
BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 60, No. 3, 2012
DOI: 10.2478/v10175-012-0068-8

SELECTED PROBLEMS OF ROBOT CONTROL

Control of a unicycle-like robot with trailers using transverse

function approach

D. PAZDERSKI∗ , K. KOZŁOWSKI, and D.K. WAŚKOWICZ

Poznań University of Technology, Chair of Control and Systems Engineering, 3a Piotrowo St., 60-965 Poznań, Poland

Abstract. The paper presents the application of a smooth kinematic algorithm to control multi-body vehicle which consists of the unicycle-
like tractor with three trailers. The controller takes advantage of the transverse functions and properties of the IV-order two input chained
system. The derivation of the algorithm is presented in details. In order to improve the performance of the controller in the real application
a selected tuning techniques are discussed. The properties of the closed-loop control system are examined based on results of numerical
simulations concerning the point stabilization and trajectory tracking tasks.
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1. Introduction

Nonholonomic systems are of great importance in many ap-
plications taking into account that most means of transport
are subject to nonintegrable velocity constraints. Well-known
examples of these systems include the wheeled vehicles with
kinematic structure designed for planar motion without slip
between the wheels and the surface. Referring to [1] only a
few fundamental kinematics satisfying pure rolling and non
slipping assumptions can be distinguished. The most popular
vehicles are based on two-wheeled differential (unicycle-like)
or car-like platforms. More complex systems employ an ac-
tive vehicle (tractor) pulling a set of coupled passive segments
(trailers). Their mechanical configuration consists of the po-
sition and orientation of a selected segment as well as the
internal variables describing kinematics of the chain. Each
segment can be mounted to the previous one centrically (on-
axle mount) or eccentrically (off-axle mount) with respect to
the wheels axle [2].

Vehicles with trailers are known to be complicated and
highly dimensional systems with significant deficiency of con-
trol inputs [3]. Basically, control of these systems is a chal-
lenging problem as a result of Brockett’s obstruction [4] and
highly nonlinear kinematics. Moreover, these systems are usu-
ally not regular, namely their nonholonomy degree is not con-
stant [5], that makes the control properties strictly dependent
on the desired configuration. They cannot be defined on a
Lie group that complicates the controller design even more
[6]. One method to overcome this difficulty, considered by
Sørdalen [7] with respect to a vehicle with on-axle trailers, is
based on coordinate and input transformations to other equiv-
alent control systems with a simpler structure (typically two-
input chained system). Another approach proposed by Lau-
mond and Venditelli et. al. [5, 8] relies on nilpotent approxi-
mations [9] and also can be used with respect to trailers with

off-axle hitching [3]. In some applications one can simplify
the control solution considering the stabilization or conver-
gence problem with respect to a subset of the system coordi-
nates (for example by defining control error only with respect
to the position and orientation of the selected trailer) [10].

This paper is focused on an alternative idea of stabilization
of nonholonomic systems formulated by Morin and Samson
that is based on so-called transverse functions [11]. It can
be stated that these functions define some kind of trajectory
in the configuration space such that its derivative along with
vector fields of the control system span the tangent space. The
time-evolution of the transverse functions are governed by an
augmented dynamics and it is strictly dependent on the track-
ing error. This approach has been effectively used to control
invariant (defined on Lie group) system for which global sta-
bilization result can be guaranteed. It is a universal approach
that ensures practical (in some cases asymptotic) stabilization
with respect to the regulation and trajectory tracking prob-
lems. Recently, the controller based on the transverse func-
tions has been adapted by Morin and Samson to some class
of non invariant systems including a car-like kinematics and
a unicycle with N-on-axle trailers [6, 12].

