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Abstract. The problem of existence and determination of the set of positive asymptotically stable realizations of a proper transfer function

of linear discrete-time systems is formulated and solved. Necessary and sufficient conditions for existence of the set of the realizations are

established. A procedure for computation of the set of realizations are proposed and illustrated by numerical examples.
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1. Introduction

Determination of the state space equations for given trans-

fer matrix is a classical problem, called realization problem,

which has been addressed in many papers and books [1, 2, 3–

8]. An overview on the positive realization problem is given

in [1, 2, 9]. The realization problem for positive continuous-

time and discrete-time linear systems has been considered in

[10–16] and the positive realization problem for discrete-time

systems with delays in [14, 15, 17]. The fractional positive

linear systems has been addressed in [5, 18, 19]. The realiza-

tion problem for fractional linear systems has been analyzed

in [20] and for positive continuous-discrete systems in [21].

Stability of continuous-discrete linear systems has been con-

sidered in [22]. A method based on similarity transformation

of the standard realization to the discrete positive one has

been proposed in [16]. Conditions for the existence of posi-

tive stable realization with system Metzler matrix for transfer

function has been established in [12]. The problem of the

existence and determination of the set of Metzler matrices

for given stable polynomials has been formulated and solved

in [6]. The problem for computation of positive stable realiza-

tions for continuous-time linear systems has been addressed

in [7].

It is well-known [1, 3, 9] that to find a realization for a

given transfer function first we have to find a state matrix for

a given denominator of the transfer function.

In this paper necessary and sufficient conditions for exis-

tence of the set of positive stable realizations of a proper trans-

fer function of linear discrete-time systems are established and

a procedure for computation of the set of realizations is pro-

posed.

The paper is organized as follows. In Sec. 2 some pre-

liminaries concerning positive linear systems are recalled and

the problem formulation is given. The problem solution for

systems with real negative poles of the transfer function is

presented in Sec. 3. The problem of the existence and compu-

tation of the set of positive asymptotically stable realizations

for single-input single-output systems with complex conju-

gate poles is addressed in Sec. 4. The problem for general

case (multi-input multi-output) is considered in Sec. 5. Con-

cluding remarks are given in Sec. 6.

The following notation is used: ℜ – the set of real num-

bers, ℜn×m – the set of n×m real matrices, ℜn×m
+ – the set

of n×m matrices with nonnegative entries and ℜn
+ = ℜn×1

+ ,

In – the n× n identity matrix, AT – transpose of the matrix

A, ℜn×m(z) – the set of n × m rational matrices in z.

2. Preliminaries and the problem formulation

Consider the discrete-time linear system

xi+1 = Axi + Bui, i ∈ Z+ = {0, 1, ...} (1a)

yi = Cxi + Dui (1b)

where xi ∈ ℜn, ui ∈ ℜm, yi ∈ ℜp are the state, input

and output vectors and A ∈ ℜn×n, B ∈ ℜn×m, C ∈ ℜp×n,

D ∈ ℜp×m.

Definition 1. [1, 9] The system (1) is called (internally) pos-

itive if xi ∈ ℜn
+, yi ∈ ℜp

+, i ∈ Z+ for any initial conditions

x0 ∈ ℜn
+ and all inputs ui ∈ ℜm

+ , i ∈ Z+.

Theorem 1. [1, 9] The system (1) is positive if and only if

A ∈ ℜn×n
+ , B ∈ ℜn×m

+ , C ∈ ℜp×n
+ , D ∈ ℜp×m

+ . (2)

Definition 2. [1, 9] The positive system (1) is called asymp-

totically stable if

lim
i→∞

xi = 0for any x0 ∈ ℜn
+. (3)

Theorem 2. [1, 9] The positive system (1) is asymptotically

stable if and only if all coefficients of the polynomial

pn(z) = det[In(z + 1) − A]

= zn + an−1z
n−1 + ... + a1z + a0

(4)

are positive, i.e. ai > 0 for i = 0, 1, ..., n− 1.

Definition 3. [9] A matrix P ∈ ℜn×n
+ is called the monomial

matrix (or generalized permutation matrix) if its every row

and its every column contains only one positive entry and its

remaining entries are zero.
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The inverse matrix P−1 of the monomial matrix P is

equal to the transpose matrix in which every nonzero entry is

replaced by its inverse and P−1 ∈ ℜn×n
+ .

Lemma 1. If A ∈ ℜn×n
+ then A = PAP−1 ∈ ℜn×n

+ for

every monomial matrices P ∈ ℜn×n
+ and

det[Inz − A] = det[Inz − A]. (5)

Proof. Taking into account that if P ∈ ℜn×n
+ then P−1 ∈

ℜn×n
+ and A = PAP−1 ∈ ℜn×n

+ . It is easy to check that

det[Inz − A] = det[Inz − PAP−1] = det{P [Inz − A]P−1}

= detP det[Inz − A] det P−1 = det[Inz − A]

since detP detP−1 = 1.

The transfer matrix of the systems (1) is given by

T (z) = C[Inz − A]−1B + D. (6)

The transfer matrix is called proper if

lim
z→∞

T (z) = K ∈ ℜp×m (7)

and it is called strictly proper if K = 0.

Definition 4. Matrices (2) are called a positive realization of

transfer matrix T (z) if they satisfy the equality (6).

The realization is called asymptotically stable if the matrix

A is asymptotically stable.

Theorem 3. [9] The matrix A ∈ ℜn×n
+ is unstable if at least

one of its diagonal entries ai,i, i = 1, 2, ..., n is greater 1.

Lemma 2. The matrices

Ak = PAkP−1 ∈ ℜn×n
+ , Bk = PBk ∈ ℜn×m

+ ,

Ck = CkP−1 ∈ ℜp×n
+ , Dk = Dk ∈ ℜp×m

+ ,

k = 1, . . . , q

(8)

are a positive asymptotically stable realization of the proper

transfer matrix T (z) ∈ ℜp×m(z) for any monomial matrix

P ∈ ℜn×n
+ if and only if the matrices

Ak ∈ ℜn×n
+ , Bk ∈ ℜn×m

+ ,

Ck ∈ ℜp×n
+ , Dk ∈ ℜp×m

+ ,

k = 1, . . . , q

(9)

are its positive asymptotically stable realization.

