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Stability and controllability of switched systems
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Abstract. The study of properties of switched and hybrid systems gives rise to a number of interesting and challenging mathematical

problems. This paper aims to briefly survey recent results on stability and controllability of switched linear systems. First, the stability

analysis for switched systems is reviewed. We focus on the stability analysis for switched linear systems under arbitrary switching, and we

highlight necessary and sufficient conditions for asymptotic stability. After that, we review the controllability results.
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1. Introduction

Hybrid systems which are capable of exhibiting simultane-

ously several kinds of dynamic behaviour in different parts

of the system (e.g., continuous-time dynamics, discrete-time

dynamics, jump phenomena, logic commands, and the like)

are of a great current interest (see, e.g., [1–3]). Examples

of such systems include the Multiple-Models, Switching and

Tuning paradigm from adaptive control [4], Hybrid Con-

trol Systems [5], and a plethora of techniques that arise in

Event Driven Systems. Also typical examples of such sys-

tems of varying degrees of complexity include computer disk

drives [6], transmission an stepper motors [7], constrained

robotic systems [8], intelligent vehicles/highway systems [9],

sampled-data systems [10], discrete event systems [11], and

many other types of systems (refer, e.g., to the papers included

in [2]).

Switched linear systems are hybrid systems that consist

of several linear subsystems and a rule of switching among

them. Switched linear systems provide a framework which

bridges the linear systems and the complex and/or uncertain

systems. On one hand, switching among linear systems may

produce complex system behaviors such as chaos and multiple

limit cycles. On the other hand, switched linear systems are

relatively easy to handle as many powerful tools from linear

and multilinear analysis are available to cope with these sys-

tems. Moreover, the study of switched linear systems provides

additional insights into some long-standing and sophisticated

problems, such as intelligent control, adaptive control and ro-

bust analysis.

A theoretical examination of switched linear systems

is academically more challenging due to their rich, di-

verse and complex dynamics. Switching makes these sys-

tems much more complicated than standard-time invariant

or even time-varying systems. Many more complicated be-

haviours/dynamics and fundamentally new properties, which

standard systems do not have, have been demonstrated on

switched linear systems. From the control system design point

of view, switching brings an additional degree of freedom in

control system design. Switching laws, in addition to con-

trol laws, may be utilized to manipulate switched systems to

achieve a better performance of a system. This can be treated

as an added advantage for a control design to attain certain

control purposes like stabilizability or controllability.

The objective of this article is to review the major progress

that has been made on stability and controllability of switch-

ed linear systems over the past number of years, see also [12]

and [13]. As a part of this process we attempt to outline the

major outstanding issues that have yet to be resolved in the

study of switched linear systems.

Controllability is one of the fundamental concepts in the

mathematical control theory. This is a qualitative property of

the dynamical control systems and is of particular importance

in a control theory. The systematic study of controllability was

started at the beginning of sixties in the last century when the

theory of controllability based on the state space description

for both, time-invariant and time-varying linear control sys-

tems, was introduced.

Roughly speaking, controllability means, that it is possible

to steer a dynamical control system from an arbitrary initial

state to an arbitrary final state using the set of admissible con-

trols. It should be mentioned that in the literature there are

many different definitions of controllability, which strongly

depend on a class of dynamical control systems on one hand,

and on the other hand, on admissible controls [14–16].

Controllability problems for different types of dynami-

cal systems require the application of numerous mathematical

concepts and methods taken directly from differential geome-

try, functional analysis, topology, matrix analysis and theory

of ordinary and partial differential equations and theory of

difference equations. In the paper we use mainly state-space

models of dynamical systems, which provide a robust and uni-

versal method for studying controllability of various classes

of systems [14–16].

Controllability plays an essential role in the development

of the modern mathematical control theory. There are various

important relationships between controllability, stability and
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stabilizability of linear both finite-dimensional and infinite-

dimensional control systems. Controllability is also strongly

related to the theory of realization and so-called minimal re-

alization and canonical forms for linear time-invariant con-

trol systems such as the Kalman canonical form, the Jordan

canonical form or the Luenberger canonical form [14].

It should be mentioned, that for many dynamical systems

there exists a formal duality between the concepts of control-

lability and observability. Moreover, controllability is strongly

connected with a minimum energy control problem for many

classes of linear finite dimensional, infinite dimensional dy-

namical systems, and delayed systems both deterministic and

stochastic [14–16].

