1) is called (inter-

nally) positive if x(t) ∈ ℜn
+ and y(t) ∈ ℜp

+, t ≥ 0 for any

x(0) = x0 ∈ ℜn
+ and every u(t) ∈ ℜm

+ , t ≥ 0.

Theorem 1. [2, 3] The system (1) is positive if and only if

A ∈ Mn, B ∈ ℜn×m
+ , C ∈ ℜp×n

+ , D ∈ ℜp×m
+ (2)

Definition 2. The positive system (1) (or positive pair (A,

B)) is called reachable in time tf if for any given final state

xf ∈ ℜn
+ there exists an input u(t) ∈ ℜm

+ , t ∈ [0, tf ] which

steers the state of the system from zero state (x(0) = 0) to

state xf ∈ ℜn
+, i.e. x(tf ) = xf .

A column a ∈ ℜn
+ (row aT ∈ ℜn

+) is called monomial

if only one its entry is positive and the remaining entries are

zero. A real matrix A ∈ ℜn×n
+ is called monomial if each its

row and each its column contains only one positive entry and

the remaining entries are zero.

Theorem 2. The positive system (1) is reachable in time tf
if and only if the matrix A ∈ Mn is diagonal and the matrix

B ∈ ℜn×n
+ is monomial.

Proof. Sufficiency. It is well-known [3] that if A ∈ Mn is

diagonal then eAt ∈ ℜn×n
+ is also diagonal and if B ∈ ℜn×m

+

is monomial then BBT ∈ ℜn×n
+ is also monomial. In this
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case the matrix

Rf =

tf∫

0

eAτBBT eAT τdτ ∈ ℜn×n
+ (3)

is also monomial and R−1
f ∈ ℜn

+. The input

u(t) = BT eAT (tf−t)R−1
f xf ∈ ℜn×n

+ for t ∈ [0, tf ], (4)

steers the state x(t) of the system from x(0) = x0 = 0 to the

state x(tf ) = xf since

x(tf ) =

tf∫

0

eA(tf−τ)Bu(τ)dτ

=

tf∫

0

eA(tf−τ)BBT eAT (tf−τ)dτR−1
f xf

=

tf∫

0

eAτBBT eAT τdτR−1
f xf = xf .

(5)

Necessity. From Cayley-Hamilton theorem we have

eAt =

n−1∑

k=0

ck(t)Ak, (6)

where ck(t), k = 0, 1, . . ., n − 1 are some nonzero functions

of time depending on the matrix A. Substitution of (6) into

tf∫

0

eA(tf−τ)Bu(τ)dτ (7)

yields

xf = [ B AB ... Aq−1B ]





v0(tf )

v1(tf )
...

vn−1(tf )




, (8)

where

vk(tf ) =

tf∫

0

ck(τ)u(tf − τ)dτ , k = 0, 1, . . ., n − 1. (9)

For given xf ∈ ℜn
+ it is possible to find nonnegative vk(tf )

for k = 0, 1, . . ., n − 1 if and only if the matrix

[ B AB ... Aq−1B ] (10)

has n linearly independent monomial columns and this takes

place only if the matrix [B, A] contains n linearly inde-

pendent columns [3]. Note that for the nonnegative vk(tf ),
k = 0, 1, . . ., n − 1 it is possible to find a nonnegative in-

put u(t) ∈ ℜm
+ , t ∈ [0, tf ] only if the matrix B ∈ ℜn×n

+ is

monomial and the matrix A ∈ Mn is diagonal.

Example 1. Consider the positive system (1) with the matrices

A =




−1 0 0

0 −2 1

0 0 0



 ,

B = [ B1 B2 ] =




0 2

0 0

1 0



 .

(11)

In this case using (8), (9) and (11) we obtain

xf = [ B AB A2B ]





tf∫

0

c0(τ)u(tf − τ)dτ

tf∫

0

c1(τ)u(tf − τ)dτ

tf∫

0

c2(τ)u(tf − τ)dτ





=




0 2 0 −2 0 2

0 0 1 0 −2 0

1 0 0 0 0 0





·





tf∫

0

c0(τ)

[
u1(tf − τ)

u2(tf − τ)

]
dτ

tf∫

0

c1(τ)

[
u1(tf − τ)

u2(tf − τ)

]
dτ

tf∫

0

c2(τ)

[
u1(tf − τ)

u2(tf − τ)

]
dτ





.