Proof. Taking into account that P ∈ ℜn×n
+ is a monomial

matrix then P−1 ∈ ℜn×n
+ is also monomial matrix and using

(8) we obtain
⇀

Ak ∈ ℜn×n
+ , Bk ∈ ℜn×m

+ , Ck ∈ ℜp×n
+ if and

only if (9) holds. Using (6) and (8) we obtain

T (z) = Ck[Inz − Ak]−1Bk + Dk

= CkP−1[Inz − PAkP−1]−1PBk + Dk

= CkP−1{P [Inz − Ak]P−1}−1PBk + Dk

= CkP−1P [Inz − Ak]−1P−1PBk + Dk

= Ck[Inz − Ak]−1Bk + Dk = T (z).

(10)

Therefore, the matrices (2.8) are a positive asymptotically

stable realization of T (z) if and only if the matrices (2.9) are

also its positive asymptotically stable realization.

The problem under considerations can be stated as fol-

lows: Given a rational proper matrix T (z) ∈ ℜp×m(z), find

the set of its positive asymptotically stable realizations (8).

In this paper necessary and sufficient conditions for exis-

tence of the set of the positive asymptotically stable realiza-

tions for a given T (z) will be established and a procedure for

computation of the set of realizations will be proposed.

3. SISO systems with only real positive poles

In this section the single-input single-output (SISO) discrete-

time linear systems with the proper transfer function

T (z) =
bnzn + bn−1z

n−1 + ... + b1z + b0

zn + an−1zn−1 + ... + a1z + a0

(11)

having only real positive poles (not necessarily distinct) α1,

α2, . . . , αn, i.e.

dn(z) = (z − α1)(z − α2)...(z − αn)

= zn + an−1z
n−1 + ... + a1z + a0,

an−1 = −(α1 + α2 + ... + αn),

an−2 = −α1(α2 + α3 + ... + αn)

−α2(α3 + α4 + ... + αn)

−... − αn−1αn, ...,

a0 = (−1)nα1α2...αn

(12)

will be considered.

Theorem 4. For the proper transfer function

T (z) =
b1z + b0

z + a
(13)

there exists the set of positive asymptotically stable realiza-

tions

Ak = PAkP−1, Bk = PBk,

Ck = CkP−1, Dk = Dk, k = 1, 2
(14)

for any positive parameter P > 0 and Ak, Bk, Ck, Dk having

one of the forms

A1 = [−a], B1 = [1],

C1 = [b0 − ab1], D1 = [b1]
(15a)

or
A2 = [−a], B2 = [b0 − ab1],

C2 = [1], D2 = [b1]
(15b)

if and only if

−1 < a ≤ 0, b1 ≥ 0, b0 − ab1 ≥ 0. (16)

Proof. The matrix A1 ∈ ℜ1×1
+ and is asymptotically stable if

−1 < a ≤ 0. The matrices C1 ∈ ℜ1×1
+ , D1 ∈ ℜ1×1

+ if and

only if b1 ≥ 0, b0 − ab1 ≥ 0. By Lemma 2 the matrices

(14) are a positive asymptotically stable realization of (13) for

any P > 0 if and only if the matrices (15a) are its positive

asymptotically stable realization. Proof for matrices (15b) is

similar.

Lemma 3. The nonnegative matrix

A =

[
a11 a12

a21 a22

]
∈ ℜ2×2

+ (17)
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has only real eigenvalues z1, z2 such that z1 + z2 ≥ 0 and

one of the zeros is negative if and only if a12a21 > a11a22.

Proof. The characteristic polynomial of the matrix (17)

det[I2z − A] =

∣∣∣∣∣
z − a −a12

−a21 z − a22

∣∣∣∣∣

= z2 − (a11 + a22)z + a11a22 − a12a21

= z2 + a1z + a0 = (z − z1)(z − z2),

a1 = −(a11 + a22) = −(z1 + z2),

a0 = a11a22 − a12a21 = z1z2

(18)

has only real zeros since

a2
1 − 4a0 = (a11 + a22)

2 + 4(a11a22 − a12a21)

= (a2
11 + a2

22 − 2a11a22) + 4a12a21

= (a11 − a22)
2 + 4a12a21 ≥ 0.

(19)

Taking into account that a1 = −(a11 +a22) = −(z1 +z2)
we conclude that at least one of the zeros is positive such

that z1 + z2 ≥ 0. From the equality a11a22 − a12a21 = z1z2

it follows that one of the zeros is negative if and only if

a11a22 < a12a21.

Theorem 5. For the transfer function

T (z) =
b2z

2 + b1z + b0

z2 + a1z + a0

(20)

there exists the set of positive asymptotically stable realiza-

tions

Ak = PAkP−1 ∈ ℜ2×2
+ , Bk = PBk ∈ ℜ2×1

+ ,

Ck = CkP−1 ∈ ℜ1×2
+ , Dk = Dk ∈ ℜ1×1

+ ,

k = 1, 2

(21)

for any monomial matrix P ∈ ℜ2×2
+ and Ak, Bk, Ck, Dk

having one of the forms

A1 =

[
z1 1

0 z2

]
, B1 =

[
0

1

]
,

C1 = [ b2z
2
1 + b1z1 + b0 b2(z1 + z2) + b1 ],

D1 = [b2]

(22a)

or

A2 = AT
1 =

[
z1 0

1 z2

]
,

B2 =

[
b2z

2
1 + b1z1 + b0

b2(z1 + z2) + b1

]
,

C2 = [ 0 1 ], D2 = [b2]

(22b)

if and only if the polynomial

d2(z) = z2 + a1z + a0 (23)

has two positive zeros z1, z2 satisfying the condition

|zk| < 1 for k = 1, 2 (24)

and

b2 ≥ 0,

b2z
2
1 + b1z1 + b0 ≥ 0, b2(z1 + z2) + b1 ≥ 0.