Moreover, it is well known, that the controllability con-

cept has many important applications not only in the control

theory and systems theory, but also in such areas as industrial

and chemical process control, reactor control, control of elec-

tric bulk power systems, aerospace engineering and recently

in the quantum systems theory.

The last decades have seen a continually growing inter-

est in the controllability theory of dynamical systems. This

is clearly related to the wide variety of theoretical results

and possible applications. Up to the present time the problem

of controllability for continuous-time and discrete-time linear

dynamical systems has been extensively investigated in many

papers (see e.g. [14] for extensive list of references).

Similarly, there have been a lot of papers for controlla-

bility both continuous-time and discrete-time switched sys-

tems [17–23]. For the controllability analysis of switched lin-

ear control systems, a much more difficult situation arises

since both the control input and the switching rule have been

design variables to be determined. Thus, the interaction be-

tween them is very important from the controllability point of

view. Moreover, it should be mentioned that for the switch-

ed linear discrete-time control system in a general case the

controllable set is not a subspace but a countable union of

subspaces. For the switched linear continuous-time control

system, in a general case the controllable set is an uncount-

able union of subspaces.

2. Definitions and model descriptions

Consider a set of square n-by-n matrices Σ = {Ai : i ∈ I}.

Throughout this paper our primary concern shall be with the

stability properties of the switched linear system. In a discrete-

time case it has the following form

x(k + 1) = Aσ(k)x(k), (1)

where σ : N → I , and in continuous-time a switched linear

system has the form

ẋ(t) = Aσ(t)x(t), (2)

where σ : [0,∞) → I is a piecewise constant function. The

function σ in both cases is called the switching signal. In the

continuous-time case the points of discontinuity, t1, t2, ..., of

σ are known as the switching instances. We denote the set of

switching signals by S(I). A function x : [0,∞) → R
n is

called a solution of (2) if it is continuous and piecewise con-

tinuously differentiable and ẋ(t) = Aσ(t)x(t) for all t except

at the switching instances of σ. Considering problems of con-

trollability and stabilizability our systems have the following

forms

x(k + 1) = Aσ(k)x(k) + Bσ(k)u(k), (3)

where σ : N → I and in continuous-time a switched linear

system has the form

ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t), (4)

where ΣC = {Bi : i ∈ I} is a set of n-by-p matrices and

u : [0,∞) → R
p is a control. For a given switching function

σ and in case of (3), (4) for given control u : [0,∞) → R
p

the solution of (2)–(4) with an initial condition x(0) =
x0 ∈ Rn is denoted by x(k, σ, x0) (x(t, σ, x0), x(k, σ, x0, u),
x(t, σ, x0, u)).

3. Stability

For i ∈ I the time-invariant system

x(k + 1) = Aix(k),
.
x(t) = Aix(t) (5)

will be called subsystem of (1), (2).

The stability issues of such switched systems include sev-

eral interesting phenomena. For example, even when all the

subsystems (5) are exponentially stable, (1), (2) may have

divergent trajectories for certain switching signals σ; see,

e.g. [12, 24]. Another noticeable fact is that one may care-

fully switch between unstable subsystem to make (1) or (2)

exponentially stable; see, e.g. [25]. As these examples sug-

gest, the stability of switched systems depends not only upon

the dynamics of each subsystems but also upon the proper-

ties of the switching signals. Therefore, the stability study of

switched systems might be roughly divided into two kinds of

problems [25]:

• (Q1) one is the stability analysis of switched systems un-

der given sets of admissible switching signals (all switching

signals or these obeying some constraints);

• (Q2) the other is the synthesis of stabilizing switching sig-

nals for a given collection of dynamical/control systems.

Definition 1. The system (1), (2) is called absolutely stable if

there exist real constants M ≥ 1, β > 0 such that

‖x(k, σ, x0)‖ ≤ Me−βk ‖x0‖

( ‖x(t, σ, x0)‖ ≤ Me−βt ‖x0‖ )

for all x0 ∈ Rn, σ and k (t).