(12)

The matrix

[ B1 B2 AB1 ] =




0 2 0

0 0 1

1 0 0



 (13)

is monomial and from (12) we have




0 2 0

0 0 1

1 0 0









tf∫

0

c0(τ)

[
u1(tf − τ)

u2(tf − τ)

]
dτ

tf∫

0

c1(τ)u1(tf − τ)dτ




= xf

(14a)

and




−2 0 2

0 −2 0

0 0 0









tf∫

0

c1(τ)u2(tf−τ)dτ

tf∫

0

c2(τ)

[
u1(tf−τ)

u2(tf−τ)

]
dτ




=




0

0

0



.

(14b)
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It is easy to see that does not exist

[
u1(t)

u2(t)

]
∈ ℜ2

+ satisfy-

ing (14) for any given xf ∈ ℜ3
+, since ck(t) for k = 0,1,2 are

nonzero.

2.2. Observability of positive systems. Consider the posi-

tive system.

ẋ(t) = Ax(t), (15a)

y(t) = Cx(t), (15b)

where x(t) ∈ ℜn
+, y(t) ∈ ℜp

+ and A ∈ Mn, C ∈ ℜp×n
+ .

Definition 3. The positive system (15) is called observ-

able if knowing the output y(t) ∈ ℜp
+ and its derivatives

y(k)(t) =
dky(t)

dtk
∈ ℜp

+, k = 1,2,. . . ,n – 1 it is possible to

find the initial values x0 = x(0) ∈ ℜn
+ of x(t) ∈ ℜn

+.

Theorem 3. The positive system (15) is observable if and

only if the matrix A ∈ Mn is diagonal and the matrix





C

CA
...

CAn−1




(16)

has n linearly independent monomial rows.

Proof. Substituting of the solution

x(t) = eAtx0 (17)

of the equation (15a) into (15b) yields

y(t) = CeAtx0. (18)

From (18) we have





y(t)

ẏ(t)
...

y(n−1)(t)




=





C

CA
...

CAn−1




eAtx0. (19)

It is possible to find from (19) eAtx0 ∈ ℜn
+ if and only if

the matrix (16) has n linearly independent monomial rows.

From the equality eAte−At = In it follows that the matrix

eAt ∈ ℜn×n
+ for A ∈ Mn if and only if it is diagonal. There-

fore, it is possible to find x0 ∈ ℜn
+ from the equation (19) if

and only if the matrix A ∈ Mn is diagonal and the matrix

(16) has n linearly independent rows.

Theorem 4. The positive system (15) is observable if the

matrix

Op = eAT tCT CeAt (20)

is monomial.

Proof. Premultiplying (18) by eAT tCT we obtain

eAT tCT CeAtx0 = eAT tCT y(t). (21)

If the matrix (20) is monomial then O−1
p =

[eAT tCT CeAt]−1 ∈ ℜn×n
+ and from (21) we have

x0 = [eAT tCT CeAt]−1eAT tCT y(t) ∈ ℜn
+ (22)

since eAT tCT y(t) ∈ ℜn
+ for y(t) ∈ ℜp

+.

Note that the matrix (20) can be monomial only if the

matrix C is monomial.

3. Decomposition of the pairs (A,B) and (A,C)

3.1. Decomposition of the pair (A,B). Consider the pair

(A,B) with A being diagonal.

A = diag [a11, a22, ..., an,n] ∈ Mn (23a)

and the matrix B with m linearly independent columns

B1, B2, ..., Bm

B = [ B1 B2 ... Bm ]. (23b)

By Theorem 2 the pair (23) is unreachable if m < n.

It is shown that in this case the pair can be decom-

posed into the reachable pair (A1, B1) and unreachable pair

(A2, B2 = 0).

Theorem 5. For the unreachable pair (23) (m < n) there ex-

ists a monomial matrix P ∈ ℜn×n
+ such that the pair (A, B)

can be reduced to the form

A = PAP−1 =

[
A1 0

0 A2

]
,

B = PB =

[
B1

0

]
,

(24)

where A1 = diag [a11, a22, ..., an1,n1
] ∈ Mn1

, A2 =
diag [an1+1,n1+1, ..., an,n] ∈ Mn2

, B1 ∈ ℜn1×m
+ , n = n1 +

n2, the pair (A1, B1) is reachable and the pair (A2, B2 = 0)
is unreachable.

Proof. Performing on the matrix B the following elementary

row operations:

1. interchange the i-th and j-th rows, denoted by L[i, j],
2. multiplication of i-th rows by positive number c, denoted

by L[i × c],

we may reduce the matrix B to the form

[
B1

0

]
, where

B1 ∈ ℜn1×m
+ is monomial with positive entries equal to 1.

