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ANALYSIS OF RELIABILITY AND STABILITY
OF BAR STRUCTURES

U. RADOŃ1

In the paper, the Hasofer-Lind index is applied for determining the probability of stability loss of
truss structure under random load. In 1974 Hasofer-Lind proposed a modified reliability index that
did not exhibit the invariance problem. The “correction” is the evaluation the limit state function
at a point known as the “design point”, instead of the mean values. The design point is generally
not known a priori, an iteration technique must be used to find out the reliability index. The paper
shows how the reliability index changes under the influence of different variables mean value,
standard deviation, and probability density function.
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1. I

The presented study considers the problems of stability and reliability of bar structure.
A special attention is given to truss structure subjected to considerable displacements
and susceptible to stability loss from the condition of node snapping. Nonlinear geome-
trical relations are defined in the Lagrangian description. Stability analysis of structure
is executed by means of the finite element method. In the paper the current stiffness
parameter method and the constant arc length method are used for the determination of
equilibrium path. Let us now ask a question: what is the advantage of the inclusion of
reliability analysis methods to the analysis of stability? The answer is following: using
the methods of reliability analysis, moving along the equilibrium path of structure,
we can determine the level of probability of failure when we approach the critical
point. Load parameters are assumed as random variables. Probability distributions of
random variables are assumed from among several ones most often applied in practical
solutions. The condition of non exceeding admissible displacements of structure nodes
is considered.

The first part of the study defines concepts connected with the stability of struc-
ture: equilibrium path and numerical techniques. Then Cornell’s and Hasofer-Lind’s
indexes, which are measures of structure reliability, will be described. The Hasofer-
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-Lind’s index will be used in the FORM method to the analysis of the behaviour of
reliability index while moving along the equilibrium path. The examples provide an
analysis how the Hasofer-Lind reliability index changes under the influence of different
variables of mean value, standard deviation, and probability density function when it
approaches the limit value of displacement.

2. T  

We can present the potential energy of the system as a function of a displacement
vector q and a load vector Q

(2.1) V = V (q,Q)

Assuming the vector Q as a proportional, conservative, one-parameter load, we
can write

(2.2) Q = µ · P
where:

µ – load multiplier,
P – comparative load vector.
Change of µ parameter leads to changes of the displacement state which is descri-

bed by the vector q. The successive solutions generate a curve called an equilibrium
path in an (N+1) dimensional space (q1, q2, ..., qN , µ).

We are considering a point A(q̃, µ̃) on the equilibrium path. This does not refer to
a singular point nor to its vicinity. Then we assume that we are allowed to describe
the change of the state system by the change of µ parameter. We look for a new point
B(q̃ + ∆q, µ̃ + ∆µ̃) on the equilibrium path.

The value of potential energy at B point close to A point has the form:

(2.3)

VB = V (q̃ + ∆q, µ̃ + ∆µ̃) = V (q̃, µ̃) +
∂V (q̃, µ̃)
∂q

∆q +
∂V (q̃, µ̃)
∂µ

∆µ+

+
1
2!

[
∂2V (q̃, µ̃)
∂q2 (∆q)2 + 2

∂2V (q̃, µ̃)
∂q∂µ

∆q∆µ +
∂2V (q̃, µ̃)
∂µ2 (∆µ)2

]
+ ...

+
1
n!


∑

n
k


∂nV (q̃, µ̃)
∂qn−k∂µk (∆q)n−k(∆µ)k



Let us expand into the Taylor series the first derivative of potential energy to

expand around a point
∂V
∂q
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(2.4)

∂VB

∂q
=
∂V (q̃ + ∆q, µ̃ + ∆µ)

∂q
=

[
∂2V (q̃, µ̃)
∂q2 ∆q +

∂2V (q̃, µ̃)
∂q∂µ

∆µ

]
+

+
1
2!

[
∂3V (q̃, µ̃)
∂q∂µ2 (∆µ)2 + 2

∂3V (q̃, µ̃)
∂q2∂µ

∆q∆µ +
∂3V (q̃, µ̃)
∂q3 (∆q)2

]
+ ...