3.1. Common quadratic function approach. The existence

of a common quadratic Lyapunov function (CQLF) for all its

subsystems assures absolute stability. However, the so-called

quadratic stability is much stronger condition than absolute

stability. Quadratic stability is a special class of exponential

stability, which implies asymptotic stability, and has attracted

a lot of research efforts due to its importance in practice. It

is known that the conditions for the existence of a CQLF can

be expressed as linear matrix inequalities.
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Recall that V (x) = xT Px is the quadratic Lyapunov func-

tion (QLF) for the system ẋ = Ax (x(k+1) = Ax(k)) if P is

symmetric and positive definite, and PA+AT P (AT PA−P )

is negative definite. Let Σ be a collection of n-by-n Hurwitz

(Schur) matrices, with associated stable subsystems (5). Then

the function V (x) = xT Px is a common quadratic Lyapunov

function (CQLF) for these systems if V is a QLF for each

individual system. Given a set of matrices Σ, the CQLF ex-

istence problem is to determine whether such a matrix P

exists. A secondary question is to construct a CQLF when

one is known to exist. It is a standard fact that time-invariant

system ẋ = Ax (x(k + 1) = Ax(k)) has a QLF if and on-

ly if the matrix A is Hurwitz (Schur). This property is also

equivalent to the exponential stability of the system A, so for

a single time-invariant system there is no gap between the

existence of a QLF and exponential stability. For a collection

of Hurwitz (Schur) matrices the situation is more complicated

in several aspects. Firstly, in general, CQLF existence is only

a sufficient condition for the absolute stability of a switched

linear system. Secondly, no correspondingly simple condition

is known which can determine the existence of a CQLF for a

family of time-invariant systems, although progress has been

made in some special cases.

The conditions for V (x) = xT Px to be a CQLF are equiv-

alent to a system of linear matrix inequalities (LMIs) in P ,

namely P = PT > 0, (AT
i P + PAi) < 0 (AT

i PAi −P < 0)

for i ∈ Σ.

In [26], an interactive gradient decent algorithm was pro-

posed, which could converge to the CQLF in finite number of

steps. In addition, the author showed that the convergence rate

could be improved by introducing some randomness; here the

convergence is in the sense of probability one. While numer-

ical methods to solve these LMIs for a finite number of stable

LTI systems have existed for some time, determining alge-

braic conditions (on the subsystems’ state matrices) for the

existence of a CQLF remains a challenging task. Since these

kind of conditions should be easier to verify, and more impor-

tantly, may give us valuable insights in the stability problem

of an arbitrary switching system. One long-standing goal in

the field of switched systems has been to find simple alge-

braic conditions for existence of a CQLF for a given set of

matrices. In the discrete-time case it is known by the work of

Kozyakin [27], that exponential stability is not a property that

can be described by finitely many algebraic constraints in the

set of pairs of 2-by-2 matrices.

Now, we present some partial solutions to this general

problem in continuous-time.

Theorem 1. [28] Let A1 and A2 be 2-by-2 Hurwitz matrices.

The following conditions are equivalent:

1. there exist a CQLF for (1);

2. the matrices A1A2 and A1A
−1
2 do not have any negative

real eigenvalues.

Generalization the above algebraic condition to higher di-

mensional systems turns out to be difficult. In [29], neces-

sary and sufficient algebraic conditions were derived for the

non-existence of a CQLF for an arbitrary switching systems

composed of a pair of third-order systems. For a pair of n-th

order systems, a necessary condition for the existence of a

CQLF was derived in [30].

Theorem 2. Let A1 and A2 be n-by-n Hurwitz matri-

ces. A necessary condition for the existence of a CQLF

is that the matrix products A1 (αA1 + (1 − α)A2) and

A1 (αA1 + (1 − α)A2)
−1

do not have any negative real

eigenvalues for all 0 ≤ α ≤ 1.

To formulate discrete-time versions of this theorems let us

introduce the following notation:

For fixed square matrices A1 and A2 define two matrix

pencils

H (α, A1, A2) =

[0.5I − G (α, A1, A2)]
−1

[0.5I + G (α, A1, A2)]

G (α, A1, A2) =

α
[
0.5I + (I + A1)

−1
]

+ (1 − α)
[
0.5I − (I + A2)

−1
]

,

where α ∈ [0, 1]. The matrix pencil, is said to be Schure, if

the eigenvalues of the matrix for every α ∈ [0, 1] lie inside

unit circle.

Theorem 3. [31] Let A1 and A2 be 2-by-2 Hurwitz matrices.

CQLF exists if and only if the matrix pencils H (α, A1, A2)
and H (α, A1,−A2) are Schur matrices.