Performing the same elementary row operations on the iden-

tity matrix In we obtain the desired monomial matrix P . It

is well-known [3] that P−1 ∈ ℜn×n
+ and for diagonal matrix

A we have A = PAP−1 =

[
A1 0

0 A2

]
.

Example 2. Consider the unreachable pair (23) with

A =




−1 0 0

0 −2 0

0 0 −1



 , B =




0 3

0 0

2 0



 . (25)
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Performing on the matrix B the following elementary row

operations L[1, 3], L[1 × 1/2], L[2, 3], L[2 × 1/3] we obtain

B =




1 0

0 1

0 0



 . (26)

Performing the same elementary row operations on the iden-

tity matrix I3 we obtain the desired monomial matrix

P =




0 0 1/2

1/3 0 0

0 1 0



 (27)

and

PB =




0 0 1/2

1/3 0 0

0 1 0








0 3

0 0

2 0





=




1 0

0 1

0 0



 = B =

[
B1

0

]
,

A = PAP−1 =




0 0 1/2

1/3 0 0

0 1 0








−1 0 0

0 −2 0

0 0 −1





·




0 3 0

0 0 1

2 0 0



 =




−1 0 0

0 −1 0

0 0 −2



 =

[
A1 0

0 A2

]
.

(28)

The positive pair

A1 =

[
−1 0

0 −1

]
, B1 =

[
1 0

0 1

]
(29)

is reachable.

3.2. Decomposition of the pair (A,C). Let the observability

matrix

On =





C

CA
...

CAn−1




∈ ℜpn×n

+ (30)

of the positive unobservable system has n1 < n linearly in-

dependent monomial rows.

If the conditions

QkAQT
j = 0 for k = 1, 2, ..., n̂1

and j = n̂1 + 1, ..., n
(31)

are satisfied then there exists the monomial matrix [5, 6]

QT =
[
QT

j1
... QT

j1d1

QT
j2

... QT

j2d2

...

QT

jldl
QT

n1+1 ... QT
n

]
∈ ℜn×n

+ ,
(32a)

where

Qj1 = Cj1 , ..., Qj1d1
= Cj1A

d1−1, Qj2 = Cj2 , ..., Qj2d2

= Cj2A
d2−1, ..., Qjldl

= Cjl
Adl−1

(32b)

and dj , j = 1, ..., l are some natural numbers.

Theorem 6. Let the positive system (15) be unobservable and

let there exist the monomial matrix (32). Then the pair (A,C)
of the system can be reduced by the use of the matrix (32) to

the form

Â = QAQ−1 =

[
Â1 0

0 Â2

]
,

Ĉ = CQ−1 = [ Ĉ1 0 ]

Â1 ∈ ℜn1×n1

+ , Â2 ∈ ℜn2×n2

+ ,

(n2 = n − n1), Ĉ1 ∈ ℜp×n1

+ ,

(33)

where the pair (Â1, Ĉ1) is observable and the pair (Â2, Ĉ2 =
0) is unobservable.

Proof is given in [5].

Example 3. Consider the unobservable pair

A =




−1 0 0

0 −2 0

0 0 −1



 , C = [ 0 0 1 ]. (34)

In this case the observability matrix

Q3 =




C

CA

CA2



 =




0 0 1

0 0 −1

0 0 1



 (35)

has only one monomial row Q1 = C, i.e. n1 = 1 and

the conditions (31) are satisfied for Q2 = [ 1 0 0 ] and

Q3 = [ 0 1 0 ] since Q1AQT
j = 0 for j = 2, 3. The

matrix has the form

Q =




Q1

Q2

Q3



 =




0 0 1

1 0 0

0 1 0



 . (36)

Using (33) and (36) we obtain

Â = QAQ−1=




0 0 1

1 0 0

0 1 0








−1 0 0

0 −2 0

0 0 −1





·




0 1 0

0 0 1

1 0 0



 =




−1 0 0

0 −1 0

0 0 −2



=

[
Â1 0

0 Â2

]
,

Ĉ = CQ−1 = [ 0 0 1 ]




0 1 0

0 0 1

1 0 0





= [ 1 0 0 ] = [ Ĉ1 0 ],

(37)
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where

Â1 = [−1], Â2 =

[
−1 0

0 −2

]
, Ĉ1 = [1]. (38)

The pair (Â1, Ĉ1) is observable and the pair (Â2, 0) is unob-

servable.

Note that the Singular Value Decomposition (SVD) can

be applied to compute the decomposition of the pairs (A,B)
and (A,C).