(25)

Proof. The matrix A1 is asymptotically stable and nonnega-

tive if and only if the polynomial (23) has real positive zeros

z1, z2 satisfying the condition (24). The matrix

D1 = lim
z→∞

T (z) = [b2] ∈ ℜ1×1
+ (26)

if and only if b2 ≥ 0. The strictly proper transfer function has

the form

Tsp(z) = T (z) − D1 =
b1z + b0

z2 + a1z + a0

(27)

where

b1 = b1 − a1b2, b0 = b0 − a0b2. (28)

Taking into account the forms of A1 and B1 given by

(22a) we obtain

Tsp(z) = C1[I2z − A1]
−1B1

= [ c1 c2 ]

[
z − z1 1

0 z − z2

]
−1 [

0

1

]

=
c1 + c2(z − z1)

z2 + a1z + a0

=
b1z + b0

z2 + a1z + a0

(29a)

and

c2 = b1 = b1 − a1b2 = b2(z1 + z2) + b1,

c1 = b0 + c2z1

= b0 − z1z2b2 + [b2(z1 + z2) + b1]z1

= b2z
2
1 + b1z1 + b0.

(29b)

From (29b) it follows that the matrix C ∈ ℜ1×2
+ if and

only if the conditions (25) are satisfied. The proof for (22b)

is similar.

Remark 1. If the polynomial (23) has two zeros zk < 1
for k = 1, 2 and bk ≥ 0 for k = 0, 1, 2 then the transfer

function (20) has the set of positive asymptotically table re-

alizations (21).

Lemma 4. If the polynomial

dn(z) = zn + (−1)1ãn−1z
n−1 + (−1)2ãn−2z

n−2

+... + (−1)nã0

(30)

has only real positive zeros αk > 0, k = 1, ..., n then

ãn−k > 0 for k = 1, 2, . . . , n. (31)

Proof. Proof will be accomplished by induction. The hypoth-

esis is valid for n = 1 and n = 2. For n = 1 we have

z − α1 = z + (−1)1α1 = z + (−1)1ã0, ã0 = α1 > 0.

Similarly for n = 2 we have

(z − α1)(z − α2) = z2 − (α1 + α2)z + α1α2

= z2 + (−1)1ã1z + (−1)2ã0

and

ã1 = (α1 + α2) > 0, ã0 = α1α2 > 0.
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Assuming that the hypothesis is true for k > 1 (k ∈ N =
{1, 2, ...})

(z − α1)(z − α2)...(z − αk) = zk + (−1)1ãk−1z
k−1

+(−1)2ãk−2z
k−2 + ... + (−1)kã0,

ãk−j > 0, j = 1, 2, . . . , n

(32)

we shall show that the hypothesis is also valid for k+1. Using

(32) we obtain

(z − α1)(z − α2)...(z − αk)(z − αk+1)

= (zk + (−1)1ãk−1z
k−1 + (−1)2ãk−2z

k−2

+... + (−1)kã0)(z − αk+1)

= zk+1 + (−1)1(ãk−1 + αk+1)z
k

+(−1)2(ãk−2 + ãk−1αk+1)z
k−1

+... + (−1)k(ã0 + ã1αk+1)z + (−1)k+1ã0αk+1

(33)

and

(ãk−1 + αk+1) > 0, (ãk−2 + ãk−1αk+1) > 0, . . . ,

(ã0 + ã1αk+1) > 0, ã0αk+1 > 0.

This completes the proof.

Theorem 6. The polynomial

dn(z) = zn + an−1z
n−1 + ... + a1z + a0 (34)

has only real positive zeros satisfying the condition

zk < 1 for k = 1, 2, . . . , n (35)

if and only if all coefficients of the polynomial

dn(z) = dn(z + 1) = (z + 1)n + an−1(z + 1)n−1

+... + a1(z + 1) + a0

= zn + an−1z
n−1 + ... + a1z + a0,

an−1 = n + an−1, ..., a0 = 1 + a0 + a1 + ... + an−1

(36)

are positive, i.e.

ak > 0 for k = 0, 1, . . . , n − 1. (37)

Proof. By Theorem 2 the asymptotically stable polynomi-

al (34) has positive zeros satisfying the condition (35) if and

only if all coefficients of the polynomial (36) are positive.

Theorem 7. There exists the set of positive asymptotically

stable realizations

Ak = PAkP−1 ∈ ℜn×n
+ , Bk = PBk ∈ ℜn×1

+ ,

Ck = CkP−1 ∈ ℜ1×n
+ , Dk = Dk ∈ ℜ1×1

+ ,

k = 1, 2

(38)

for any monomial matrix P ∈ ℜn×n
+ and Ak, Bk, Ck , Dk

having one of the forms

A1 =




α1 1 0 ... 0

0 α2 1 ... 0
...

...
... ...

...

0 0 0 ... αn




,

B1 =




0
...

0

1




,

CT
1 =




b0 − a0bn − â20c2 − â30c3 − ... − ân,0cn

...

bn−2 − an−2bn − ân,n−2cn

bn−1 − an−1bn




,

D1 = [bn]
(39a)

or

A2 = AT
1 , B2 = CT

1 , C2 = BT
1 , D2 = D1 (39b)

of the transfer function (11) with only real poles α1, α2, . . . ,

αn if and only if the conditions

cn = bn−1 − an−1bn ≥ 0

cn−1 = bn−2 − an−2bn − ân,n−2cn ≥ 0

...

c1 = b0 − a0bn − â20c2 − â30c3 − ... − ân,0cn ≥ 0

(40a)

where

â20 = −α1, â30 = α1α2,

ân,0 = (−1)n−1α1α2...αn−1, ...,

â31 = −(α1 + α2), ..., ân,n−2

= −(α1 + α2 + ... + αn−1)

(40b)

are met.