Obviously, a necessary condition for the existence of a

CQLF for a switched systems is that every pair of its subsys-

tems share a CQLF. Actually, the existence of a CQLF for

every pair of subsystems may also imply the existence of a

CQLF for the switched system in certain special cases, e.g.,

second order positive systems [32]. Unfortunately, this does

not hold in general. The existence of a CQLF for a finite

number of second order LTI systems was investigated in [33],

and it is interesting to observe that a necessary and sufficient

condition for the existence of a CQLF is that a CQLF exists

for every 3-tuple of systems.

Let us return to the continuous-time case and suppose that

Σ = {A1, ..., Am} consists of Hurwitz matrices all in upper

triangular form, then it was shown in [34], that a CQLF always

exists, and furthermore that the matrix P which defines the

CQLF can be chosen to be diagonal. An interesting applica-

tion of this result arises when the matrices in Σ commute with

each other. In this case there is a unitary matrix U such that

UT AiU is in upper triangular form for each i = 1, ..., m, and

it then follows that a CQLF exists [4]. Interestin resuls about

common quadratic Lyapunov functions are published in [35].

3.2. Lyapunov exponents methods. One of the basic prop-

erties of switched linear systems is that a growth rate may be

defined similarly as in the case of linear time-invariant sys-

tems. The definition proceeds similarly in the continuous and

discrete-time cases. There are several approaches to defining

the exponential growth rate, all of which turn out to be equiv-

alent. A trajectory based definition considers Lyapunov expo-

nents [36–48] of individual trajectories, which are defined in

the discrete-time case as
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λ (x0, σ) = lim sup
m→∞

‖x(m, σ, x0)‖
1

m .

The exponential growth rate of the switched system is

then defined by the maximal Lyapunov exponent sup
σ

λ (x0, σ).

There are numerous approaches to the computation of growth

rates, either in their guise as maximal Lyapunov exponents or

as joint spectral radii.

Consider the discrete system (1). Denote by D(Σ) the set

of all sequences of matrices from set Σ. For fixed d ∈ D(Σ),
d = (A(1), A(2), ...) define

T d
m = A(1)...A(m − 1)A(m)

and

ρ(d) = lim sup
m→∞

∥∥T d
m

∥∥ 1

m . (6)

The equivalence of all norms in finite-dimensional space im-

plies that the quantity ρ(d) does not depend on the choice

of norm. The quantity ln ρ(d) is known in the control the-

ory literature as the greatest Lyapunov exponent. Properties

of Lyapunov exponents were studied in [37–51], where suf-

ficient conditions so that Lyapunov exponents characterizes

exponential stability for switched systems are shown. In par-

ticular, it was shown that the system (1) is absolutely stable

if and only if

sup
d∈D

ρ(d) < α < 1.

The first result we will discuss describes the set

{ρ(d) : d ∈ D} under the assumption that the matrices in Σ
are invertible. It is not a very restrictive assumption and it is

satisfied, in particular, if the discrete system is obtained by

discretization of a continuous one. The set {ρ(d) : d ∈ D} is

characterized in terms of the generalized spectral subradius

and the generalized spectral radius of Σ. A closely related

problem is also studied in [52]. The concept of joint spectral

radius was introduced in [53] in a pure mathematical context

but now it can be useful in many applications. For discussions

of applications in wavelet theory, nonhomogeneous Markov

processes, probabilistic automata, iterated function systems,

hysteresis nonlinearities and stability of time-varying systems

we refer to the papers [54–59] and the references therein.

Denote by ρ(A) the spectral radius of a matrix A. For

m ≥ 1, Σm is the set of all products of matrices in Σ of

length m,

Σm = {A1A2...Am : Ai ∈ Σ, i = 1, ..., m} .

Set

αm = sup
A∈Σm

‖A‖ , αm = inf
A∈Σm

‖A‖

βm = sup
A∈Σm

ρ(A), β
m

= inf
A∈Σm

ρ(A)

and define:

• the joint spectral subradius

ρ̂∗(Σ) = inf
m≥1

α1/m
m ,

• the joint spectral radius

ρ̂(Σ) = inf
m≥1

α1/m
m ,

• the generalized spectral subradius

ρ∗(Σ) = inf
m≥1

β1/m

m
,

• the generalized spectral radius

ρ(Σ) = sup
m≥1

β
1/m

m .

The concept of joint spectral radius was introduced in [53],

and the generalized spectral radius in [55] (see also [60]).