In this paper we consider the application of the controller
using the transverse functions to three on-axle trailers pulled
by a unicycle-like mobile robot. In comparison to [6] more
classic solution is considered, namely the derivation of the
controller is based on the transformation of the considered
kinematics to the 6D (IV-order) two input chained system
which is defined on a Lie group. According to the authors’
best knowledge no results which illustrate performance of the
controller based on the transverse functions applied for a such
complex vehicle have been reported so far. Accordingly, al-
though in [6] theory has been formulated with respect to gen-
eral N-trailers system presentation of the simulation results
has been limited to a two-trailers system only.
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In order to make the presentation clearer the derivation
of the controller and specific calculations are given in details.
The main contribution of the paper is related to application of
optimal control and some tuning methods in order to improve
controller performance during transient states and to increase
accuracy in the steady-state. The results of numerical simu-
lation illustrate advantage of the considered control scheme
assuming presence of input saturation.

The paper is organized as follows. In Sec. 2 a brief
overview of the control algorithm is outlined. Next section
is focused on formal description of the kinematic chain of the
unicycle-like vehicle with on-axis trailers taking into account
Lie group structure. Section 4 is dedicated to the design of the
controller. The transformation of the considered kinematics to
the chained form is discussed taking into account local nature
of the coordinate map. Next, derivation of the transverse func-
tion is shown and different control schemes are developed in-
cluding optimal or suboptimal approach. Finally, possibility of
the controller tuning is discussed. In Sec. 5 results of numeri-
cal simulations are given in order to illustrate advantages and
disadvantages of the controller. Section 6 concludes the paper.

2. Overview of the control approach

The algorithm presented in this paper solves a fundamental
motion control task of making the particular multi-segment
wheeled vehicle track a reference trajectory defined in the
configuration space. The control solution is based on formal
methods and has its roots in the differential geometry and
Lie group theory. It is defined at kinematic level assuming
that velocity signals are the real inputs of the vehicle. Such a
simplification can be justified because the control at dynam-
ic level for the particular system is not challenging from a
theoretical point of view.

In can be noted that the derivation and the controller struc-
ture are quite complex. Hereafter, we give a brief overview of
different steps of the design procedure.

The first step is devoted to the analysis of the vehicle kine-
matics. In the considered case the kinematics can be described
by a two-input highly nonlinear control system with noninte-
grable velocity constraints. The properties of its control Lie
algebra indicate that it is locally small-time controllable in
spite of the existence of some singular points at which the
structure of the algebra is changed. However, it can be shown
that the singular configurations are not an issue for typical mo-
tion tasks defined for such a vehicle. As a result the motion of
the system can be considered in the restricted configuration set
assuming that the magnitudes of angles determined between
each adjoint segments are less that π/2. Hence, the control
solution may be defined in the domain where the particular
structure of the control Lie algebra is preserved.

Although the control paradigm considered in the paper
can be applied to any smooth kinematic system satisfying the
Lie Algebra Rank Condition the most efficient and global re-
sults can be obtained for an invariant system. The existence
of a Lie group is essential since it gives a possibility to trans-
late the solution defined at the particular point to any point in

the configuration space and to define conveniently a control
error. Since the considered system does not satisfy invariant
property the design of the controller is more complicated. In
order to facilitate the design, one can notice that the descrip-
tion of motion of the last trailer can take advantage on Special
Euclidean Lie group SE(2). Consequently a tracking error, de-
scribing the position and orientation of the trailer with respect
to the reference target, based on intrinsic symmetry on a plane
can be considered.

Next, we define the error kinematics defined on SE(2)
group and transform it to a system with a drift which is simi-
lar to the IV-order chained system, which can be fully defined
on a Lie group. Since the error kinematics does not describe
the time-evolution of the internal configuration error (namely
defined with respect to the angles between the segments of the
vehicle) the reference internal variables are transformed ad-
ditionally. Then using the group operation a new transformed
tracking error is defined that reflects original tracking error
defined for the whole vehicle.

