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Abstract. The main objective of this article is to review the major progress that has been made on controllability of dynamical systems

over the past number of years. Controllability is one of the fundamental concepts in the mathematical control theory. This is a qualitative

property of dynamical control systems and is of particular importance in control theory. A systematic study of controllability was started at

the beginning of sixties in the last century, when the theory of controllability based on the description in the form of state space for both

time-invariant and time-varying linear control systems was worked out.

Roughly speaking, controllability generally means, that it is possible to steer a dynamical control system from an arbitrary initial state to

an arbitrary final state using the set of admissible controls. It should be mentioned, that in the literature there are many different definitions

of controllability, which strongly depend on a class of dynamical control systems and on the other hand on the form of admissible controls.

Controllability problems for different types of dynamical systems require the application of numerous mathematical concepts and methods

taken directly from differential geometry, functional analysis, topology, matrix analysis and theory of ordinary and partial differential equations

and theory of difference equations. In the paper we use mainly state-space models of dynamical systems, which provide a robust and universal

method for studying controllability of various classes of systems.

Controllability plays an essential role in the development of modern mathematical control theory. There are various important relationships

between controllability, stability and stabilizability of linear both finite-dimensional and infinite-dimensional control systems. Controllability

is also strongly related to the theory of realization and so called minimal realization and canonical forms for linear time-invariant control

systems such as the Kalmam canonical form, the Jordan canonical form or the Luenberger canonical form. It should be mentioned, that for

many dynamical systems there exists a formal duality between the concepts of controllability and observability. Moreover, controllability is

strongly connected with the minimum energy control problem for many classes of linear finite dimensional, infinite dimensional dynamical

systems, and delayed systems both deterministic and stochastic.

Finally, it is well known, that controllability concept has many important applications not only in control theory and systems theory, but

also in such areas as industrial and chemical process control, reactor control, control of electric bulk power systems, aerospce engineering

and recently in quantum systems theory.
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1. Introduction

Control theory is an interdisciplinary branch of engineering

and mathematics that deals with influence behavior of dynam-

ical systems. Controllability is one of the fundamental

concepts in mathematical control theory. This is a quali-

tative property of dynamical control systems and it is of par-

ticular importance in control theory. Systematic study of con-

trollability was started at the beginning of sixties in the last

century, when the theory of controllability based on the de-

scription in the form of state space for both time-invariant and

time-varying linear control systems was worked out.

Roughly speaking, controllability generally means, that it

is possible to steer dynamical control system from an arbitrary

initial state to an arbitrary final state using the set of admis-

sible controls. It should be mentioned, that in the literature

there are many different definitions of controllability, which

strongly depend on one hand on a class of dynamical con-

trol systems and on the other hand on the form of admissible

controls.

In recent years various controllability problems for differ-

ent types of linear semilinear and nonlinear dynamical sys-

tems have been considered in many publications and mono-

graphs. Moreover, it should be stressed, that the most litera-

ture in this direction has been mainly concerned with different

controllability problems for dynamical systems with uncon-

strained controls and without delays in the state variables or

in the controls.

The main purpose of the paper is to present without math-

ematical proofs a review of recent controllability problems

for a wide class of dynamical systems. Moreover, it should

be pointed out, that exact mathematical descriptions of con-

trollability criteria can be found for example in the following

publications [1–29].

2. Controllability significance

Controllability plays an essential role in the development

of modern mathematical control theory. There are various

important relationships between controllability, stability and

stabilizability of linear both finite-dimensional and infinite-

dimensional control systems. Controllability is also strongly

related with the theory of realization and so called minimal

realization and canonical forms for linear time-invariant con-
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trol systems such as the Kalmam canonical form, the Jordan

canonical form or the Luenberger canonical form. It should

be mentioned, that for many dynamical systems there exists

a formal duality between the concepts of controllability and

observability. Moreover, controllability is strongly connected

with the minimum energy control problem for many classes

of linear finite dimensional, infinite dimensional dynamical

systems, and delayed systems both deterministic and stochas-

tic.