In [57] and [61] two different proofs of the equality

ρ̂(Σ) = ρ(Σ) (7)

were given for the bounded set
∑

. In [55] it was also shown

that for bounded set
∑

we have

ρ̂(Σ) = lim
m→∞

α1/m
m = lim sup

m→∞

β
1/m

m . (8)

The concepts of the joint spectral subradius and the gener-

alized spectral subradius were introduced in [32] to present

conditions for Markov asymptotic stability of a discrete linear

inclusion. In this paper it has been also shown that

ρ̂∗(Σ) = ρ∗(Σ) (9)

for finite Σ. In [62] these concepts have been related to the

so-called mortality problem. We say that the set of matrices

Σ is mortal if the zero matrix can be expressed as a product

of finitely many matrices from Σ. It appears that Σ is mortal

if and only if ρ̂∗(Σ) = 0. Finally, in [58] equality (9) was

extended to the case of any nonempty set of matrices and it

was shown that

ρ̂∗(Σ) = lim
m→∞

α1/m
m = lim inf

m→∞
β1/m

m
= ρ∗(Σ). (10)

From (9), (10) and the definitions of ρ(Σ), ρ∗(Σ) and ρ(d)
the following inequality follows

ρ∗(Σ) ≤ ρ(d) ≤ ρ(Σ)

for bounded set
∑

. Because of the equalities (7) and (9) we

can introduce the following definition.

Definition 2. For bounded set
∑

we will denote the com-

mon value of ρ̂(Σ) and ρ(Σ) by ρ(Σ) and called it general-

ized spectral radius. For nonempty set
∑

we will denote the

common value of ρ̂∗(Σ) and ρ∗(Σ) by ρ∗(Σ) and called it

generalized spectral subradius.

Now we can present complete structure of the set

{ρ(d) : d ∈ D}.

Theorem 4. Suppose that Σ is a bounded set of invertible ma-

trices, then for each γ ∈ (ρ∗(Σ), ρ(Σ)) there exists d ∈ D (Σ)
such that ρ(d) = γ.

The conclusion of the Theorem is no longer true if we

omit the assumption about the invertibility of matrices in Σ,

as is shown by the simple example Σ = {0, 1}. In [63] one

can find example of calculation of ρ(Σ) for a set of 2-by-2
matrices. Some further results in this direction contains [64].

Paper [65] deals with the case of unbounded set D.
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3.3. Bohl exponent. In case of finite set Σ absolute stability

of system (1) can be reformulated in the following way: (1) is

absolutely stable if and only if for each function σ and each

initial condition x0 ∈ Rn the solution x(k, σ, x0) tends to

zero. It means that for each σ the corresponding time-varying

system is asymptotically stable. For time-varying discrete lin-

ear systems of the form

x(k + 1) = A(k)x(k), (11)

we define transition matrix as

A(m, k) = A(m − 1)...A(k)

for m > k and A(m, m) = I , where I is the identity matrix.

System (11) is called uniformly exponentially stable (UES),

if the transition matrix satisfies

‖A(m, k)‖ ≤ cqm−k, (12)

for some constants c, q, 0 < q < 1, c > 1. The UES of sys-

tem (11) may be characterized by the discrete-time version

of the Bohl exponent [66] (named generalized spectral radius

in [67, 68]).

Definition 3. The Bohl exponent β (A) of system (11) is de-

fined in the following way

β (A) = inf {β : ∃ cβ ≥ 1, m ≥ k ≥ 0 =⇒

‖A(m, k)‖ ≤ cββm−k
}

.

The role of the Bohl exponent for UES and it simplest

properties are given in the next theorem taken from [68].

Theorem 5. System (11) is UES if and only if β (A) < 1.

Moreover

β (A) = lim sup
k,m−k→∞

‖A(m, k)‖
1

m−k =

inf
t∈N

sup
m∈N

‖A(t + m, m)‖
1

t .

We will now investigate the problem of describing per-

mutations σ of natural numbers such that, if systems (11) is

UES, then the following system

x(k + 1) = A (σ (k))x(k) (13)

is also UES.

The solution of this problem is presented in [69]. Before

we will present the results we introduce some notation. For

two nonempty subsets A and B of N we write A < B when

a < b for any a ∈ A and b ∈ B. Denote by |A| cardinality of

a set A, and if k, m ∈ N, k ≤ m, then

I (k, m) = {k, k + 1, ..., m} ,

I ′ (k, m) = (k, k + 1, ..., m).