Neglecting in the above expression the nonlinear term of the increments ∆q, ∆µ
and assuming the configuration (q̃ + ∆q) and (µ̃ + ∆µ) to be also an equilibrium state,
the linearized incremental equation set can be written in the form

(2.5)
∂2V (q̃, µ̃)
∂q2 ∆q +

∂2V (q̃, µ̃)
∂q∂µ

∆µ = 0

If an external load Q is conservative, then according to Castigliano’s theorem it
is

(2.6) −P =
∂2V (q̃, µ̃)
∂q∂µ

The above relations bring us to the equation set (5) in the matrix form

(2.7) KT (q, µ) · ∆q − ∆µP = 0

where:
∂2V (q̃, µ̃)
∂q2 = KT – tangent stiffness matrix of the system.

For the solution of the set of nonlinear equations the incremental-iterative method
of the current stiffness parameter and constant arc length are applied.

3. D   

In the first method a certain indicator proposed by B and S [1, 2] and
referred as the current stiffness parameter, is very useful in the solution of the set of
nonlinear equations.

The current stiffness parameter (CSP) is the ratio between the scaled quadratic
forms of the incremental stiffness in initial and current steps, respectively.

(3.1) CSP =
∆qoT · Ko

T · ∆qo

∆qiT · K i
T · ∆qi
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It is a measure of changes of stiffness matrix KT of the system during motion in
N-dimensional displacement space of solutions. The current stiffness parameter can
have many different applications:
– estimation of the system stiffness by a changing variable value,
– estimation of stability of the investigated segment of an equilibrium path by chec-

king the changing sign,
– selection of effective step length,
– control near limit points.

Fig. 1. Dependence of load parameter µ of the norm ||q||.
Rys. 1. Zależność parametru obciążenia µ od normy ||q||

Fig. 2. Dependence of CSP parameter on the norm ||q||.
Rys. 2. Zależność parametru CSP od normy ||q||

Figure 1 shows a typical snap-through problem (load parameters µ versus some
norm of displacement vector ||q|| ). The associated curve for CSP as a function of ||q||
is traced in Fig. 2. It is noticeable that at the extreme points of the load-displacement
curve CSP has the value zero. In this situation the incremental stiffness matrix KT
is singular. CSP is positive for the stable branches of the load-displacement curve.
The instable configurations are characterized by negative values of CSP. The current
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stiffness parameter may be actively used in the selection of effective step length. The
basic idea is that the change in CSP should be close to the same for all load steps.
This implies that the incremental stiffness should be allowed to change by a prescribed
magnitude for each new step. Figure 3 gives an illustration of the process. The antici-
pated change in CSP per step is denoted ∆CSPc. This quantity is given as input to the
computer program.

CSP

CSP

CSP1

CSP2

CSP1

CSP2

CSP3

1.0

O

Fig. 3. Estimation of effective step length.
Rys. 3. Oszacowanie efektywnej długości kroku przyrostowego

The current stiffness parameter may actively be used in controlling of iteration
around extreme points (Fig. 4).

A

integrating of Euler + iterations

q
k

controlling by

B

controlling by

load

controlling by

displacementload

Fig. 4. Control of iteration around extreme points.
Rys. 4. Sterowanie procesem iteracyjnym w otoczeniu punktów typu maksimum
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In the second method the solution of nonlinear equations requires a starting con-
figuration (or initial iterate) which is “close” to the solution to be determined. This
requirement fits well into the scenario of an incremental procedure which is designed
to solve an equilibrium path in terms of a sequence of successive but distinct points.
Each point obtained offers means to construct the starting configuration for the next
to be computed. The accuracy of the “initial” iterate can be controlled by keeping the
distance between the known and the still unknown point within certain bounds.

Two well known strategies are shown in Fig. 5a and 5b. In the first case, the
load parameter µ is used as the prescribed variable. In the second case one of the
displacement parameters q is taken to fulfil this role. Each point computed by the first
method is determined by the intersection of a surface µ = η and the equilibrium path.
A point computed by the second method is determined by the intersection of a surface
q = η with the same solution curve. Both methods fail in the neighbourhood of the
turning points Figs. 6a and 6b.

q
k

a) b)

i k
q

Fig. 5. Control of the incremental process by a load and displacement parameter.
Rys. 5. Sterowanie procesem przyrostowym przy pomocy parametru obciążenia i przemieszczenia

The breakdown of the procedures described does usually not occur suddenly, but
is announced some time in advance by a marked increase in number of iterations
necessary to obtain converged solutions. This phenomenon is coupled with the decrease
in quality of the intersection of the surfaces with the equilibrium path, when the critical
points are approached.