Proof. The matrix A1 ∈ ℜn×n
+ is asymptotically stable if and

only if its eigenvalues zk = αk, k = 1,2,. . . ,n are only real

positive and satisfy the condition (35).The matrix

D1 = lim
z→∞

T (z) = [bn] ∈ ℜ1×1
+ (41)

if and only if bn ≥ 0. The strictly proper transfer function has

the form

Tsp(z) = T (z)− D1

=
bn−1z

n−1 + ... + b1z + b0

zn + an−1zn−1 + ... + a1z + a0

,
(42a)

where

bk = bk − akbn for k = 0, 1, . . . , n − 1. (42b)
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Assuming BT
1 = [ 0 ... 0 1 ] ∈ ℜn×1

+ we obtain

Tsp(z) = C1[Inz − A1]
−1B1 = [ c1 ... cn ]




z − α1 −1 0 ... 0

0 z − α2 −1 ... 0
...

...
... ...

...

0 0 0 ... z − αn




−1 


0
...

0

1




=
[ c1 ... cn ]

dn(z)




p1(z)

p2(z)
...

pn(z)




=
c1p1(z) + c2p2(z) + ... + cnpn(z)

dn(z)

(43a)

where

dn(z) = (z − α1)(z − α2)...(z − αk)

= zn + (−1)1ãn−1z
n−1 + (−1)2ãn−2z

n−2 + ... + (−1)nã0

p1(z) = 1,

p2(z) = z − α1 = z + â20,

â20 = −α1,

p3(z) = (z − α1)(z − α2) = z2 + â31z + â30,

â31 = −(α1 + α2), â30 = α1α2,

...

pn(z) = (z − α1)(z − α2)...(z − αn−1)

= zn−1 + ân,n−2z
n−2 + ... + ân,1z + ân,0,

ân,n−2 = −(α1 + α2 + ... + αn−1), ...,

ân,0 = (−1)n−1α1α2..., αn−1.
(43b)

From comparison of (3.33a) and (3.32a) we have

cn = bn−1 = bn−1 − an−1bn,

cn−1 = bn−2 − ân,n−2cn = bn−2 − an−2bn − ân,n−2cn,

...

c1 = b0 − â20c2 − â30c3 − ... − ân,0cn

= b0 − a0bn − â20c2 − â30c3 − ... − ân,0cn.
(44)

From (44) it follows that C1 ∈ ℜ1×n
+ if and only if the

conditions (40a) are met. The proof for (39b) follows imme-

diately from the equality

T (z) = [T (z)]T = [C1[Inz − A1]
−1B1 + D1]

T

= BT
1 [Inz − AT

1 ]−1CT
1 + D1

= C2[Inz − A2]
−1B2 + D2.

(45)

By Lemma 2 the matrices (38) are a positive asymp-

totically stable realization of (11) for any monomial matrix

P ∈ ℜn×n
+ if and only if the matrices (39) are its positive

asymptotically stable realization.

From above considerations we have the following pro-

cedure for computation of the set of positive asymptotically

stable realizations (38) of the transfer function (11) with real

negative poles.

Procedure 1.

Step 1. Check if the denominator

dn(z) = (z − α1)(z − α2)...(z − αk)

= zn + (−1)1ãn−1z
n−1

+(−1)2ãn−2z
n−2 + ... + (−1)nã0

(46)

of the transfer function (11) satisfies the conditions

(31). If the conditions are satisfied go to the step 2,

if not then does not exist the set of positive asymp-

totically stable realizations (38).

Step 2. Check if all coefficients of the polynomial (36) are

positive. If the conditions are satisfied go to the step

4, if not then does not exist the set of positive asymp-

totically stable realizations (38).

Step 3. Check the conditions (40). If the conditions are sat-

isfied go to the step 4, if not then does not exist the

set of positive asymptotically stable realizations (38).

Step 4. Compute the zeros αk, k = 1, 2, . . . , n of the poly-

nomial 46 and find the matrices (39a) or (39b).

Step 5. Using (38) compute the desired set of realizations.

Example 1. Compute the set of positive asymptotically stable

realizations of the transfer function

T (z) =
0.1z3 + z2 + 2z + 3

z3 − 1.1z2 + 0.35z − 0.025
. (47)

Using Procedure 1 we obtain the following.

Step 1. The denominator

d3(z) = z3 − 1.1z2 + 0.35z − 0.025 (48)

of (47) satisfies the conditions (32) since ã2 = 1.1 >

0, ã1 = 0.35 > 0 and ã0 = 0.025 > 0.

Step 2. All coefficients of the polynomial

d3(z) = d3(z + 1) = (z + 1)3

−1.1(z + 1)2 + 0.35(z + 1) − 0.025

= z3 + 1.9z2 + 1.15z + 0.225

(49)

are positive.

Step 3. The conditions (40) are also met since

c3 = b2 − a2b3 = 1.11 > 0,

c2 = b1 − a1b3 − â31c3 = 3.075 > 0,

c1 = b0 − a0b3 − â20c2 − â30c3 = 4.2625 > 0.

(50)

Step 4. The zeros of the polynomial (48) are z1 = z2 = α1 =
α2 = 0.5, z3 = α3 = 0.1. Using (39a) and (50) we
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obtain

A1 =




0.5 1 0

0 0.5 1

0 0 0.1


 , B1 =




0

0

1


 ,

C1 = [ 4.2625 3.075 1.11 ], D1 = [0.1].
(51)

Step 3. The desired set of realizations is given by

A1 = P




0.5 1 0

0 0.5 1

0 0 0.1


 P−1,

B1 = P




0

0

1


 ,

C1 = [ 4.2625 3.075 1.11 ]P−1,

D1 = D1 = [0.1]

(52)

for any monomial matrix P ∈ ℜ3×3
+ .

Remark 2. If the conditions (31), (40) are met and the condi-

tions (37) are not satisfied then there exists the set of positive

but unstable realizations (38) of the transfer function (11).

Example 2. The transfer function

T (z) =
z3 − z2 + 2z

z3 − 3z2 + 2.25z − 0.5
(53)

satisfies the conditions (32) and (40) since ã2 = 3 > 0,

ã1 = 2.25 > 0, ã0 = 0.5 > 0 and

c3 = b2 − a2b3 = 2 > 0,

c2 = b1 − a1b3 − â31c3 = 1.75 > 0,

c1 = b0 − a0b3 − â20c2 − â30c3 = 0.875 > 0.