As a result, the controller can be defined directly in the
auxiliary space using Lie group theory. In order to do that the
transverse function should be defined. It is calculated consid-
ering the control Lie algebra of the IV-order (6D) chained
system and consists of four fundamental functions with deriv-
atives responsible for generating the directions determined by
the higher order Lie brackets of the algebra. These derivatives,
in a sense, substitute the missing fundamental vector fields of
the controlled system (this property is related to the transver-
sality condition). It is worth to emphasize that the selection
of a transverse function is not unique. In particular, one has
to chose a proper parameters of the function to guarantee the
transversality condition. In order to scale the transverse func-
tion, namely to adjust its norm, one unique parameter can be
chosen.

The transverse function can be considered as some kind
of trajectory evolving in the neighborhood of neutral element
of the group. Its basic form is characterized by the non ze-
ro norm, namely the function never degenerates to the neutral
element. Additionally, we take into account an extended trans-
verse function that may satisfy transversality condition even
if its norm is zero at some time instants.

Having calculated a transverse function one can define
an auxiliary signal which describes the error calculated be-
tween it and the transformed tracking error. This signal is
obtained taking advantage of the group operation. The aim
of the controller is to make the auxiliary error converge to
neutral element of the group and to ensure stabilization at
this point. Then the transformed tracking error tends to the
neighborhood of the neutral element. The similar statement
can be made with respect to the tracking error defined for the
original system. In the case of the extended transverse func-
tion it is even possible to ensure the asymptotic convergence
(however, only for some particular reference trajectories).

The controller calculates an extended input which consists
of the real and virtual signals. The latter define frequency-
like signals which govern the time-evolution of the transverse
function. The advantage of this approach is the possibility
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to fully decouple the auxiliary closed-loop dynamics. On the
other hand, it can be seen as an approximate decoupling of
the original system with an accuracy determined by the norm
of the transverse function. These properties give many possi-
bilities of the control loop design, similarly as it can be done
with respect to linear systems. Apart from the most classi-
cal solutions using constant gains one can consider optimal
control schemes. Then one can improve the performance of
the controller during transient states by limiting instantaneous
control effort.

It is worth to emphasize that the controller considered in
this paper is designed for highly dimensional nonholonomic
system. Therefore its tuning is a difficult task. The tuning pro-
cedures can take into account a proper selection of parameters
of the transverse function (it is quite complicated and is gen-
erally supported by numerical methods) and the development
of methods for a suitable scaling of the function in order to
limit oscillatory behavior. Moreover, in practice careful design
with respect to input saturation as well as numerical stability
of the algorithm should be taken into account.

At the end of this section we make a comment concern-
ing the notation used in the paper. Element of a Lie group are
represented simultaneously in two ways. The first one refers
to their representation at abstract generic level and the second
one to n-dimensional vectors in R

n. Therefore operations and
measures defined in R

n space can be used with respect to
Lie group elements as well. In particular we use Euclidean
norm denoted by ‖ · ‖ which acts on considered Lie groups
elements.

3. Model description

3.1. Kinematics of N on-axle trailers. Let us consider pla-
nar motion of N on-axle trailers driven by a unicycle-like
tractor. The mechanical coordinates of the vehicle can be de-
fined by

q :=
[

x y θ ϕ1 . . . ϕN

]⊤

∈ Q := R
2 × T

N+1, (1)

where x, y and θ denote the position of the last trailer and its
orientation determined with respect to the inertial frame, re-
spectively, while ϕ1, . . . ϕN ∈ S

1 refer to the internal config-
uration describing orientation of each segment of the vehicle
with respect to the previous one (cf. geometrical interpretation
of the coordinates given in Fig. 1 for N = 3).