A measure of quality of intersection is given by θ, the angle between the tangent
of the equilibrium curve and the normal to the intersecting surface at the point of
intersection. The intersection is considered good if θ is close or equal to zero, and
bad if it is close or equal to π/2. In this sense the ideal would be a family of surfaces
which intersects the equilibrium curve everywhere according to the condition θ = 0.
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Of course, it is not possible to construct such a set of “ideal” surfaces, because this
would require advance knowledge of the solution curve.

a) b)

k
q

s

s

q
k

Fig. 6. The limit points of load (a) and displacement (b).
Rys. 6. Punkty graniczne obciążenia (a) i przemieszczenia (b)

We can be satisfied by a certain approximation which enables angle θ to be close
to zero. Riks [3] proposed an additional equation, called the constraint equation in the
form:

(3.2) (
•
q)Tα · (q − qα) +

•
µα ·(µ − µα) = (η − ηα)

where:
dots denote derivatives with respect to the length of arc,

q – generalized coordinates vector,
η − ηα– parameter approximating the arc length.
This equation defines a surface, which is normal to the tangent [

•
qα,

•
µα] and its

distance to [qα,µα] is (η − ηα). It is intersected by the equilibrium curve with a small
angle θ if the distance η − ηα is kept small.

4. C  

After defining conceptions of stability analysis, we now show the basic assumptions
and measures of reliability, Cornell index [4] and Hasofer-Lind index [5]. The problems
of reliability analysis of structures considered in this study are based on the following
premises. Firstly, it is assumed that structure can be in one of two admissible states:
safe state or failure state. Failure is understood as non-fulfilment of a certain limitation



162 U. R́

imposed by the designer on the performance of structure. It is assumed that parameters
describing the state of structure are treated as random variables (as contrasted with
random processes). The considered problems of reliability analysis will be related to
the so called element reliability. The element is understood here as all the structure
or its part, whose state is determined by one limit state function (failure criterion). It
is necessary to underline here that this study is not concerned with system reliability
in which many limit state functions are taken into account, and the possibility of the
sequence of failures of particular elements, which leads to the destruction of the whole
structure.

In practical solutions we often do not have detailed information about the type
of distribution for each random variable. For calculating Cornell reliability index we
use only information about mean values and standard deviations of random variables.
When the limit state function is nonlinear, we can obtain an approximate answer by
linearization function using a Taylor series expansion. The linearization point is a point
corresponding to the mean values of the random variables.

(4.1) g (X) ≈ g (X) = g
(
X0

)
+

n∑

i=1

∂g (X)
∂xi

|x=X0

(
Xi − X0

i

)

Expectation value and variance function g (X) can be written as

(4.2)
g0 (X) ≈ g0 (X) = g

(
X0

)

σ2
g (X) ≈ ∇gT (X) |x=X0 CX∇g (X) |x=X0

,

where ∇g (X) |x=X0 is a gradient function g (X) computed for mean values vector X
and CX is a covariance matrix.

Probability of failure for the condition function
[
g (X) ≤ 0

]
based on a linearized

limit function has the form:

(4.3) P
[
g (X) ≤ 0

] ≈ P
[
g (X) ≤ 0

]
= P


g (X) − g0 (X)

σg
≤ −g0 (X)

σg

 = Φ (−βC) ,

where βC is Cornell reliability index

(4.4) βC =
g0 (X)
σg (X)

The reliability index defined in equation (4.4) is called a first-order second-moment
mean value reliability index. It is a long name, but the underlying meaning of each
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part of the name is very important. First order, because we use first-order terms in
the Taylor series expansion. Second moment, because only means and variances are
needed. Mean value, because the Taylor series expansion is around the mean values.

The method has both advantages and disadvantages in the structural reliability
analysis. Its advantages include:
it is easy to use;
it does not require knowledge of the distributions of random variables.

Its disadvantages include:
results are inaccurate if the tails of the distribution functions cannot be approximated
by a normal distribution;
the value of the reliability index depends on the specific form of the limit state function.

The invariance problem can be avoided using the Hasofer-Lind reliability index.

5. H-L  

In 1974 Hasofer-Lind proposed a modified reliability index that did not exhibit the
invariance problem. The “correction” is to evaluate the limit state function at a point
known as the “design point” instead of the mean values. The design point is a point
on the failure surface. The design point is generally not known a priori, an iteration
technique must be used to solve for the reliability index.

Let us consider a limit state function g (X1, ..., Xn) where the random variables Xi
are all uncorrelated. The limit state function is rewritten in terms of the standard form
of the variables (reduced variables) using

(5.1) Zi =
Xi − µXi

σXi

and Xi = µXi + ZiσXi .