(54)

The conditions (37) are not satisfied since

d3(z) = (z + 1)3 − 3(z + 1)2 + 2.25(z + 1) − 0.5

= z3 − 0.75z − 0.25.
(55)

The poles of (53) are z1 = z2 = α1 = α2 = 0.5,

z3 = α3 = 2. Using (39a) and (54) we obtain

A1 =




0.5 1 0

0 0.5 1

0 0 2


 , B1 =




0

0

1


 ,

C1 = [ 0.875 1.75 2 ], D1 = [1].

(56)

and the set of positive but unstable realizations is given by

A1 = P




0.5 1 0

0 0.5 1

0 0 2


P−1, B1 = P




0

0

1


 ,

C1 = [ 0.875 1.75 2 ]P−1, D1 = D1 = [1]
(57)

for any monomial matrix P ∈ ℜ3×3
+ .

4. Systems with complex conjugate poles

In this section the single-input single-output linear discrete-

time system with the proper transfer function (11) having at

least one pair of complex conjugate poles will be considered.

First we shall consider the system with the transfer func-

tion

T (z) =
b3z

3 + b2z
2 + b1z + b0

z3 + a2z2 + a1z + a0

(58)

having one real pole z1 = α and a pair of complex conjugate

poles z2 = α1 + jβ1, z3 = α1 − jβ1, i.e.

d3(z) = (z − α)(z − α1 + jβ1)(z − α1 − jβ1)

= z3 + a2z
2 + a1z + a0,

(59a)

where

a2 = −2α1 − α, a1 = α2
1 + β2

1 + 2αα1,

a0 = −α(α2
1 + β2

1).
(59b)

Lemma 5. Let

A =




a11 a12 a13

a21 a22 a23

a31 a32 a33


 ∈ ℜ3×3

+ (60)

and
d3(z) = det[I3z − A]

=

∣∣∣∣∣∣∣

z − a11 −a12 −a13

−a21 z − a22 −a23

−a31 −a32 z − a33

∣∣∣∣∣∣∣

= z3 + a2z
2 + a1z + a0

(61)

The eigenvalues z1,z2,z3 of the matrix (60) are located in the

open unit circle on the complex plane z if and only if all

coefficients of the polynomial

d3(w) = d3(w + 1) = w3 + a2w
2 + a1w + a0 (62)

are positive, i.e.

a2 = 3 + a2 > 0,

a1 = 3 + 2a2 + a1 > 0,

a0 = a0 + a1 + a2 + 1 > 0.

(63)

Proof. It is well-known [1, 9] that the matrix (60) is asymp-

totically stable (Schur matrix) if and only if the matrix A−I3

is an asymptotically stable Metzler matrix, i.e. A− I3 ∈ M3s

and this matrix is asymptotically stable if and only if all co-

efficients of its characteristic polynomial are positive. Using

(60) and (63) we obtain

d3(w) = d3(w + 1) = det[I3(w + 1) − A]

= (w + 1)3 + a2(w + 1)2 + a1(w + 1) + a0

= w3 + (3 + a2)w
2 + (3 + 2a2 + a1)w + a0

+a1 + a2 + 1 = w3 + a2w
2 + a1w + a0

(64)

and the conditions (63).

Lemma 6. The characteristic polynomial (61) of asymptoti-

cally stable matrix (60) with positive trace, i.e.

trace A = a11 + a22 + a33 > 0, (65)
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has a2 < 0 satisfying the condition

3 + a2 > 0. (66)

Proof. It is well-known that

a2 = −trace A = −(a11 + a22 + a33). (67)

From (65) it follows if (62) holds then a2 < 0. By con-

ditions (63) of Lemma 5 the matrix (60) is asymptotically

stable only if the condition (66) is satisfied.

Remark 3. From (59b) it follows that a2 < 0 if and only if

α > −2α1.

The characteristic polynomial of

A1 =




a11 1 a13

0 a22 a23

1 0 a33


 ∈ ℜ3×3

+ (68)

has the form

det[I3z − A1] =

∣∣∣∣∣∣∣

z − a11 −1 −a13

0 z − a22 −a23

−1 0 z − a33

∣∣∣∣∣∣∣

= z3 + a2z
2 + a1z + a0,

(69)

where
a2 = −(a11 + a22 + a33),

a1 = a11(a22 + a33) + a22a33 − a13,

a0 = −a11a22a33 + a22a13 − a23.

(70)

Knowing a0, a2, a3 and choosing a11, a22, a33 so that

a11 + a22 + a33 = −a2 from (70) we may find

a13 = a11(a22 + a33) + a22a33 − a1,

a23 = −a11a22a33 + a22a13 − a0.
(71)

Theorem 8. There exists the set of positive asymptotically

stable realizations

Ak = PAkP−1 ∈ ℜn×n
+ ,

Bk = PBk ∈ ℜn×1
+ ,

Ck = CkP−1 ∈ ℜ1×n
+ ,

Dk = Dk = [b3] ∈ ℜ1×1
+ , k = 1, 2

(72)

for any monomial matrix P ∈ ℜ3×3
+ and the matrices Ak, Bk,

Ck, Dk having one of the forms

A1 =




a11 1 a13

0 a22 a23

1 0 a33


 ,

B1 =




b1 + (a11 + a22)b2 − [(a11 + a22)a2 + a1]b3

b0 + a22b1 + a2
22b2 − (a0 + a2

22a2 + a22a1)b3

b2 − a2b3


 ,

C1 = [ 0 0 1 ], D1 = [b3]

(73a)

or

A2 = AT
1 , B2 = CT

1 , C2 = BT
1 , D2 = D1 (73b)

of the transfer function (58) if and only if

a2
2 − 3a1 > 0, 2a3

2 − 9a1a2 − 27a0 > 0, (74a)

a2 < 0, 3 + a2 > 0, 3 + 2a2 + a1 > 0,

a0 + a1 + a2 + 1 > 0
(74b)

and

b1 + (a11 + a22)b2 − [(a11 + a22)a2 + a1]b3 ≥ 0,

b0 + a22b1 + a2
22b2 − (a0 + a2

22a2 + a22a1)b3 ≥ 0,

b2 − a2b3 ≥ 0.