Therefore, controllability criteria are useful in the follow-

ing branches of mathematical control theory:

• stabilizability conditions, canonical forms, minimum ener-

gy control and minimal realization for positive systems,

• stabilizability conditions, canonical forms, minimum ener-

gy control and minimal realization for fractional systems,

• minimum energy control problem for a wide class of sto-

chastic systems with delays in control and state variables,

• duality theorems, canonical forms and minimum energy

control for infinite dimensional systems,

• controllability, duality, stabilizability, mathematical model-

ing and optimal control of quantum systems.

Controllability has many important applications not only

in control theory and systems theory, but also in such areas as

industrial and chemical process control, reactor control, con-

trol of electric bulk power systems, aerospce engineering and

recently in quantum systems theory.

Systematic study of controllability was started at the be-

ginning of the sixties in the 20-th century, when the theory

of controllability based on the description in the form of state

space for both time-invariant and time-varying linear control

systems was worked out. The extensive list of these publica-

tions can be found for example in the monographs [10] and

[11] or in the survey papers [12] and [22].

During last few years quantum dynamical systems have

been discussed in many publications. This fact is motivated

by possible applications in the theory of quantum informat-

ics [30–33]. Quantum control systems are either defined in

finite-dimensional complex space or in the space of linear

operators over finite-dimensional complex space. In the first

case the quantum states are called state vectors and in the

second density operators.

Control system description of a quantum closed system is

described by bilinear ordinary differential state equation in the

form of Schrödinger equation for state vectors and Liouville

[34, 35] equation for density matrices. Therefore, controllabil-

ity investigations require using special mathematical methods

as Lie groups and Lie algebras.

Traditional controllability concept can be extended for so

called structural controllability, which may be more reason-

able in case of uncertainties [10, 11]. It should be pointed

out, that in practice most of system parameter values are dif-

ficult to identify and are known only to certain approxima-

tions. Thus structural controllability, which is independent of

a specific value of unknown parameters are of particular inter-

est. Roughly speaking, linear system is said to be structurally

controllable if one can find a set of values for the free para-

meters such that the corresponding system is controllable in

the standard sense [10, 11].

Structural controllability of linear control system is strong-

ly related to numerical computations of distance from a given

controllable switched linear control system to the nearest an

uncontrollable one [10, 11].

First of all let us observe, that from algebraic character-

ization of controllability and structural controllability imme-

diately follows that controllability is a generic property in the

space of matrices defining such systems [10, 11]. Therefore,

the set of controllable switched systems is an open and dense

subset. Hence, it is important to know how far a controllable

linear system is from the nearest uncontrollable linear system.

This is especially important for linear systems with matrices

whose coefficients are given with some parameter uncertainty.

An explicit bound for the distance between a control-

lable linear control system to the closed set of uncontrollable

switched linear control system can be obtained using special

norm defined for the set of matrices and singular value de-

composition for controllability matrix [10, 11].

3. Nonlinear and semilinear dynamical systems

The last decades have seen a continually growing interest in

controllability theory of dynamical systems. This is clearly

related to the wide variety of theoretical results and possible

applications. Up to the present time the problem of controlla-

bility for continuous-time and discrete-time linear dynamical

systems has been extensively investigated in many papers (see

e.g. [10–12, 36] for extensive list of references). However, this

is not true for the nonlinear dynamical systems especially with

different types of delays in control and state variables, and for

nonlinear dynamical systems with constrained controls.

Similarly, only a few papers concern constrained control-

lability problems for continuous or discrete semi-linear dy-

namical systems. It should be pointed out, that in the proofs

of controllability results for nonlinear and semi-linear dynam-

ical systems linearization methods and generalization of open

mapping theorem [37–41] are extensively used. The special

case of nonlinear dynamical systems are semi-linear systems.

Let us recall that semi-linear dynamical control systems con-

tain linear and pure nonlinear parts in the differential state

equations [15, 37, 42, 43].