The distances between the origins of the adjacent local frames
fixed to each segment (trailer or tractor) are denoted by
li, i = 0, 1, . . . , N . It is assumed that the control input
of the system corresponds to the linear, v1, and angular,
v2, velocity of the unicycle-like tractor and it is defined by
v := [v1 v2]

⊤
∈ R

2. Then the kinematics of the vehicle can
be described by the following affine driftless control system
(cf. [5, 7])

Σ :=


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v2,

(2)
where abbreviations Cϕ and Sϕ denote sine and cosine of
variable symbolϕ ∈ ℜ, respectively, while symbol

∏
de-

scribes a product operator defined as follows

n∏

k=n

ak =

{

for n ≤ n an · an+1 · . . . · an−1 · an

otherwise 1
, (3)

with n and n being some positive integers, while ak denoting
some scalar function (or coefficient).

It can be proved that system Σ satisfies the Lie Alge-
bra Rank Condition (LARC), hence it is locally small-time
controllable for any q ∈ Q. However, for N = 2, 3, . . . non-
holonomy degree (dNH) of the system, namely the minimum
number of layers in the Lie algebra filtration which is neces-
sary to satisfy LARC, is not constant for any q ∈ Q (one can
say that the system is not regular). To be more precise, refer-
ring to [5, 8] one can introduce a set of singular configurations
Qs := {q ∈ Q : ∃j = 2, . . . , N ϕj = ± (2k + 1)π/2}. Then
it can be shown that

Fig. 1. Illustration of three on-axle trailers driven by one unicycle-like tractor
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dNH=







for N = 1 and ∀q ∈ Q 3

for N = 2, 3, . . . and ∀q ∈ Q \ Qs N + 2

for N = 2, 3, . . . and ∀q ∈ Qs M > N + 2

.

(4)

The increase of nonholonomy at points q ∈ Qs indicates
that control of the system at some neighborhood of these
points becomes more challenging. However, in practice, it
is very rare to meet a singular configuration for the consid-
ered kinematics as a result of mechanical internal structure
limitation. Typically in order to prevent a collision between

the vehicle’s segments it is uncommonly to get |ϕk| >
π

2
(k = 1, 2, . . .). Hence, it is reasonable to assume that system
Σ evolves only in the restricted configuration set defined by

Q := R
2 × S

1 ×
(

−
π

2
,
π

2

)N

.

Following this assumption, one can consider a simpler
control system which is equivalent to Σ in the domain q ∈ Q.
Referring to [6] and defining the following local coordinate
and input transformations

ψ = Ψ (ϕ) , (5)

η = T (ϕ) v, (6)

where ψ ∈ R
N and

ϕ ∈
(

−
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2
,
π

2

)N

, Ψ :
(

−
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2
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π

2

)N

→ R
N

and
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(
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2
,
π

2

)N

→ R
2×2

are smooth maps, one can get
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η2, (7)

with q := [x y θ ψ1 . . . ψN ]⊤ ∈ R
2 × S

1 × R
N being trans-

formed configuration. It is guaranteed that this system is reg-
ular (dNH = N + 2 = const) in the whole configuration
domain.

Although theoretical background and methods used in this
paper can be applied for system Σ with N = 1, 2, . . . and
q ∈ Q the later detailed considerations are focused on the
vehicle with three trailers, namely it is assumed that N = 3.
In order to facilitate the description system (7) is rewritten as
follows

q̇ =


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
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

η2. (8)

Then the transformations (5) and (6) are given by

Ψ (ϕ) =












tanϕ1

l0

l0 tanϕ2 − l1 sinϕ1

l20l1 cos3 ϕ1

(l0 tanϕ2 − l1 sinϕ1) (3 tanϕ1 (l0 tanϕ2 − l1 sinϕ1) − l1 cosϕ1)

l30l
2
1 cos4 ϕ1

+
l1 tanϕ3 − l2 sinϕ2

l0l21l2 cos4 ϕ1 cos3 ϕ2












(9)

and

T (ϕ) =







cosϕ1 cosϕ2 cosϕ3 0

(
∂ψ3

∂ϕ1

(
tanϕ2

l1
−

sinϕ1

l0

)

cosϕ2 +
∂ψ3

∂ϕ2

(
tanϕ3

l2
−

sinϕ2

l1

)

