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Two theorems about Lorentz method

for asymmetrical anisotropic regions
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Abstract. The paper has dealt with two theoretical problems of calculation of electromagnetic force or torque. The first problem considers the

magnetically anisotropic and conductive region. The theorem about equivalence of both Maxwell and Lorentz methods has been presented.

The second problem deals with the independence from the integration surface of force or torque calculated by the Maxwell method. The

second theorem which presents the sufficient condition for an independence problem in the anisotropic and nonconductive region has been

formulated.
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1. Electromagnetic field forces

The electromagnetic field forces [1, 2] theoretical analysis is

still a vital problem [3–5]. For evaluation of the electromag-

netic force density the following form is applied

~f = ~fL + ~M, (1)

where ~M is so-called anisotropy component [4, 5]. The

proof of (1) bases on the Lorentz force density ~fL formu-

la, Maxwell’s equations, and assumptions that displacement

current (that leads to electromagnetic field impulse force [5,

6]) and hysteresis phenomenon can be neglected (nonhomo-

geneous component ~N = 0). The force density component ~M
in (1) means the anisotropy force component. For magnetic

field it takes the form of

~M =
1

2
(νvu − νuv)Bvgrad(Bu). (2)

Total electromagnetic force can be calculated by the following

equation
~f = −~iudivu(~σu) − ~∆, (3)

where ~iu denotes versor for uth coordinate, vectors ~σu (u =
1, 2, 3) are built of Maxwell’s stress tensors and ~∆ is the

residual vector [4, 5]. The total force or torque can also be

calculated by means of the coenergy method.

2. The first theorem – surface-integral force

or torque representation in conductive

and magnetically anisotropic regions

The first theorem considers the equivalence between both vol-

ume (Lorentz force density integral) and surface (Maxwell

stress tensor) integrals representations for Lorentz force or

torque – Fig. 1. This problem is one of these which are

called surface-integral representation problems. This prob-

lem is analogous to the surface-integral representation of total

electric charge which is placed in a closed region due to the

Gaussian law. It is well-known that the surface-integral rep-

resentation for electromagnetic field forces can be introduced

for electromagnetic field regions if the Maxwell stress tensor

is symmetrical [1, 2, 4, 5]. However, the symmetry of the

Maxwell stress tensor is guaranteed only for isotropic media.

The first theorem extends this statement for anisotropic me-

dia if symmetric anisotropy of reluctivity occurs. There is a

question: whether the surface-integral of the Lorentz force or

the torque representation for anisotropic media is possible?

Fig. 1. Equivalence of volume and surface integrals

The answer is positive under a certain condition. Namely,

the surface-integral representation of force or torque is pos-

sible for isotropic and also for anisotropic media exhibiting

normal anisotropy feature i.e. reluctivity matrix is symmetri-

cal. For isotropic medium the reluctivity (permeability) matrix

is diagonal one and all pivot values are equal to each other.

For media that exhibit normal anisotropy the reluctivity ma-

trix can be presented as diagonal having different pivot values.

There are also media and structures for these the reluctivity

matrix is asymmetrical. This case considers the first theorem.

For magnetic field region where

– nonhomogeneous force vanishes (no reluctance force),

– hysteresis phenomenon does not appear,
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the Lorentz’s force (volume integral) and Maxwell (surface

integral) methods lead to the equal results for magnetically

anisotropic region if reluctivity matrix is symmetrical i.e. if

for u 6= v is satisfied

νvu = νuv. (4)

The condition (4) is satisfied for both isotropic and normal

anisotropic media. It should be pointed out that if the condi-

tion (4) is not satisfied i.e.

νvu 6= νuv (5)

the surface-integral representation of Lorentz force/torque is

not possible.

The media for the condition (5) are satisfied, therefore they

can be called active structures. As an example, the active fea-

ture results form magnetization of the region by magnets or

rotation in a magnetic field [7, 8]. In generally, the asymmetry

of reluctivity appears if in a certain way the energy is supplied

to the medium.

The mathematical proof of this theorem is derived from

Eq. (3). For uth forces components of Eq. (3) the following

can be obtained:

fu = fLu + Mu = −div|u|(~σu) − ∆u. (6)

Because, if (4) is satisfied the anisotropy component vanishes

Mu = 0 due to (2). For the properly chosen coordinate sys-

tem often ∆u = 0 (e.g. for the Cartesian coordinate system

∆x = ∆y = ∆z = 0, for the cylindrical system ∆α = 0, for

the spherical system ∆ϕ = 0). Hence, according to (3) it can

be written

L|u|fu = L|u|fLu = −div(~σu), (7)

where Lu are Lame coefficients (no summation over |u| is

provided). Applying the Gaussian theorem for (7) the follow-

ing equation is obtained
∫

V

L|u|fudV = −

∫

S

~σud~S, (8)

which proves the first theorem. Namely, this means that for

regions with symmetric reluctivity matrix (either isotropic or

normal anisotropic) the Lorentz force or torque can be pre-

sented by surface-integral of the Maxwell stress tensor. In

other words, the surface-integral representation is possible for

media with symmetric reluctivity matrix.