4. Infinite-dimensional systems

Infinite-dimensional dynamical control systems plays a very

important role in mathematical control theory. This class con-

sists of both continuous-time systems and discrete-time sys-

tems [10–12, 22 ,36]. Continuous-time infinite-dimensional

systems include for example, a very wide class of so-called

distributed parameter systems described by numerous types of

partial differential equations defined in bounded or unbounded

regions and with different boundary conditions.

For infinite-dimensional dynamical systems it is necessary

to distinguish between the notions of approximate and exact

controllability [10, 11]. It follows directly from the fact that in

infinite-dimensional spaces there exist linear subspaces which
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are not closed. On the other hand, for nonlinear dynamical

systems there exist two fundamental concepts of controllabil-

ity; namely local controllability and global controllability [10,

11]. Therefore, for nonlinear abstract dynamical systems de-

fined in infinite-dimensional spaces the following four main

kinds of controllability are considered: local approximate con-

trollability, global approximate controllability, local exact con-

trollability and global exact controllability [10–12, 22].

Controllability problems for finite-dimensional nonlinear

dynamical systems and stochastic dynamical systems have

been considered in many publications; see e.g. [10, 11, 22,

26, and [27], for review of the literature. However, there exist

only a few papers on controllability problems for infinite-

dimensional nonlinear systems [42–49].

Among the fundamental theoretical results, used in the

proofs of the main results for nonlinear or semi-linear dy-

namical systems, the most important include:

• generalized open mapping theorem,

• spectral theory of linear unbounded operators,

• linear semi-groups theory for bounded linear operators,

• Lie algebras and Lie groups,

• fixed-point theorems such as Banach, Schauder, Schaefer

and Nussbaum theorems,

• theory of completely positive trace preserving maps,

• mild solutions of abstract differential and evolution equa-

tions in Hilbert and Banach spaces.

4.1. Nonlinear neutral impulsive integrodifferential evolu-

tion systems in Banach spaces. In various fields of science

and engineering, many problems that are related to linear

viscoelasticity, nonlinear elasticity and Newtonian or non-

Newtonian fluid mechanics have mathematical models which

are described by differential or integral equations or integrod-

ifferential equations. This part of the paper centers around the

controllability for dynamical systems described by the inte-

grodifferential models. Such systems are modelled by abstract

delay differential equations. In particular abstract neutral dif-

ferential equations arise in many areas of applied mathematics

and, for this reason, this type of equation has been receiving

much attention in recent years and they depend on the delays

of state and their derivative. Related works of this kind can

be found in [44–52].

The study of differential equations with traditional initial

value problem has been extended in several directions. One

emerging direction is to consider the impulsive initial con-

ditions. The impulsive initial conditions are combinations of

traditional initial value problems and short-term perturbations,

whose duration can be negligible in comparison with the dura-

tion of the process. Several authors [44–52] have investigated

controllability of the impulsive differential equations.

As far as the controllability problems associated with

finite-dimensional systems modelled by ordinary differential

equations are concerned, this theory has been extensively stud-

ied during the last decades. In the finite-dimensional context, a

system is controllable if and only if the algebraic Kalman rank

condition is satisfied. According to this property, when a sys-

tem is controllable for some time, it is controllable for all time.

But this is no longer true in the context of infinite-dimensional

systems modelled by partial differential equations.

The large class of scientific and engineering problems

modelled by partial differential and integrodifferential equa-

tions can be expressed in various forms of differential and in-

tegrodifferential equations in abstract spaces. It is interesting

to study the controllability problem for such models in Ba-

nach spaces. The controllability problem for first and second

order nonlinear functional differential and integrodifferential

systems in Banach spaces has been studied by many authors

by using semigroup theory, cosine family of operators and

various fixed point theorems for nonlinear operators [42] and

[43] such as Banach theorem, Nussbaum theorem, Schaefer

theorem, Schauder theorem, Monch theorem or Sadovski the-

orem.