ReplaceX1,. . . ,Xn by Z1,. . . ,Zn, we obtain a new limit state function:

(5.2) g‘ (Z1, ...,Zn) .

The Hasofer-Lind reliability index is defined as the shortest distance from the
origin of the reduced variable space to the limit state function g‘ (Z1, ...,Zn) = 0. It
is the most probable point of failure from among all points in this area. If failure
occurs, it is most likely to occur just at this point. Finding a design point is a task for
non-linear programming with limitations. The accuracy of results obtained with the
use of the Hasofer-Lind index is often sufficient for practical needs. The index gained
a considerable popularity as a reliability measure, particularly in conjunction with
transformation methods which use full information about random variable distributions,
e.g. in the FORM method discussed in the next section.
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6. M  -   FORM

The FORM method is one of most effective approximate methods of the calculation
of reliability measures. In a general case, when the probability distribution of vector
X of base variables is not a vector with the Gaussian distribution, transformation is
used to reduce this vector to the Gaussian vector whose coordinates are independent
of standard normal variables. The existence of this type of transformation and the
manner of its structure was shown for the first time by R [6] for the case
when coordinates of vector X have uniform distributions. H and R

[7] adapted this transformation to reliability calculations. The transformation of basic
random variables to the Gaussian standard space must ensure the equivalence of the
formulation of the reliability problem. The probability of failure, defined in space X,
must be equal to the probability defined in space Z.

(6.1) P f =

∫

Ω f

fX(x)dx =

∫

∆ f

n∏

i=1

ϕ(ui)dz1dz2 ... dzn

where:
fX(x) is a joint probability density function of basic random variables , Ω f is

failure region in space X, ∆ f is failure region in space Z.
The transformation of regions can be written as:

(6.2) Ω f = {x : g(x) ≤ 0} → ∆ f = {z : G(z) ≤ 0}.
The limit state function is transformed in this way:

(6.3) g(x) = 0 → g
[
T−1(z)

]
= G(z) = 0

The dependent random vector X may be transformed to the independent uniformly
distributed random vector Z through the Rosenblatt transformation given by:

(6.4) Φ(z1) = H1(x1) = F1(x1) =

x1∫

−∞
f1(t)dt,

(6.5) Φ(z2) = H2( x2| x1) =

x2∫

−∞

f2(x1, t)
f1(x1)

dt,

(6.6) Φ(zi) = Hi( xi| x1, x2, ..., xi−1) =

xi∫

−∞

fi(x1, x2, ..., xi−1, t)
fi−1(x1, x2, ..., xi−1)

dt,
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where:
fi(x1, x2, ..., xi)is marginal probability density function.

(6.7) fi(x1, x2, ..., xi) =

∞∫

−∞
...

∞∫

−∞
fX(x1, x2, ..., xn)dxi+1dxi+2... dxn.

Aside from Rosenblatt’s transformation, Hermite’s transformation and the transfor-
mation resulting from the so called Nataf’s model are also applied (A. Der Kiureghian,
P.L. Liu[8]). The transformation carries the area of limit state g(X) = 0 to another area
G(Z) = 0. It should be noted that the effective calculation of the integral of the function
of the density of the n-dimension of a standard normal distribution along the failure
area is still a complex problem, except for the case when G(Z) = 0 is a hyperplane in
space. However, two essential properties of the density of the standard normal distri-
bution cause the transformation effective in the calculation of failure probability. The
first of these properties is a rotary symmetry around the beginning of the coordinate
system. The second property is exponential disappearance of this function together
with the square of distance from the beginning of the coordinate system. Therefore,
the greatest failure probability originates from the area in the neighbourhood of the
point on the limit state area whose distance from the beginning of the coordinate
system is the smallest. Therefore, in the FORM method the area of limit state G(Z) =
0 is approximated by a hyperplane tangential to it at the point nearest to the beginning
of the coordinate system. This leads to the following approximate formula of failure
probability: pF = Φ(-β). The minimum distance point is called a design point , while
ß is a reliability index. As the value of the density of normal distribution is highest
at this point in the whole failure area, then this point is the highest reliability point.
Finding the design point is thus reduced to the solution of the optimization problem.
A number of algorithms have been developed to this end. The earliest ones, which
originated from the works of H and L [5], as well as those of R and
F [9], are based on gradient procedures. The subsequent S [10, 11]
and A [12] algorithms made use of the method of sequence square programming.
Comprehensive discussion of problems reliability may be found in papers by: N,
C [13], M, K, L [14] M [15], D, M() [16],
T-C, Baker, [17] A, B, C [18] and H [19].