−
∂ψ3

∂ϕ3

tanϕ3

l2

)

cosϕ3
∂ψ3

∂ϕ3






. (10)

In addition, referring to (9) one can obtain the following inverse coordinate map

ϕ=Ψ−1 (ψ)=









arctan (l0ψ1)

arctan
(
l1κ (l0ψ1)ψ1+l20l1κ

3 (l0ψ1)ψ2

)

arctan

((

ψ3−
(l0γ2−l1κ (γ1) γ1) (3γ1 (l0γ2−l1κ (γ1) γ1)−l1κ (γ1))

l30l
2
1κ

4 (γ1)

)

l0l1l2κ
4 (γ1) κ

3 (γ2)+
l2
l1
κ (γ2) γ2

)









(11)
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with γ1 (ψ1) = l0ψ1, γ2 (ψ1, ψ2) = l1κ (γ1)ψ1 +
l20l1κ

3 (γ1)ψ2 and κ (γ) := cos (arctanγ) =
1

√

1 + γ2
, (R → (0, 1]). It can be proved that the coordi-

nate and input maps are well defined in the assumed domain.
Hence, for any bounded ψi ∈ R it is guaranteed that variables

ϕj ∈
(

−
π

2
,
π

2

)

for i, j = 1, 2, 3.

3.2. Kinematics description based on Lie group theory.

Recalls of Lie group and Lie algebra. Consider a Lie group
G with the operation ◦ and neutral element e. Assuming that
σ1 and σ2 are elements of the Lie group (σ1, σ2 ∈ G) we de-
fine left and right translations denoted by lσ1

(σ2) := σ1 ◦ σ2

and rσ1
(σ2) := σ2 ◦ σ1, respectively. For any σ ∈ G an

inverse element σ−1 satisfies: σ ◦ σ−1 = σ−1 ◦ σ = e.
In order to specify a tangent map the following dif-

ferential operators related to the left and right translations

can be taken into account: dlσ1
(σ2) :=

∂

∂σ2
lσ1

(σ2) and

drσ1
(σ2) :=

∂

∂σ2
rσ1

(σ2).

For any Lie group G associated Lie algebra g can be con-
sidered. In this case the algebra is the set of left-invariant
vector fields Xi which satisfy

dlσ1
(σ2)Xi (σ2) = Xi (σ1 ◦ σ2) . (12)

From relationship (12) it follows that any left-invariant vec-
tor field can be transformed via push operator in the same
way as evaluating it at the given point using left transla-
tion. The Lie algebra g basis consists of independent vector
fields X1, X2, . . . , Xn and in the given coordinates it can be
described using matrix notation by X = [X1 X2 . . . Xn],
where n = dimG is dimension of the manifold G.

The other important differential operator is the adjoint op-
erator Ad : G× g → g which is given by

Ad (σ) ζ := dlσ
(
σ−1

)
drσ−1 (e) ζ = drσ−1 (σ) dlσ (e) ζ,

(13)
where ζ ∈ g. Additionally, to shorten the notation the adjoint
operator expressed in the algebra basis X is introduced

AdX (σ) := X (e)
−1
Ad (σ)X (e) . (14)

In this paper we also take advantage of the following relation-
ships (cf. [12]):

(dlσ1
(σ2))

−1
= dlσ−1

1

(σ1 ◦ σ2) , (15)

(drσ1
(σ2))

−1 = drσ−1

1

(σ2 ◦ σ1) , (16)

drσ1◦σ2
(σ3) = drσ2

(σ3 ◦ σ1) drσ1
(σ3) . (17)

Next, consider a general m-input control affine driftless
system

ḣ =

m∑

i=1

Xi (h)ui, (18)

where h is the state, Xi denotes ith vector field (i =
1, 2, . . . ,m) and ui is the control input. In some cases the

system can be described on a Lie group. This possibility is in
part related to the following lemma.