In recent years, the theory of impulsive differential equa-

tions has provided a natural frame work for mathematical

modelling of many real world phenomena, namely in control,

biological and medical domains. In these models, the inves-

tigated simulating processes and phenomena are subjected to

certain perturbations whose duration is negligible in compar-

ison with the total duration of the process. Such perturbations

can be reasonably well approximated as being instantaneous

changes of state, or in the form of impulses. These process

tend to be more suitably modelled by impulsive differential

equations, which allow for discontinuities in the evolution of

the state.

On the other hand, the concept of controllability is of great

importance in mathematical control theory. The problem of

controllability is to show the existence of a control function,

which steers the solution of the system from its initial state to

final state, where the initial and final states may vary over the

entire space. Many authors have studied the controllability of

nonlinear systems with and without impulses, see for instance

[7, 12, 14, 16, 37–38, 40, 43].

In recent years, significant progress has been made in the

controllability of linear and nonlinear deterministic systems

[39, 44, 45] and the nonlocal initial condition which in many

cases, has much better effect in applications then the tradi-

tional initial condition. The nonlocal initial value problems

can be more useful than the standard initial value problems

to describe many physical phenomena of dynamical systems.

It should be pointed out, that the study of Volterra-Fredholm

integrodifferential equations plays an important role for ab-

stract formulation of many initial, boundary value problems

of perturbed differential partial integro-differential equations.

Recently, many authors have studied about mixed

type integrodifferential systems without (or with) de-

lay conditions. Moreover, controllability of impulsive

functional differential systems with nonlocal conditions

has been studied by using the measures of non-

compactness and Monch fixed point theorem and some

sufficient conditions for controllability have been estab-

lished.

It should be mentioned, that without assuming the com-

pactness of the evolution system the existence, uniqueness and
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continuous dependence of mild solutions for nonlinear mixed

type integrodifferential equations with finite delay and non-

local conditions has been also established.. The results were

obtained by using Banach fixed point theorem and semi-group

theory. More recently, the existence of mild solutions for the

nonlinear mixed type integro-differential functional evolution

equations with nonlocal conditions was derived and the re-

sults were achieved by using Monch fixed point theorem and

fixed point theory.

To the best of our knowledge, up to now no work re-

ported on controllability of impulsive mixed Volterra- Fred-

holm functional integrodifferential evolution differential sys-

tem with a finite delay and nonlocal conditions.

4.2. Second order impulsive functional integrodifferential

systems in Banach spaces. Second order differential equa-

tions arise in many areas of science and technology whenever

a relationship involving some continuously changing quanti-

ties and their rates of change are known. In particular, second

order differential and integrodifferential equations serve as an

abstract formulation of many partial integrodifferential equa-

tions which arise in problems connected with the transverse

motion of an extensible beam, the vibration of hinged bars

and many other physical phenomena. So it is quite signifi-

cant to study the controllability problem for such systems in

Banach spaces.

The concept of controllability involves the ability to move

a system around in its entire configuration space using only

certain admissible manipulations. The exact definition varies

slightly within the framework of the type of models. In many

cases, it is advantageous to treat the second order abstract dif-

ferential equations directly rather than to convert them to first

order systems. In the proofs of controllability criteria some

basic ideas from the theory of cosine families of operators,

which is related to the second order equations are often used.

Damping may be mathematically modelled as a force syn-

chronous with the velocity of the object but opposite in direc-

tion to it. The occurrence of damped second order equations

can be found in [44] and [45]. The branch of modern applied

analysis known as “impulsive” differential equations furnishes

a natural framework to mathematically describe some jumping

processes.

The theory of impulsive integrodifferential equations and

their applications to the field of physics have formed a very

active research topic since the theory provides a natural frame-

work for mathematical modelling of many physical phenome-

na [38] and [42]. In spite of the great possibilities for applica-

tions, the theory of these equations has been developing rather

slowly due to obstacles of theoretical and technical character.

The study of the properties of their solutions has been of an

ever growing interest.