7. E

Example 1
The steel truss structure, represented in Fig. 7 is a structure susceptible to stability

loss from the condition of node snapping. Using the method of constant arc length
and the method of the current stiffness parameter the, the equilibrium path, and con-
sequently, coordinates of the limit point: q = 0.783, µ = 207.4 were determined. On
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the basis of these coordinates, the limit function as the condition of the non exceeding
the admissible vertical displacement of node one was formulated. Approaching to the
critical point by a changing variable value, the current stiffness parameter CSP is shown
in Fig.8.

Fig. 7. The elements mesh and geometry of space truss.
Rys. 7. Siatka elementów i geometria kratownicy przestrzennej

Probabilistic independence acting on the structure of loads was assumed in the
analysis. The truss is loaded in nodes by concentrated forces whose probability density
functions are well-known.

The example provided an analysis how the Hasofer-Lind reliability index chan-
ges under the influence of different variables of mean value, standard deviation, and
probability density function when it approaches the limit value of displacement node
one.

Numerical calculations after reduction of value of standard deviation for normal
distribution gave an increase in the value of reliability index of 100%. The value of
reliability index for Gumbel distribution increased from 35% (for displacement equal
0.782) to 55% (for displacement equal 0.753). This is illustrated in Fig.10 and in
Fig.11. In Fig.9 we can see effect of the accepted type of probability distribution on
the value of the Hasofer-Lind reliability index.
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Fig. 8. Dependence of current stiffness parameter CSP on the displacement.
Rys. 8. Zależność skalarnego parametru sztywności od przemieszczenia

Fig. 9. Effect of the accepted type of probability distribution on the value of the Hasofer-Lind reliability
index.

Rys. 9. Wpływ przyjętego typu rozkładu prawdopodobieństwa na wartość wskaźnika niezawodności
Hasofera- Linda
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Fig. 10. Effect of the assumed description of normal distribution on the value of the Hasofer-Lind
reliability index.

Rys. 10. Wpływ opisu parametrów rozkładu normalnego na wartość wskaźnika niezawodności
Hasofera- Linda

Fig. 11. Effect of the assumed description of Gumbel distribution parameters on the value of the
Hasofer-Lind reliability index.

Rys. 11. Wpływ opisu parametrów rozkładu Gumbela na wartość wskaźnika niezawodności
Hasofera- Linda
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Example 2
The second example is focused on the analysis of the sensitivity of reliability

index to the parameters of probability distributions and coordinates of the design po-
int. Knowledge of the sensitivity of reliability index is essential in dealing with the
problems of reliability optimization, as well as for a better understanding of the per-
formance of structure. If sensitivity of reliability index due to variable X is small
in comparison with other variables, we can assume that the effect of this random va-
riable on the value of failure probability is small too, and we can treat it in subsequent
calculations as a deterministic parameter. This statement also concerns the parameters
of the distribution of the random variable, such as mean value and standard deviation.
In the analyzed example the sensitivity of reliability index for displacement u= 0.777 for
normal and Gumbel probability distributions were used in calculations. Forces which
loaded structure nodes represented in Fig.7, were random variables in the problem un-
der consideration. Reliability index sensitivities proves the correctness of the stochastic
model. No noticeable differences between individual random variables were observed.

NORMAL DISTRIBUTION
Displacement u = 0.777
Probability of failure = 3.744774e-001
Reliability index beta = 0.320018
Beta sensitivity with respect to random variables

4.60608954e+000 -1.58798880e+000 -1.58842216e+000 -1.58842216e+000
-1.58798880e+000 -1.58842216e+000 -1.58842216e+000
Beta sensitivity with respect to mean values
-4.60608954e+000 1.58798880e+000 1.58842216e+000 1.58842216e+000
1.58798880e+000 1.58842216e+000 1.58842216e+000
Beta sensitivity with respect of standard deviations
-1.35790229e+000 -8.06990912e-002 -8.07431425e-002 -8.07431425e-002
-8.06990912e-002 -8.07431425e-002 -8.07431425e-002

GUMBEL DISTRIBUTION
Displacement u = 0.777
Probability of failure = 3.689702e-001
Reliability index beta = 0.334582
Beta sensitivity with respect of random variables