The sets I (k, m), I ′ (k, m) are called interval and ordered

interval, respectively. We say that a set A ⊂ N (a se-

quence (a1, a2, ..., al)) is a union of k mutually separat-

ed intervals (ordered intervals) if there exist k intervals

I1, ..., Ik (k ordered intervals I ′1, ..., I
′
k) such that A = I1 ∪

... ∪ Ik ((a1, a2, ..., al) = (I ′1, ..., I
′
k)) and dist (Ii, Ij) ≥ 2

(dist
(
I ′i, I

′
j

)
≥ 2) for any distinct i, j ≤ k. If σ is a per-

mutation of natural numbers and k, m ∈ N, k ≤ m, then

kσ(k, m) (k′
σ(k, m)) is such a number k that set σ (I (k, m))

(sequence (σ (k) , ..., σ (m))) is a union of k mutually sepa-

rated intervals (ordered intervals). For linear operators A(k),

A(k + 1), ..., A(m), k ≤ m on R
n symbol

m∏
i=k

A(i) denotes

A(m)A(m−1)...A(k). We say that a permutation σ preserves

UES if for any UES system (11), system (13) is UES. Finally,

we say that a permutation σ preserves Bohl exponent if for

all bounded sequence A = (A(k))k∈N

β (A) = βσ (A) ,

where βσ (A) is the Bohl exponent of (13). Because for all

complex z we have β (zA) = |z|β (A), then from Theorem

3.3 we see that σ preserves UES if and only if σ preserves

Bohl exponent.

Theorem 6 [69]. If

lim
k,m−k→∞

k′
σ(k, m)

m − k
= 0, (14)

then σ preserves UES.

Theorem 7 [69]. If σ preserves UES, then

lim
k,m−k→∞

kσ(k, m)

m − k
= 0. (15)

If the matrices (A(k))k∈N
commute, then all the steps in

the proof of Theorem 6 in [69] may be repeated with or-

dered interval replaced by intervals and therefore, the follow-

ing statement is true.

Corollary 1. A permutation σ preserves UES of all systems

(11) with commuting operators (A(k))k∈N
if and only if it

satisfies the condition (15).

The last Corollary implies, in particular, that a permuta-

tion σ preserves UES of all scalar systems (11) if and only

if it satisfies the condition (15). Unfortunately, in a general

case, neither condition (15) is sufficient nor condition (14) is

necessary for permutation σ to preserve USE of (11).

4. Controllability

In the literature there are several different definitions for con-

trollability of linear control systems (see e.g. [14]). For the

continuous-time linear switched control system the most fre-

quently used definition of controllability is recalled below.

Definition 4 [18, 19]. System (4) is said to be controllable

if for any initial state x0 and any final state xf there exist

a time tf > 0, a switching path σ : [0, tf ] → I and input

u : [0, tf ] → Rp such that x(tf , σ, x0, u) = xf .

It is obvious that if one subsystem say (Ak,Bk) is control-

lable, then linear switched system (4) is controllable. Hence in

this paper, we shall investigate the non-trivial situation where

each linear subsystem (Ak,Bk), k ∈ I is not controllable

For given matrix n × p-dimensional matrix B denote

Im B = β and for n × n-dimensional matrix A and a lin-

ear subspace β ⊂ Rn, let ΓAβ ⊂ R
n denote the minimal
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A-invariant linear subspace that contains linear subspace B,

i.e. [18],

ΓAβ = β + Aβ + . . . An−1β.

This operation can be defined recursively as follows

ΓAΓCβ = ΓA (ΓCβ) .

Following [18] let us introduce the notations:

Dk =

j=n−1∑

j=0

A
j
k Im Bk for k ∈ I,

where Im Bk ⊂ R
n represents the range space of the given

matrix Bk.

Let us define recursively the nested linear subspaces in

the state space R
n for system (4) as follows

V1 = D1 + . . . + Dm

Vj+1 = ΓA1
Vj + . . . + ΓAm

Vj for j = 1, 2, . . .

and finally

V =

j=∞∑

j=1

Vj .

The linear space V plays very important role in control-

lability problems and in fact it is the controllable set for the

switched linear control system (4). Hence, we have the fol-

lowing necessary and sufficient condition for controllability.

Theorem 8 [18,70]. The switched linear continuous-time con-

trol system (4) is controllable if and only if

V = R
n.

Remark 1. Computational aspects for a procedure to calculate

the linear space V can be found in the paper [18]. However,

it requires large computational effort if the dimensions n and

m are relatively large.

Similarly as in the case of standard linear control sys-

tems [14], for linear switched control system (4) it is possible

to define controllability matrix [18, 70].