The force density leads to the electromagnetic force or

torque acting in electromechanical converters such electrical

machines [9–11]. The examples for applying the first theorem

for electromechanical converter models linear (force calcula-

tion) and cylindrical (torque calculation) have been widely

presented in [5].

3. The second theorem – surface-integral force

or torque representation in nonconductive

regions

Let us consider electromagnetic force or torque that is exert-

ed in the finite conductive region Ω of an electromechanical

converter. It is the moving part e.g. rotor, carriage. Force or

torque can be evaluated by surface integral over the surface

S placed in the nonconductive region Ωout which surrounds

the conductive region Ω. The outer region Ωout is the gap

of an electromechanical converter. It is the nonconductive re-

gion Ωout that usually does not exert electromagnetic force or

torque. The integration surface S in the gap Ωout can be placed

in different way – Fig. 2 (e.g. its radius can be different).

Fig. 2. The electromagnetic torque evaluation by surface integral

over S

Mostly, for electromechanical converters, such as rotating

electric machines [9–11], the electromagnetic torque value

given by surface integral does not depend on the radius of

surface S placed in the gap. The independence of surface in-

tegral results from a magnetic feature of the gap which is the

air-gap (the isotropic gap), usually.

The problem is well-known in electrostatics while calcu-

lating total electric charge with the help of the Gauss law.

The outer surface (Gaussian surface) must be spread so as to

surround the whole charge independently from its shape, but

can surround the greater region.

The gap which surrounds the active region Ω (e.g. ro-

tor, carriage) nonconductive but which could be magnetically

active medium e.g. could be filled with magnetic fluids (para-

graphs 5 and 6). As a consequence, the gap region Ωout could

be magnetically either isotropic or anisotropic.

The second theorem considers the sufficient condition for

a surface-integral representation for different magnetic fea-

tures of the nonconductive region Ωout (the gap). The region

Ω exerting electromagnetic force or torque is placed in volume

V of both conductive and nonconductive regions

V = Ω ⊕ Ωout, (9)

where Ωout is the region which surrounds the conductive re-

gion Ω. The integrals which lead to total electromagnetic force

and torque values exerted in the conductive Ω are

~FV =

∫

V

~fdV =

∫

Ω

~fdV +

∫

Ωout

~fdV (10a)

and

~TV =

∫

V

(~r × ~f)dV =

∫

Ω

(~r × ~f)dV +

∫

Ωout

(~r × ~f)dV (10b)
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respectively. The total electromagnetic force and torque can

be denoted as follows

~FV = ~Fe +

∫

Ωout

~fdV = ~Fe + ∆~Fout (11a)

and

~TV = ~Te +

∫

Ωout

(~r × ~f)dV = ~Te + ∆~Tout (11b)

where ~FV , ~TV are force and torque calculated over the vol-

ume V of both regions, ~Fe, ~Te are total electromagnetic force

and torque, ∆~Fout, ∆~Tout denote the force and torque exerted

in nonconductive region Ωout.

The second theorem answers to the question: whether the

electromagnetic force or torque arising in region Ω is equal to

the value for surface-integral over surface S? In other words:

whether the electromagnetic force or torque can be evaluated

by surface-integral over different surfaces S which surrounds

the conductive region Ω. If the answer is positive the total

electromagnetic force/torque can be calculated for any sur-

face S i.e. for different surfaces S1 and S2 6= S1 as shown in

Fig. 3.

Fig. 3. The electromagnetic torque does not depend on integral-

surface position in the isotropic gap

The solution of the problem results from (1), (2). If the

nonconductive region Ωout is also homogeneous, and there is

no hysteresis phenomenon, hence only an anisotropic compo-

nent can give a contribution to residual integrals in (11a,b).

The total electromagnetic force and torque satisfy the follow-

ing equivalences

~FV = ~Fe ⇔ ∆~Fout = 0 (11c)

and
~TV = ~Te ⇔ ∆~Tout = 0. (11d)

In other words, only magnetic anisotropy of the noncon-

ductive region (the gap region is indexed by δ) does not influ-

ence on electromagnetic force or torque, when the anisotropy

component (2) is equal to zero i.e. if for u 6= v is satisfied.

νvuδ = νuvδ. (12)

Hence, the second theorem could be formulated.