4.66254919e+000 -1.61849706e+000 -1.61893934e+000 -1.61893934e+000
-1.61849706e+000 -1.61893934e+000 -1.61893934e+000
Beta sensitivity with respect to mean values
-4.66255767e+000 1.61850028e+000 1.61894256e+000 1.61894256e+000
1.61850028e+000 1.61894256e+000 1.61894256e+000
Beta sensitivity with respect to standard deviations
-6.21927496e-001 -3.34734229e-001 -3.34844051e-001 -3.34844051e-001
-3.34734229e-001 -3.34844051e-001 -3.34844051e-001
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8. C

Probabilistic calculations were carried out by applying the FORM method. The probabi-
lity analysis program STAND built in IPPT PAN [20], [21] was used in calculations. It
can be seen in the graphs that the sensitivity of the results obtained for an assumed type
of probability distribution changes considerably depending on standard deviation. We
can note that the adoption of the correct stochastic description is an essential problem
in reliability analysis. Incomplete statistical data and improper assumptions concerning
probability distributions may cause considerable differences in the evaluation of the
safety of structure.

In the stochastic approach in structural mechanics the key problem is the collection
of experimental data concerning parameters of random fields of structure and loads.
Due to the fact that the accessible experimental results are in general insufficient to
carry out the probabilistic analysis by engineers, therefore, there is an evident reluctance
to use probabilistic methods. This also concerns the probabilistic numerical methods
(as e.g. The Stochastic Finite Element Method), whose complexity is actually hidden
inside computer programmes. An engineer’s additional effort is necessary when he or
she will characterize data by two parameters (expected value and variability coefficient)
instead of one required parameter in deterministic methods. Thus, it is necessary to
provide engineers with algorithms which make possible the estimation of statistical
variable parameters occurring in analysis on the basis of quick reference data.
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ANALIZA NIEZAWODNOŚCI I STATECZNOŚCI KONSTRUKCJI PRĘTOWEJ

S t r e s z c z e n i e

W niniejszej pracy rozważane są zagadnienia stateczności i niezawodności konstrukcji kratowej podatnej
na utratę stateczności z warunku przeskoku węzła. Podstawowym problemem w numerycznej analizie
zagadnień nieliniowych jest występowanie na ścieżce równowagi punktów osobliwych. W punktach tych
zawodzą standardowo stosowane algorytmy rozwiązywania układów równań liniowych. W pracy do okre-
ślenia ścieżki równowagi konstrukcji wykorzystano metodę skalarnego parametru sztywności oraz metodę
stałej długości łuku. Postawmy sobie teraz pytanie co daje nam włączenie do analizy stateczności metod
analizy niezawodności. Odpowiedź jest następująca. Korzystając z metod analizy niezawodności możemy
poruszając się po ścieżce równowagi konstrukcji określić z jakim poziomem prawdopodobieństwa awarii
zbliżamy się do punktu krytycznego. W pracy jako zmienne losowe przyjęto obciążenie węzłów konstruk-
cji. Rozkłady prawdopodobieństwa zmiennych losowych przyjmowane są spośród kilku, najczęściej stoso-
wanych w praktyce. Rozpatrywany jest warunek nieprzekroczenia dopuszczalnych przemieszczeń węzłów
konstrukcji. W analizie niezawodności wykorzystano jako miarę niezawodności wskaźnik Hasofera-Linda.
Dokładność wyników otrzymywanych przy użyciu wskaźnika Hasofera-Linda jest wystarczająca dla po-
trzeb praktycznych i dlatego też zyskał on dużą popularność jako miara niezawodności, szczególnie w
połączeniu z metodami transformacji wykorzystującymi pełną informację o rozkładach zmiennych loso-
wych. Obliczenia probabilistyczne przeprowadzono stosując metodę FORM. Do obliczeń wykorzystano
program do analizy niezawodności STAND zbudowany w IPPT PAN [20], [21]. Z przedstawionych wykre-
sów widać, że wrażliwość otrzymanych wyników na przyjęty typ rozkładu prawdopodobieństwa zmienia
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się znacznie w zależności od odchylenia standardowego. Możemy zauważyć, jak istotnym zagadnieniem
w analizie niezawodności jest przyjęcie prawidłowego opisu stochastycznego. Niekompletne dane staty-
styczne oraz niewłaściwie przyjęte założenia dotyczące rozkładów prawdopodobieństwa mogą prowadzić
do poważnych różnic w ocenie bezpieczeństwa konstrukcji.
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