C (A1, . . . , Am, B1, . . . , Bm) = [B1, B2, . . . , Bm,

A1B1, A2B1, . . . , AmB1, . . . , A1Bm, A2Bm, . . . ,

AmBm, A2
1B1, A2A1B1, . . . , AmA1B1, A1A2B1,

A2
2B1, . . . , AmA2B1, . . . , A1AmBm, A2AmBm, . . . ,

A2
mBm, . . . , An−1

1 B1, A2A
n−2
1 B1, . . . , AmA2A

n−3
1 B1,

. . . , A1A
n−2
m Bm, A2A

n−2
m Bm, . . . , An−1

m Bm

]

Controllability matrix C (A1, . . . , Am, B1, . . . , Bm) is a

very useful tool in controllability investigation for various

types linear control systems [14]. Thus we can formulate nec-

essary and sufficient for controllability.

Theorem 9 [18,70]. The switched linear control system (4) is

controllable if and only if controllability matrix has full row

rank n.

Taking into account topological properties of matrices

from the above Theorem immediately follows Corollary given

below.

Corollary 2 [18]. The switched linear control system (4) is

controllable if and only if

Im C (A1, . . . , Am, B1, . . . , Bm) = R
n.

Remark 2. From the above Theorem and the form of control-

lability matrix C (A1, . . . , Am, B1, . . . , Bm) it follows that

controllability concept is invariant under re-arrangement of

the matrices Ak and Bk for k ∈ I .

Remark 3. For a non-switched standard linear system (A, B),
the above Theorem degenerates to the well-known Kalman

controllability condition [14].

Remark 4. It should be notice, that similarly as in standard

control systems [14] controllability concept for switched lin-

ear control systems is a dual concept for observability [18].

Algebraic observability criteria for switched linear control

system (4) can be found for example in the paper [18].

Remark 5. For the controllable switched system (4) any ini-

tial state x0 can be transferred to each other state xf in finite

time tf . Switching design control problem can be stated as

follows: for a given any two states x0 and xf , find a switching

path σ and control input u to steer the system from x0 to xf in

finite time tf . Generally, there exist many different controls

making the above transfer. Moreover, it is well known (see

e.g. [14–16]) that for standard linear control systems the de-

sign control problem is strongly related to so-called minimum

energy control problem.

4.1. Structural controllability. The traditional controllabil-

ity concept can be extended for so-called structural control-

lability, which may be more reasonable in case of uncertain-

ties [20]. It should be pointed out, that in practice most of sys-

tem parameter values are difficult to identify and are known

only to certain approximations. Thus structural controllability

which is independent on a specific value of unknown para-

meters are of particular interest. Roughly speaking, switched

linear system is said to be structurally controllable if one can

find a set of values for the free parameters such that the cor-

responding switched system is controllable in the standard

sense [14, 20].

In view of the structural controllability consideration for

the switched linear control system (4) the elements of all the

matrices (A1, B1, A2, B2, . . . , Am, Bm) are either fixed zero

or free independent parameters. Such matrices are structured

matrices. Thus, for structured matrices fixing numerically all

free parameters at some particular values we obtain matrices

which are called admissible numerical realization.

Definition 5 [20]. The switched linear system (4) is said to be

structurally controllable if and only if there exists at least one

admissible numerical realization such that the corresponding

switched linear system is controllable in the usual sense.
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In order to present structural controllability condition it

is necessary to introduce the algebraic concept of so-called

generic rank for the structured matrix.

Definition 6 [20]. The generic rank shortly denoted as g-rank

of a structured matrix is defined to be the maximal rank that

matrix achieves as a function of its free parameters.

Theorem 10 [20]. The switched linear control system (4) is

structurally controllable if and only if

g − rankC (A1, . . . , Am, B1, . . . , Bm) = n.

Remark 6. It is well known that structural controllability con-

ditions for the switched linear control system (4) can be also

formulated using quite general theory of graphs and the con-

cept of irreducible matrices [20].

Structural controllability of switched linear control system

(4) is strongly related to numerical computations of distance

from a given controllable switched linear control system to

the nearest an uncontrollable one [21].

First of all let us observe, that from algebraic character-

ization of controllability and structural controllability imme-

diately follows that controllability is a generic property in the

space of matrices defining such systems [14, 20, 21]. There-

fore, the set of controllable switched systems is an open and

dense subset. Hence, it is important to know how far a con-

trollable switched system is from the nearest uncontrollable

switched system. This is specially important for switched sys-

tems with matrices whose coefficients are given with some

parameter uncertainty.