For magnetic field region where

– nonhomogeneous force vanishes (no reluctance force),

– hysteresis phenomenon does not appear

the Lorentz force or torque does not depend on a surface posi-

tion in the nonconductive and magnetically anisotropic region

(the gap δ) if the equality (12) is satisfied.

These two theorems about surface-integral representation

of the Lorentz force/torque are important from both theoreti-

cal and computational points of view. In order to present them

subsequently three models of electromechanical converters

with conductive and nonconductive magnetically anisotrop-

ic movable parts are considered.

4. Electromagnetic force and torque calculations

In order to present the theoretical results some models of

electromechanical converters are considered. There are: linear,

cylindrical and spherical converter models. Applying these

models enable us to omit numerical errors. The necessary

simplifications of the converter geometry are assumed. The

analyses of electromagnetic field can be provided with the

help of the variable separation method [1, 2, 5, 8]. This way

of analysis is chosen for giving also a precise insight into

electromagnetic force or torque calculations.

The electromagnetic force and torque given by the

Maxwell’s method are as follows

Fe =

∫

∂V

H2B1dS, (13a)

Te =

∫

∂V

L2H2B1dS, (13b)

where indices for linear, cylindrical and spherical coordinate

systems denote: 1 ↔ x, r, r; 2 ↔ y, α, φ; 3 ↔ z, z, θ, respec-

tively [5].

The total electromagnetic force and torque can be calcu-

lated also by means of coenergy Wc as follows

Fe =
∂WC

∂y

∣

∣

∣

∣

j=const

=

∫

V

(

~j
∂ ~A

∂y
+ ~B

∂ ~H

∂y

)

dV , (14a)

Te =
∂WC

∂x2

∣

∣

∣

∣

j=const

=

∫

V

(

~j
∂ ~A

∂x2

+ ~B
∂ ~H

∂x2

)

dV , (14b)

where x2 = α for cylindrical converter or x2 = φ for spheri-

cal converter. The both Maxwell and coenergy methods give

in any case (if electromagnetic field impulse force can be

neglected) the same results for isotropic as well as anisotrop-

ic region V . The force and torque evaluated by the Lorentz

method are given by the formulas

FL =

∫

Ω

(jzBx − jxBz) dV , (15a)

TL =

∫

Ω

L2 (j3B1 − j1B3) dV . (15b)

Bull. Pol. Ac.: Tech. 61(2) 2013 401



D. Spałek

The anisotropy force and torque component [5] are

equal to

FM =
1

2

∫

V

(νxy − νyx)Bx

∂By

∂y
dV , (16a)

TM = 1

2

∫

V

(ν12 − ν21)B1
∂B2

∂x2

dV (16b)

and do not vanish for regions where asymmetrical magnetic

anisotropy appears, i.e. ν12 6= ν21.

The results of force and torque calculations can also be

treated as benchmarks for models of linear, cylindrical and

spherical converters [12–14]. For the linear converter an act-

ing force is calculated. For cylindrical and spherical converters

electromagnetic torques are calculated.

The first theorem was widely discussed in [5, 15]. For the

second theorem examples of linear, cylindrical and spherical

electromechanical converters are developed.

5. Linear motor – force calculation

Firstly, an exemplary linear motor is considered – Fig. 4. The

magnetic medium can appear in the gap in order to enhance

the force value [16]. The ratings are γ = 30 · 106 S/m (car-

riage conductivity), a = 0.02 m (conductive layer width),

l = 1.0 m (rotor length), g = 0.01 m (the gap width),

Θ1 = 4870 A (magnetomotive force first harmonic), Y = 1 m

(pair-pole length), νxx = 0.4ν0 (cross-layer axis reluctivity),

νyy = 0.4ν0 (move direction axis reluctivity), νxyδ = 0.1ν0,

νyxδ = 0.0 and different gap reluctivities νxyδ, νyxδ (Table 1).

Fig. 4. Linear electromechanical converter

Table 1

Examples for torques evaluation for the second theorem presentation –

linear motor

Reluctivities The second theorem

a) νxyδ = 0 νyxδ = 0 (12) is satisfied – Fig. 5a

b) νxyδ = 0.1ν0 νyxδ = 0 (12) is not satisfied – Fig. 5b

Table 1 and Figs. 5a,b confirm that if the condition (12) is

satisfied the second theorem thesis for force is fulfilled. Oth-

erwise, the force depends on the position of the integration

surface in the case b). It shows that if condition (12) is not

fulfilled the second theorem for forces cannot be applied –

Fig. 5b.

a)

b)

Fig. 5. Electromagnetic force vs. position of integral surface in the

gap of linear motor (Maxwell and coenergy method – line Lorentz

method - points)