(75)

Proof. By Lemma 5 and 5 the matrix A1 corresponding to

the denominator (61) of (58) is asymptotically stable if and

only if the conditions (74b) are met. It is well-known [7] that

the function a11(a22 +a33)+a22a33 for a11 +a22 +a33 = a2

reach its maximal values for

a11 = a22 = a33 =
a2

3
.

From (71) we obtain

a13 = 3
(a2

3

)2

− a1 ≥ 0 or a2
2 − 3a1 > 0.

Similarly

a23 = −
(a2

3

)3

+
(a2

3

)(
a2
2

3
− a1

)
− a0

= 2
(a2

3

)3

−
a1a2

3
− a0 ≥ 0

or 2a3
2 − 9a1a2 − 27a0 > 0.

Therefore, there exist a13 > 0 and a23 > 0 if and only if the

conditions (74a) are satisfied. The matrix

D1 = lim
z→∞

T (z) = [b3] ∈ ℜ1×1
+ (76)

if and only if b3 ≥ 0. The strictly proper transfer function

has the form

Tsp(z) = T (z)− D1 =
b2z

2 + b1z + b0

z3 + a2z2 + a1z + a0

(77a)

where

b2 = b2 − a2b3, b1 = b1 − a1b3, b0 = b0 − a0b3. (77b)

Assuming C1 = [ 0 0 1 ] we obtain

Tsp(z) = C1[I3z − A1]
−1B1

= [ 0 0 1 ]




z − a11 −1 −a13

0 z − a22 −a23

−1 0 z − a33




−1 


b11

b12

b13




=
[ z − a22 1 z2 − (a11 + a22)z + a11a22 ]

z3 + a2z2 + a1z + a0




b11

b12

b13




=
b13z

2 + [b11 − (a11 + a22)b13]z + b12 − a22b11 + a11a22b13

z3 + a2z2 + a1z + a0

.

(78)
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Comparison of (77a) and (78) yields

b13 = b2 = b2 − a2b3,

b11 = b1 + (a11 + a22)b13

= b1 + (a11 + a22)b2 − [a2(a11 + a22) + a1]b3,

b12 = b0 + a22b11 − a11a22b13 = b0 + a22b1

+a2
22b2 − (a0 + a2

22a2 + a22a1)b3.

(79)

From (73a) it follows that B1 ∈ ℜ3×1
+ if and only if the con-

ditions (75) are met. The proof for (73b) follows immediately

from the equality (45). By Lemma 2 the matrices (72) are

a positive asymptotically stable realization for any monomial

matrix P ∈ ℜ3×3
+ of (48) if and only if the matrices (73) are

its positive asymptotically stable realization.

Remark 4. If |a0| + |a1| + |a2| < 1 then the matrix A1 is

asymptotically stable and the conditions (74b) are met.

From considerations we have the following procedure for

computation of the set of positive asymptotically stable real-

izations (72) for the transfer function (58).

Procedure 2.

Step 1. Check the conditions (74) and (75). If the conditions

are met, go to Step 2, if not then does not exist the

set of realizations (72) of (58).

Step 2. Using (71) and (73a) compute a13, a23 and the ma-

trices A1, B1, C1, D1.

Step 3. Using (72) compute the desired set of realizations.

Example 3. Compute the set of positive asymptotically table

realizations of the transfer function

T (z) =
4z3 − z2 + 2z − 0.1

z3 − 0.4z2 − 0.03z − 0.232
. (80)

Using Procedure 2 we obtain the following.

Step 1. The transfer function (80) satisfies the conditions (64)

and (65) since

a2
2 − 3a1 = 0.25 > 0,

2a3
2 − 9a1a2 − 27a0 = 6.028 > 0,

(81a)

a2 = −0.4 < 0,

3 + a2 = 2.6 > 0,

3 + 2a2 + a1 = 2.17 > 0,

a0 + a1 + a2 + 1 = 0.338 > 0

(81b)

and

b2 − a2b3 = 0.6 > 0,

b1 + (a11 + a22)b2

−[a2(a11 + a22) + a1]b3 = 2.24 > 0,

b0 + a22b1 + a2
22b2

−(a0 + a2
22a2 + a22a1)b3 = 1.022 > 0.

(81c)

Step 2. Using (68) and (77) we obtain

a11 = a22 = 0.1, a33 = 0.2,

a13 = 0.08, a23 = 0.238,

A1 =




0.1 1 0.8

0 0.1 0.238

1 0 0.2


 ,

B1 =




2.24

1.022

0.6


 ,

CT
1 =




0

0

1


 , D1 = [4].

(82)

Step 3. Using (68) and (78) we obtain the desired set of re-

alizations

A1 = PA1P
−1, B1 = PB1,

C1 = C1P
−1, D1 = D1

(83)

for any monomial matrix P ∈ ℜ3×3
+ .

Note that the set of realizations (83) depends on three ar-

bitrary parameters which are the entries of the matrix P . The

set of realizations depends on five parameters if we choose

a11 = p1, a22 = p2, a33 = a2 – p1 – p2. In this case using

(71) we obtain

a13 = p1(a2 − p1) + p2(a2 − p1 − p2) − a1,

a23 = −(a2 − p1 − p2)p1p2 + p2[p1(a2 − p1)

+p2(a2 − p1 − p2) − a1] − a0

(84)

and the matrices A1, B1, C1, D1 have the forms

A1 =




p1 1 a13

0 p2 a23

1 0 a2 − p1 − p2


 ,

B1 =




b1 + (p1 + p2)b2 − [a2(p1 + p2) + a1]b3

b0 + p2b1 + p2
2b2 − (a0 + a2p

2
2 + a1p2)b3

b2 − a2b3


 ,

C1 = [ 0 0 1 ], D1 = [b3]
(85)

where 0 < a2 − p1 − p2 < a2.