Recently, most efforts have been focused on the problem

of controllability for various kinds of impulsive systems using

different approaches [47] and [48]. In neutral delay differen-

tial equations, the derivative of the unknown function at a

certain time is given in terms of the values of the function

at previous times. Neutral differential equations arise in many

fields and they depend on the delays of state and its deriva-

tive. Related works of this kind of equation can be found in

[40] and [49]. For the fundamental solution of second order

evolution system, one can refer the paper [50].

5. Stochastic systems

Classical control theory generally is based on deterministic

approaches. However, uncertainty is a fundamental charac-

teristic of many real dynamical systems. Theory of stochas-

tic dynamical systems is now a well-established topic of re-

search, which is still in intensive development and offers many

open problems. Important fields of application are economics

problems, decision problems, statistical physics, epidemiolo-

gy, insurance mathematics, reliability theory, risk theory and

others methods based on stochastic equations. Stochastic mod-

elling has been widely used to model the phenomena arising

in many branches of science and industry such as biology,

economics, mechanics, electronics and telecommunications.

The inclusion of random effects in differential equations leads

to several distinct classes of stochastic equations, for which

the solution processes have differentiable or non-differentiable

sample paths. Therefore, stochastic differential equations and

their controllability require many different method of analysis.

The general theory of stochastic differential equations both

finite-dimensional and infinite-dimensional and their applica-

tions to the field of physics and technique can be found in

the many mathematical monographs and related papers. This

theory formed a very active research topic since provides a

natural framework for mathematical modelling of many phys-

ical phenomena.

Controllability, both for linear or nonlinear stochastic dy-

namical systems, has recently received the attention of many

researchers and has been discussed in several papers and

monographs, in which where many different sufficient or nec-

essary and sufficient conditions for stochastic controllability

were formulated and proved [19, 26, 27, 53, 54]. However,

it should be pointed out that all these results were obtained

only for unconstrained admissible controls, finite dimensional

state space and without delays in state or control.

Stochastic controllability problems for stochastic infinite-

dimensional semi-linear impulsive integrodifferential dynam-

ical systems with additive noise and with or without multiple

time-varying point delays in the state variables are also dis-

cussed in the literature. The proofs of the main results are

based on certain theorems taken from the theory of stochas-

tic processes, linearization methods for stochastic dynamical

systems, theory of semi-groups of linear operators, different

fixed-point theorems as Banach, Schauder, Schaefer, or Nuss-

baum fixed-point theorems and on so-called generalized open

mapping theorem presented and proved in the survey paper

[45–54].

6. Delayed systems

Up to the present time the problem of controllability in con-

tinuous and discrete time linear dynamical systems has been

extensively investigated in many papers (see e.g. [10–12, 16,
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19, 20, 55]). However, this is not true for the nonlinear or

semi-linear dynamical systems, especially with delays in con-

trol and with constrained controls. Only a few papers concern

constrained controllability problems for continuous or discrete

nonlinear or semi-linear dynamical systems with constrained

controls [20, 23].

Dynamical systems with distributed [7] delays in control

and state variable were also considered. Using some mapping

theorems taken from functional analysis and linear approxi-

mation methods sufficient conditions for constrained relative

and absolute controllability will be derived and proved.

Let us recall that semi-linear dynamical control systems

with delays may contain different types of delays, both in

pure linear and pure nonlinear parts, in the differential state

equations. Sufficient conditions for constrained local relative

controllability near the origin in a prescribed finite time inter-

val for semi-linear dynamical systems with multiple variable

point delays or distributed delays in the control and in the state

variables, which nonlinear term is continuously differentiable

near the origin are presented in [20] and [23].

In the above mentioned papers it is generally assumed

that the values of admissible controls are in a given convex

and closed cone with vertex at zero, or in a cone with non-

empty interior. The proof of the main result are based on

a so called generalized open mapping theorem presented in

the paper [41]. Moreover, necessary and sufficient conditions

for constrained global relative controllability of an associated

linear dynamical system with multiple point delays in control

are also discussed.