4. Decoupling zeros of the positive systems

It is well-known [15] that for standard linear systems the input-

decoupling zeros are the eigenvalues of the matrix A2 of the

unreachable (uncontrollable) part (A2, B2 = 0).

In a similar way we define the input-decoupling zeros of

the positive continuous-time linear systems.

Definition 4. Let A2 be the matrix of unreachable part

of the system (1). The zeros si1, si2, ..., sin2
of the char-

acteristic polynomial

det[In2
s − A2] = zn2 + an2−1z

n2−1 + ... + a1z + a0 (39)

of the matrix A2 are called the input-decoupling zeros of the

positive system (1).

The list of the input-decoupling zeros are denoted by

Zi = {si1, si2, ..., sin2
}.

Theorem 7. The state vector x(t) of the positive system (1) is

independent of the input-decoupling zeros for any input u(t)
and zero initial conditions.

Proof. From (1) for zero initial conditions x(0) = 0 we have

X(s) = [Ins − A]−1BU(s), (40)

where X(s) and U(s)are Laplace transforms of x(t) and u(t),
respectively. Taking into account (24) we obtain

X(s) = [Ins − P−1AP ]−1P−1BU(s)

= P−1[Ins − A]−1BU(s)

= P−1

[
In1

s − A1 0

0 In2
s − A2

]
−1 [

B1

0

]
U(s)

= P−1

[
[In1

s − A1]
−1B1

0

]
U(s).

(41)

From (41) it follows that X(s) is independent of the matrix

A2 and of the input-decoupling zeros for any input u(t).

Example 4. (continuation of Example 2) In Example 2 it was

shown that for the unreachable pair (23) the matrix A2 has

the form A2 = [−2]. Therefore, the positive system (23) with

(25) has one input-decoupling zero si1 = −2.

For standard continuous-time linear systems the output-

decoupling zeros are defined as the eigenvalues of the matrix

of the unobservable part of the system. In a similar way we

define the output-decoupling zeros of the positive continuous-

time linear systems.

Definition 5. Let Â2 be the matrix of unobservable part of the

system (15). The zeros so1, so2, ..., sobn2
of the characteristic

polynomial

det[Ibn2
z − Â2] = zbn2 + âbn2−1z

bn2−1 + ... + â1z + â0 (42)

of the matrix Â2 are called the output-decoupling zeros of the

positive system (15).

The list of the output-decoupling zeros is denoted by

Zo = {so1, so2, ..., sobn2
}.

Theorem 8. The output vector y(t) of the positive system (15)

is independent of the output-decoupling zeros for any input

u(t) = Bu(t) and zero initial conditions.

Proof is similar to the proof of Theorem 7.

Example 5. (continuation of Example 3) In Example 3 it was

shown that the matrix Â2 of the positive unobservable pair

(34) has the form

Â2 =

[
−1 0

0 −2

]
(43)

and the positive system has two output-decoupling zero so1 =
−1, so2 = −2.

Following the same way as for standard continuous-time

linear systems we define the input-output decoupling zeros of

the positive systems as follows.

Definition 6. Zeros s
(1)
io , s

(2)
io , ..., s

(k)
io which are simultaneous-

ly the input-decoupling zeros and the output-decoupling zeros

of the positive system are called the input-output decoupling

zeros of the positive system, i.e.

s
(j)
io ∈ Zi and s

(j)
io ∈ Zo

for j = 1, 2, . . ., k; k ≤ min(n2, n̂2).
(44)

The list of input-output decoupling zeros is denoted by Zio =

{z
(1)
io , z

(2)
io , ..., z

(k)
io }.

Example 6. Consider the positive system with the matri-

ces A, B, C given by (25) and (36). In Example 4 it was

shown that the positive system has one input-decoupling zero

si1 = −2 and in Example 5 that the system has two output-

decoupling zeros so1 = −1, so2 = −2. Therefore, by Defi-

nition 6 the positive system has one input-output decoupling

zero s
(1)
io = −2.

5. Concluding remarks

New necessary and sufficient conditions for the reachabili-

ty and observability of the positive continuous-time linear

systems have been established. The definitions of the input-

decoupling zeros, output-decoupling zeros and input-output

decoupling zeros of the positive systems have been proposed.

Some properties of the new decoupling zeros have been dis-

cussed. The considerations have been illustrated by numeri-

cal examples of positive continuous-time linear systems. An
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open problem is an extension of these considerations to frac-

tional discrete-time and continuous-time positive linear sys-

tems [11].
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