Explicit bound for the distance between a controllable

switched linear control system (4) to the closed set of uncon-

trollable switched linear control system can be obtained using

special norm defined for the set of matrices and singular value

decomposition for structured controllability matrix [21].

4.2. Discrete-time switched systems. Controllability of var-

ious discrete-time linear control systems has been considered

in many publications (see e.g. monograph [14] for the list of

references). It is important to note, that discrete-time switch-

ed linear control system (3) is a special case of general stan-

dard linear discrete-time control systems with variable matri-

ces. Controllability of these discrete systems was considered

for example in the monograph [14] and in the papers [71]

and [72]. However, for simplicity of consideration it is as-

sumed that discrete-time switched control system (3) is re-

versible [17].

Definition 7 [17]. The discrete-time switched control system

(3) is said to be reversible, if all matrices Ai, i = 1, 2, . . . , m

are nonsingular.

It should be mentioned that any causal discrete-time

switched system can be realized with a reversible state vari-

able representation. Accordingly, reversible system representa-

tion is very general and applicable to a large class of systems.

Definition 8 [17]. The discrete-time switched linear con-

trol system (3) is said to be controllable if for any initial

state x0 and any final state xf there exist a time instant

k > 0, a switching path σ : [0, k − 1] → I and inputs

u : [0, k − 1] → R
p such that x(k; σ, x0, u) = xf .

Similarly as for continuous-time switched linear con-

trol systems (4), controllability of reversible switched linear

discrete-time control system (3) can be analyzed using con-

trollability matrix defined in previous section. Thus we have

the following necessary and sufficient condition for controlla-

bility.

Theorem 11 [17]. The reversible switched linear discrete-time

control system (3) is controllable if and only if controllability

matrix C (A1, . . . , Am, B1, . . . , Bm) has full row rank n.

Remark 7. The controllability condition given in the above

Theorem is pure algebraic. However, it should be pointed out

that using notation and methods taken directly from linear

algebra, it is possible to formulate geometric criteria for con-

trollability of linear discrete switched system (3) similar to

those in a continuous case.

Remark 8. It should be stressed that for a non-switched stan-

dard linear control system (A, B), the above theorem degen-

erates to the well-known necessary and sufficient geometric

criterion for controllability

Im B + A Im B + . . . + Ak Im B + . . . + An−1 Im B = R
n,

which is equivalent to the Kalman-type rank condition [14,

71, 72].

Remark 9. It should be notice, that similarly as in standard

discrete time control systems [14, 71, 72] the controllability

concept for switched linear control systems is a dual concept

for observability [17]. Algebraic observability criteria for dis-

crete switched linear control system (3) can be found for the

example in the paper [17].

Remark 10. For the controllable discrete linear switched sys-

tem (3) any initial state x0 can be transferred to each other

state xf in finite time tf . Switching design control problem

can be stated as follows: for a given any two states x0 and xf ,

find a switching path σ and control input u to steer the system

from x0 to xf in finite time tf . Generally, there exist many

different controls making the above transfer. Moreover, it is

well known (see e.g. [14,71,72]) that for standard linear dis-

crete control systems the design control problem is strongly

related to so-called minimum energy control problem.

5. Conclusions

Stability and controllability problems for different types of

dynamical systems require the application of numerous math-

ematical concepts and methods taken directly from differen-

tial geometry, functional analysis, topology, the matrix analy-

sis and theory of ordinary and partial differential equations

and the theory of difference equations. It should be point-

ed out, that the state-space models of dynamical systems

provide a robust and universal method for studying sta-

bility and controllability of various classes of systems. In

the paper, using the state-space approach, a survey of re-

cent results both for stability and controllability of linear
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finite-dimensional stationary switched dynamical systems has

been presented. Moreover, many remarks and comments on

the relationships to the literature have been given and dis-

cussed.

Finally, it should be stressed, that there are numerous open

problems both for stability and controllability concepts for

special types of switched dynamical systems. For example, it

should be pointed out, that up to present time the most liter-

ature on controllability problems has been mainly concerned

with unconstrained admissible controls and without delays in

the state variables or in the controls. Therefore, in the future

works the special attention should be paid on these interesting

open problems to obtain results similar to these from [73]. Al-

so, it would be very interesting to extend the reported results

on fractional order systems [74] or positive systems [75].
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