Lemma 1. Consider a control Lie algebra generated by ba-
sic vector fields of the driftless system given by (18). If this
algebra is infinite dimensional system (18) cannot be defined
on a Lie group.

Proof 1. Assume that the dimension of the control Lie al-
gebra of system (18) is infinite (the dimension is calculated
over R). Next, by contradiction assume that there exists some
finite-dimensional Lie group G which is associated with the
given Lie algebra. It implies that h ∈ G and there exists
some group operation ◦ such that the vector fields Xi sat-
isfy the left-invariance property, namely dlh1

(h2)Xi (h2) =
Xi (h1 ◦ h2).

Taking into account that any Lie bracket of left-invariant
vector fields is also left-invariant it follows that any vector
field which belongs to the control Lie algebra is also left-
invariant. Since it is assumed that the control Lie algebra is
infinite dimensional over R, there is infinite number of higher
order vector fields which cannot be expressed as linear com-
bination of lower dimensional vector fields. It follows that
there is infinite number of left-invariant vector fields. Howev-
er, for any finite dimensional Lie group from definition one
can conclude that number of left-invariant vector fields is fi-
nite. It gives contradiction and shows that any Lie algebra
of finite dimensional Lie group cannot be infinite. As a re-
sult system (18) with infinite dimensional Lie algebra is not
a system on a Lie group.

Description of the control system using Lie group theory.

Now we investigate the structure of kinematics (7) in more
detail. Firstly, we consider that the system cannot be defined
on any Lie group. Taking into account the control Lie alge-
bra associated with system (7) (cf. [5]) it can be shown that
the dimension of the Lie algebra is infinite over R for any
N = 1, 2, . . .. Hence, in view of Lemma 1 one can conclude
that the system is not invariant. In spite of this difficulty it was
shown in [6] that the system has specific structure which gives
possibility to take advantage of Lie group theory with respect
to some part of it. Namely, the first three variables of q can
be seen as coordinate variables specifying position and ori-
entation on the plane. Consequently, defining g := [x y θ]⊤,
the following decomposition of vector q can be introduced

q :=

[

g

ψ

]

. (19)

Next, we consider g as an element of Lie group GE ∼ SE(2)
(to be more precise we assume vector representation of the
Special Euclidean Group) with the operation given by

g1 • g2 :=






[

x1

y1

]

+R (θ1)

[

x2

y2

]

θ1 + θ2




 , (20)

where gi := [xi yi θi]
⊤

∈ GE for i = 1, 2 and R ∈ SO(2)
is an element of the Special Orthogonal Group determining a
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rotation on the plane. The neutral element of the group GE

satisfies eg := [0 0 0]
⊤.

Next, we chose canonical basis of the Lie algebra associ-
ated to the given group GE ∼ SE(2) which consists of the
following vector fields evaluated at g

XE
1 (g) :=







cos θ

sin θ

0






, XE

2 (g) :=







− sin θ

cos θ

0






,

XE
3 :=







0

0

1






.

(21)

It can be verified that XE
i , with i = 1, 2, 3 are left in-

variant vector fields, namely the following relationship is
met: dlg1 (g2)X

E
i (g2) = XE

i (lg1 (g2)). Further, the basis
of Lie algebra of Lie group GE is described by matrix

XE (g) :=
[

XE
1 (g) XE

2 (g) XE
3

]

. Referring to (7) and

using basis XE the following kinematics with respect to g
can be derived

ġ = XE (g)Cg (ψ) η, (22)

where

Cg (ψ) :=







1 0

0 0

ψ1 0






.

It is worth to emphasize that in spite of the fact that the
overall system (7) is not defined on a Lie group (namely it is
non-invariant) one can still take advantage of Lie group the-
ory with respect to some part of it. Then control system (8)
can be seen as the composition of two subsystems given by

ġ = XE (g)Cg (ψ) η, (23)

ψ̇ = Cψ (ψ) η, (24)

where

Cψ :=






ψ2 0

ψ3 0

0 1




 .