6. Cylindrical motor – torque calculation

For presenting these theorem for electromagnetic torque cal-

culations the induction motor with solid rotor (Fig. 6) and

ferrofluid in the gap [17] is taken into account with para-

meters: γ = 35 · 106 S/m (rotor conductivity), a = 0.02 m

(conductive rotor layer width), R = 0.05 m (rotor outer ra-

dius), l = 0.25 m (rotor length), g = 0.0005 m (the gap

width), Θ1 = 1504 A (magnetomotive force first harmon-

ic), p = 2 (pair pole number), νrr = ν0/3 (radial reluc-

tivity), ναα = ν0/2 (tangential reluctivity), νrα = 0.2ν0,

ναr = 0.2ν0 and gap reluctivities νrαδ, ναrδ as shown in

Table 2.

Fig. 6. Cylindrical electromechanical converter
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Table 2

Examples of torques evaluation for the second theorem presentation –

cylindrical motor

Reluctivities The second theorem

a) νrαδ = 0 ναrδ = 0 (12) is satisfied – Fig. 7a

b) νrαδ = 0.3ν0 ναrδ = 0 (12) is not satisfied – Fig. 7b

Table 2 and the Fig. 7a confirm that if condition (12) is

satisfied the second theorem for electromagnetic torques is

fulfilled. Otherwise, in the case b), it is shown that if condi-

tion (12) is not satisfied thus the second theorem thesis is not

satisfied. Figure 7b presents that the electromagnetic torque

calculated by the Maxwell’s and coenergy method for differ-

ent radius of the integration surface (cylindrical surface) can

be different for radius change from r = R (conductive rotor

outer surface) up to r = R + g (inner stator surface).

a)

b)

Fig. 7. Electromagnetic torque vs. radius for the gap region (Maxwell

and coenergy method – line, Lorentz method – points)

7. Spherical motor – torque calculation

For an induction motor with a spherical rotor the second

theorem is also satisfied for electromagnetic torque. Exem-

plary, a spherical motor is considered (Fig. 8) with solid

rotor γ = 56 · 106 S/m (rotor conductivity), a = 0.02 m

(conductive rotor layer width), R = 0.03 m (rotor outer ra-

dius), g = 0.0005 m (the gap width), Θ1 = 300 A (mag-

netomotive force first harmonic), p = 2 (pair pole number),

νrr = 0.7ν0 (radial reluctivity), νφφ = 0.7ν0 (tangential re-

luctivity), νrφ = 0.1ν0, νφr = 0.1ν0 and gap reluctivities

νrφδ, νφrδ (Table 3).

Fig. 8. Spherical electromechanical converter

Table 3

Examples for torques evaluation for the second theorem presentation –

spherical motor

Reluctivities The second theorem

a) νrφδ = 0 νφrδ = 0 (12) is satisfied – Fig. 9a

b) νrφδ = 0.15ν0 νφrδ = 0 (12) is not satisfied – Fig. 9b

Figures 9 a,b present the electromagnetic torque value giv-

en by the Maxwell’s method for different radii of spherical

integration surface. The radius changes from r = R (con-

ductive rotor outer surface) up to r = R + g (inner stator

surface). Table 3 and Fig. 9a confirm that if condition (12)

is satisfied the second theorem for electromagnetic torque of

spherical converter. In opposite, in the case b) it is shown that

if condition (12) is not satisfied the second theorem cannot

be applied – Fig. 9b.

a)

b)

Fig. 9. Electromagnetic torque vs. radius for the gap region (Maxwell

and coenergy method – line, Lorentz method – points)
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8. Conclusions

There two theorems about electromagnetic force or torque for

anisotropic media have been presented. The first theorem for

conductive regions states:

For magnetic field region where

– nonhomogeneous force vanishes (no reluctance force),

– hysteresis phenomenon does not appear,

the Lorentz’s force (volume integral) and Maxwell (surface

integral) methods lead to the equal results for magnetically

anisotropic region if reluctivity matrix is symmetrical i.e. if

for u 6= v is satisfied νvu = νuv .

The second theorem for nonconductive regions states:

For magnetic field region where

– nonhomogeneous force vanishes (no reluctance force),

– hysteresis phenomenon does not appear

the Lorentz force/torque value does not depend on surface

position in the nonconductive and magnetically anisotropic

region (the gap δ) if for u 6= v is satisfied νvuδ = νuvδ .

In order to present these two theorems three models of

electromechanical converters with conductive (carriage, ro-

tor) and nonconductive (the gap) magnetically anisotropic re-

gions have been considered. Particularly, the linear, cylindrical

and spherical induction motors have been taken into account.

The theorems have been applied and presented. The results of

forces and torques calculations can also be treated as bench-

marks.
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