7. Positive systems

In recent years, the theory of positive dynamical systems has

become a natural frame work for mathematical modelling of

many real world phenomena, namely in control, biological

and medical domains. Positive dynamical systems are of fun-

damental importance to numerous applications in different

areas of science such as economics, biology, sociology and

communication.

Positive dynamical systems both linear and nonlinear are

dynamical systems with states, controls and outputs belonging

to positive cones in linear spaces. Therefore, in fact positive

dynamical systems are nonlinear systems. Among many im-

portant developments in control theory over last two decades,

control theory of positive dynamical systems [55] has played

an essential role.

Controllability, reachability and realization problems for

finite dimensional positive both continuous-time and discrete-

time dynamical systems were discussed for example in mono-

graph [55] and paper [25], using the results taken directly

from the nonlinear functional analysis and especially from

the theory of semi-groups of bounded operators and general

theory of unbounded linear operators.

8. Fractional systems

The development of controllability theory both for conti-

nuous-time and discrete-time dynamical systems with frac-

tional derivatives and fractional difference operators has seen

considerable advances since the publication of papers [56–

59] and monograph [60]. Although classic mathematical mod-

els are still very useful, large dynamical systems prompt the

search for more refined mathematical models, which leads to

better understanding and approximations of real processes.

The general theory of fractional differential equations and

fractional impulsive integrodifferential equations and their ap-

plications to the field of physics and technique can be found

in the monograph [60]. This theory formed a very active re-

search topic since provides a natural framework for mathemat-

ical modelling of many physical phenomena. In particular, the

fast development of this theory has allowed to solve a wide

range of problems in mathematical modelling and simulation

of certain kinds of dynamical systems in physics and electron-

ics. Fractional derivative techniques provide useful explorato-

ry tools, including the suggestion of new mathematical models

and the validation of existing ones.

Mathematical fundamentals of fractional calculus and

fractional differential and difference equations are given in

the monographs [60], and in the related papers [55-59]. Most

of the earliest work on controllability for fractional dynami-

cal systems was related to linear continuous-time or discrete-

time systems with limited applications of the real dynamical

systems. In addition, the earliest theoretical work concerned

time-invariant processes without delays in state variables or

in control.

Using the results presented for linear fractional systems

and applying linearization method the sufficient conditions for

local controllability near the origin are formulated and proved

in the paper [25]. Moreover, applying generalized open map-

ping theorem in Banach spaces [41] and linear semi-group

theory in the paper [36] the sufficient conditions for approxi-

mation controllability in finite time with conically constrained

admissible controls are formulated and proved.

9. Quantum dynamical systems

Fast recent development of quantum information field in both

theory and experiments caused increased interest in new meth-

ods of quantum systems control. Various models for open-loop

and closed-loop control scenarios for quantum systems have

been developed in recent years [30–35].

Quantum systems can be classified according to their in-

teraction with the environment. If a quantum system exchange

neither information nor energy with its environment it is called

closed and its time evolution is described completely by a

Hamiltonian and its respective unitary operator. On the oth-

er hand if the exchange of information or energy occurs, the

system is called open.

Due to the destructive nature of quantum measurement in

some models one has to be constrained to open-loop control

of a quantum system. This fact means that during the time

evolution of the quantum system it is physically impossible to

extract any information about the state of the system.

In the simplest case open-loop control of the closed quan-

tum system is described by the bi-linear model. In this case the
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differential equation of the evolution is described by the sum

of the drift Hamiltonian and the control Hamiltonians. The

parameters of the control Hamiltonians may be constrained

in various ways due to physical constraints of the system.

Many quantum systems can be only controlled locally, which

means that control Hamiltonians act only on one of the Hilbert

spaces that constitute larger tensor product Hilbert space of

the system.

The control constrained to local operations is of a great

interest in various applications, especially in quantum com-

putation and spin graph systems. Other possible constraints,

such as constrained energy or constrained frequency, are pos-

sible. They are very important in the scope of optimal control

of quantum systems.