Remark 5. The matrix A1 in Theorem 8 can be replaced by

the matrices

A3 =




p1 0 1

a21 p2 0

a31 1 a2 − p1 − p2


 ,

A4 =




p1 a12 0

0 p2 1

1 a32 a2 − p1 − p2




(86)
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and the matrix A2 by AT
3 , AT

4 . For A3 the matrices B3, C3

have the forms

B3 =




b2 − a2b3

b0 + p1b1 + p2
1b2 + (a1p1 − a0 − p2

1a2)b3

b1 − (p1 + p2)b2 + [(p1 + p2)a2 − a1]b3


 ,

C3 = [ 1 0 0 ]
(87)

and the A4 the matrices B4, C4 have the forms

B4 =




b0 + (p1 + p2 − a2)b1 + [(p1 + p2)
2 − a2

2]b2

+(p1 + p2 − a2)[a
2
2 − a1 − a2(p1 + p2)]b3

b2 − a2b3

b1 + (p1 + a2)b2 + (a2
2 − a2p1 − a1)b3


 ,

C4 = [ 0 1 0 ].
(88)

5. General case of SISO systems

In general case it is assumed that the transfer function (11)

has at least one pair of complex conjugate poles.

Theorem 9. There exists the set of positive asymptotically

stable realizations

Ak = PAkP−1 ∈ ℜn×n
+ , Bk = PBk ∈ ℜn×1

+ ,

Ck = CkP−1 ∈ ℜ1×n
+ , Dk = Dk ∈ ℜ1×1

+

(89)

for any monomial matrix P ∈ ℜn×n
+ and Ak, Bk, Ck , Dk

having one of the forms

A1 =




p1 1 0 ... 0 a1,n

0 p2 1 ... 0 a2,n

0 0 p3 ... 0 a3,n

...
...

... ...
...

...

0 0 0 ... 1 an−2,n

0 0 0 ... pn−1 an−1,n

1 0 0 ... 0 an−1 − p1 − ... − pn−1




,

B1 =




bn−1 − an−1bn

bn−2 − an−2bn − ân−1,n−2b1,n

...

b0 − a0bn − ân,0b1,n − â10b11 − ... − ân−2,0b1,n−2




,

CT
1 = [ 0 ... 0 1 ], D1 = [bn]

(90a)

where 0 < p1 + p2 + . . . + pn−1 < −an−1 or

A2 = AT
1 , B2 = CT

1 , C2 = BT
1 , D2 = D1 (90b)

and

a1,n = −p1(an−1 + p1) − p2(an−1 + p1 + p2)

−... − pn−1(an−1 + p1 + ... + pn−1) − an−2,

...

an−1,n = p1...pn−1(an−1 + p1 + ... + pn−1)

−â10a1,n − ... − ân−2,0an−2,n

(91)

of the transfer function (11) if and only if the coefficients of

its denominator

dn(z) = zn + an−1z
n−1 + ... + a1z + a0 (92)

satisfies the conditions

n + an−1 > 0, ..., a0 + a1 + ... + an−1 + 1 > 0 (93a)

Cn
2

(an−1

n

)2

− an−2 ≥ 0,

Cn
3

(an−1

n

)3

−

[
Cn

2

(an−1

n

)2

− an−2

]

·Cn−2

1

(an−1

n

)
− an−3 ≥ 0,

...

Cn
n

(an−1

n

)n

−

[
Cn

2

(an−1

n

)2

− an−2

]

·Cn−2
1

(an−1

n

)n−2

− ... − C1
1

(an−1

n

)
− a0 ≥ 0

Cn
k =

n!

k!(n − k)!

(93b)

and

bn−1 − an−1bn ≥ 0,

bn−2 − an−2bn − ân−1,n−2b1,n ≥ 0,

...

b0 − a0bn − ân,0b1,n − â10b11 − ... − ân−2,0b1,n−2 ≥ 0,
(94a)

where

â1,n−3 = −(a22 + a33 + ... + an−1,n−1), ..., â10

= (−1)n−2a22a33...an−1,n−1,

â2,n−4 = −(a33 + a44 + ... + an−1,n−1), ..., â20

= (−1)n−3a33a44...an−1,n−1,

...

ân,n−2 = −(a11 + a22 + ... + an−1,n−1), ..., ân,0

= (−1)n−1a11a22...an−1,n−1.

(94b)

Proof. The matrix Ak ∈ ℜn×n
+ corresponding to the denomi-

nator (46) is asymptotically stable if and only if all coefficients

of the polynomial

dn(w) = dn(w + 1) = det[In(w + 1) − A1]

= (w + 1)n + an−1(w + 1)n−1 + ... + a1(w + 1) + a0

= wn + an−1w
n−1 + ... + a1w + a0

(95)

are positive, i.e. (93a) holds. The characteristic polynomial of

A1 has the form

Bull. Pol. Ac.: Tech. 60(3) 2012 613



T. Kaczorek

det[Inz − A1] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z − a11 −1 0 ... 0 −a1,n

0 z − a22 −1 ... 0 −a2,n

0 0 z − a33 ... 0 −a3,n

...
...

... ...
...

...

0 0 0 ... −1 −an−2,n

0 0 0 ... z − an−1,n−1 −an−1,n

−1 0 0 ... 0 z − an,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (z − a11)(z − a22)...(z − an,n) + (−1)n+2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 0 ... 0 −a1,n

z − a22 −1 ... 0 −a2,n

0 z − a33 ... 0 −a3,n

...
...

...
...

...

0 0 ... −1 −an−2,n

0 0 ... z − an−1,n−1 −an−1,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (z − a11)(z − a22)...(z − an,n) − a1,n(z − a22)(z − a33)...(z − an−1,n−1)

−a2,n(z − a33)(z − a44)...(z − an−1,n−1) − ... − an−2,n(z − an−1,n−1) − an−1,n

= zn + an−1z
n−1 + ... + a1z + a0,

(96a)

where

an−1 = −(a11 + a22 + ... + an,n),

an−2 = a11(a22 + a33 + ... + an,n)

+a22(a33 + a44 + ... + an,n) + ...

+an−2,n−2(an−1,n−1 + an,n)

+an−1,n−1an,n − a1,n,

...

a1 = (−1)n−1a11a22a33...an−1,n−1

+(−1)n−1a11a22...an−2,n−2an,n

+(−1)n−1a22a33...an,n

−a1,n((−1)n−2a22a33...an−2,n−2 + ...