In the most generic case open quantum systems are not

controllable with coherent, unitary control due to the fact that

the action of the generic completely positive trace preserv-

ing map cannot be reversed unitarily. For example Markovian

dynamics of finite-dimensional open quantum system is not

coherently controllable. However, many schemes of incoher-

ent control of open quantum systems have been described.

Some of these schemes are based on the technique known as

quantum error correcting codes. In incoherent control schemes

quantum unitary evolution together with quantum measure-

ments is used to drive the system to the desired state even if

quantum noise is present in the system.

10. Switched systems

The last decades have seen a continually growing interest in

controllability theory of hybrid dynamical systems and their

special case named switched dynamical systems. In the liter-

ature there have been a lot of papers for controllability both

continuous-time and discrete-time switched systems [61–71].

Switched systems deserve investigation for theoretical interest

as well as for practical applications. Switching system struc-

ture is an essential feature of many engineering control appli-

cations such as power systems and power electronics. From

a theoretical point of view switched linear system consists of

several linear subsystems and a rule that organize switching

among them.

Hybrid systems which are capable of exhibiting simulta-

neously several kinds of dynamic behavior in different parts

of the system (e.g., continuous-time dynamics, discrete-time

dynamics, jump phenomena, logic commands) are of great

current interest (see, e.g., [61, 64, 67]). Examples of such

systems include the Multiple-Models, Switching and Tun-

ing paradigm from adaptive control, Hybrid Control Systems,

and a plethora of techniques that arise in Event Driven Sys-

tems are typical examples of such systems of varying degrees

of complexity. Moreover, hybrid systems include computer

disk drives, transmission an stepper motors, constrained ro-

botic systems, intelligent vehicle/highway systems, sampled-

data systems, discrete event systems, and many other types of

dynamical systems.

Switched linear systems are hybrid systems that consist

of several linear subsystems and a rule of switching among

them. Switched linear systems provide a framework which

bridges the linear systems and the complex and/or uncertain

systems. On one hand, switching among linear systems may

produce complex system behaviors such as chaos and multi-

ple limit cycles. On the other hand, switched linear systems

are relatively easy to handle as many powerful tools from lin-

ear and multi-linear analysis are available to cope with these

systems.

Moreover, the study of switched linear systems provides

additional insights into some long-standing and sophisticated

problems, such as intelligent control, adaptive control, and ro-

bust analysis and control. Theoretical examination of switched

linear systems are academically more challenging due to their

rich, diverse, and complex dynamics. Switching makes those

systems much more complicated than standard-time invariant

or even time-varying systems. Many more complicated be-

haviors/dynamics and fundamentally new properties, which

standard systems do not have, have been demonstrated on

switched linear systems. From the point of view of control

system design, switching brings an additional degree of free-

dom in control system design. Switching laws, in addition

to control laws, may be utilized to manipulate switched sys-

tems to achieve a better performance of a system. This can be

seen as an added advantage for control design to attain certain

control purposes like stabilizability or controllability.

For the controllability analysis of switched linear control

systems, a much more difficult situation arises since both the

control input and the switching rule are design variables to be

determined. Thus, the interaction between them is very impor-

tant from controllability point of view. Moreover, it should be

mentioned that for switched linear discrete-time control sys-

tem in general case the controllable set is not a subspace but a

countable union of subspaces. For switched linear continuous-

time control system, in general case the controllable set is an

uncountable union of subspaces. Controllability results from

different types of switched systems which can be found in

[61-71].

11. Concluding remarks

Controllability problems for different types of dynamical sys-

tems require the application of numerous mathematical con-

cepts and methods taken directly from differential geometry,

functional analysis, topology, matrix analysis and theory of

ordinary and partial differential equations and theory of differ-

ence equations. The state-space models of dynamical systems

provides a robust and universal method for studying control-

lability of various classes of systems.

Finally, it should be stressed, that there are numerous open

problems for controllability concepts for special types of dy-

namical systems. For example, it should be pointed out, that

up to present time the most literature on controllability prob-

lems has been mainly concerned with unconstrained controls

and without delays in the state variables or in the controls.
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