+(−1)n−3a33a44...an−1,n−1)

−a2,n((−1)n−4a33a44...an−2,n−2

+... + (−1)n−4a44a55...an−1,n−1)

+... + an−3,nan−2,n−2 + an−2,n,

a0 = (−1)n−1a11a22...an,n

−(−1)n−2a1,na22...an−1,n−1

−(−1)n−3a2,na33...an−1,n−1

+an−2,nan−1,n−1 − an−1,n.

(96b)

From (96b) we have

a1,n = a11(a22 + a33 + ... + an,n)

+a22(a33 + a44 + ... + an,n) + ...

+an−2,n−2(an−1,n−1 + an,n)

+an−1,n−1an,n − an−2 ≥ 0,

...

an−2,n = a11a22a33...an−1,n−1

+a11a22...an−2,n−2an,n

+a22a33...an,n − a1,n(a22a33...an−2,n−2

+... + a33a44...an−1,n−1)

−a2,n(a33a44...an−2,n−2 + ...

+a44a55...an−1,n−1) − ...

−an−3,nan−2,n−2 − a1 ≥ 0,

an−1,n = a11a22...an,n

−a1,na22...an−1,n−1 − a2,na33...an−1,n−1

−an−2,nan−1,n−1 − a0 ≥ 0.

(97)

The functions a11(a22+a33+...+an,n)+a22(a33+a44+...+
an,n) + ... + an−2,n−2(an−1,n−1 + an,n), . . . , a11a22...an,n

for a11 +a22 + ...+an,n = an−1 (given) reach their maximal

values if [7]

614 Bull. Pol. Ac.: Tech. 60(3) 2012



Positive stable realizations of discrete-time linear systems

a11 = a22 = ... = an,n =
an−1

n
. (98)

Substitution of (98) into (97) yields

a1,n = Cn
2

(an−1

n

)2

− an−2 ≥ 0,

a2,n = Cn
3

(an−1

n

)3

−

[
Cn

2

(an−1

n

)2

− an−2

]

·Cn−2

1

(an−1

n

)
− an−3 ≥ 0,

...

an−1,n = Cn
n

(an−1

n

)n

−

[
Cn

2

(an−1

n

)2

− an−2

]

·Cn−2

1

(an−1

n

)n−2

− ... − C1
1

(an−1

n

)
− a0 ≥ 0.

(99)

The conditions (99) are equivalent to the conditions (93b).

The matrix

D1 = lim
z→∞

T (z) = [bn] ∈ ℜ1×1
+ (100)

if and only if bn ≥ 0. The strictly proper transfer function

has the form

Tsp(z) = T (z) − D1 =
bn−1z

n−1 + ... + b1z + b0

zn + an−1zn−1 + ... + a1z + a0

,

(101a)

where

bk = bk − akbn for k = 1, 2, . . . , n − 1. (101b)

Assuming C1 = [ 0 ... 0 1 ] ∈ ℜ1×n
+ we obtain

Tsp(z) = C1[Inz − A1]
−1B1

= [ 0 ... 0 1 ]




z − a11 −1 0 ... 0 −a1,n

0 z − a22 −1 ... 0 −a2,n

0 0 z − a33 ... 0 −a3,n

...
...

... ...
...

...

0 0 0 ... −1 −an−2,n

0 0 0 ... z − an−1,n−1 −an−1,n

−1 0 0 ... 0 z − an,n




−1




b11

...

b1,n−1

b1,n




=
[ p1(z) ... pn(z) ]

dn(z)




b11

...

b1,n−1

b1,n




=
p1(z)b11 + p2(z)b12 + ... + pn(z)b1,n

dn(z)

(102a)

where
p1(z) = (z − a22)(z − a33)...(z − an−1,n−1) = zn−2 + â1,n−3z

n−3 + ... + â11z + â10,

p2(z) = (z − a33)(z − a44)...(z − an−1,n−1) = zn−3 + â2,n−4z
n−4 + ... + â21z + â20,

...

pn−1(z) = 1,

pn(z) = (z − a11)(z − a22)...(z − an−1,n−1) = zn−1 + ân,n−2z
n−2 + ... + ân,1z + ân,0,

(102b)

â1,n−3 = −(a22 + a33 + ... + an−1,n−1), ..., â10 = (−1)n−2a22a33...an−1,n−1,

â2,n−4 = −(a33 + a44 + ... + an−1,n−1), ..., â20 = (−1)n−3a33a44...an−1,n−1,

...

ân,n−2 = −(a11 + a22 + ... + an−1,n−1), ..., ân,0 = (−1)n−1a11a22...an−1,n−1.

(102c)

Bull. Pol. Ac.: Tech. 60(3) 2012 615



T. Kaczorek

From comparison of (101a) and (102a) we have

b1,n = bn−1 = bn−1 − an−1bn,

b1,n−1 = bn−2 − ân−1,n−2b1,n

= bn−2 − an−2bn − ân−1,n−2b1,n,

...

b1,1 = b0 − a0bn − ân,0b1,n

−â10b11 − ... − ân−2,0b1,n−2.

(103)

From (103) it follows that B1 ∈ ℜn×1
+ if and only if the

conditions (94a) are met. The proof for (94b) follows immedi-

ately from (45). By Lemma 2 the matrices (89) are a positive

asymptotically stable realization of (3.1) for any monomial

matrix P ∈ ℜn×n
+ if and only if the matrices (90) are its

positive asymptotically stable realization.

6. Concluding remarks

The problem of existence and computation of the set of pos-

itive asymptotically stable realizations of a proper transfer

function of linear discrete-time systems has been formulated

and solved. Necessary and sufficient conditions for existence

of the set of realizations have been established (Theorems 4–

9). The procedure for computation of the set of realizations

for transfer functions with only real negative poles and with at

least one pair of complex conjugate poles have been proposed

(Procedures 1 and 2). The effectiveness of the procedures

have been demonstrated on numerical examples. The present-

ed methods can be extended to positive asymptotically sta-

ble discrete-time linear systems and also to multi-input multi-

output continuous-time and discrete-time linear systems. An

open problem is an existence of these considerations to frac-

tional linear systems [5].
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