4. Control design

4.1. General description of the control task. In order
to define the reference motion of the vehicle we con-
sider a smooth reference trajectory qr :=

[
g⊤r ϕ⊤

r

]
=

[xr yr θr ϕr1 ϕr2 ϕr3]
⊤

∈ Q specified for the last trailer
and the internal configuration of system Σ with N = 3. Re-
ferring to Subsec. 3.2 it is assumed that the reference motion
of the last trailer is governed by

ġr = XE (gr)ur, (25)

where ur = [vrx vry vrθ]
⊤ is the reference signal with vrx,

vry being the longitudinal and lateral velocities and vrθ de-

scribing the angular velocity of the target expressed with re-
spect to its local frame. The chosen reference trajectory can be
admissible or even non-admissible, namely it can be a solu-
tion of the reference kinematics based on Eq. (2) with N = 3
or not. For example, defining the non-admissible trajectory
one can assume that the reference target describing last trailer
moves sideways (namely vry 6= 0) and nonholonomic con-
straints are violated.

To quantify the control objective the following tracking er-
ror is defined qe = [xe ye θe ϕe1 ϕe2 ϕe3]

⊤
:= q − qr. Then,

the control problem can be stated as follows:

Problem 1. (Main control problem). Find bounded smooth
kinematic control inputs, v1 and v2, of the tractor such that
for any smooth reference trajectory qr and qe (0) ∈ B0,ǫ0 ,
where B0,ǫ0 denotes the hyperball with center at the origin
and radius ǫ0 > 0, configuration error is bounded and as-
ymptotically converges to the neighborhood with arbitrarily
chosen radius ǫ > 0, while

sup
t≥0

‖qe (t)‖ <∞, lim
t→∞

qe (t) ∈ B0,ǫ (26)

and configuration q stays in the restricted configuration set,
namely

q (0) ∈ Q ⇒ ∀t > 0, q (t) ∈ Q. (27)

Defining the control problem it is assumed that the config-
uration error does not necessary tend to zero. It means that the
requirement of asymptotic convergence is relaxed and only the
convergence to the neighborhood of zero is taken into account
(on the other hand asymptotic convergence is not completely
excluded at least for some class of admissible reference tra-
jectories). It is important to recall that for the non-admissible
reference trajectory only the approximate tracking can be con-
sidered.

Following the assumption that qr ∈ Q and motivated by
the description presented in Subsec. 3.1 we introduce the aux-
iliary reference trajectory

qr :=

[

gr

ψr

]

∈ GE × R
3, (28)

where ψr = [ψr1 ψr2 ψr3]
⊤ :

(5)
= Ψ (ϕr) with Ψ (·) being de-

fined by (9).
Since the current and reference configurations of the last

trailer denoted by g and gr, respectively, can be seen as the
elements of the group GE one can define tracking error using
group operation as follows

g̃ := g−1
r • g = lg−1

r
(g) . (29)

Taking the time derivative of (29) and utilizing the left-
invariance property of system (22) one can obtain (the details
are given in the Appendix)

˙̃g = XE (g̃)
(

Cg (ψ) η −AdX
E (
g̃−1

)
ur

)

, (30)

where AdX
E

(g) is the adjoint operator evaluated at point g
and expressed in the base XE of the Lie algebra. Then, the
kinematics related to the internal variables ψ governed by
Eq. (24) remains unchanged.
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4.2. Control solution

Coordinate and input transformations with open-loop er-

ror dynamics derivation. The control solution considered in
this paper takes advantage of the coordinate and input trans-
formations which give possibility to transform non-invariant
control system to invariant one. Here, derivation of the con-
troller is based on two input IV-order chained system defined
as follows

ξ̇ = XC
1 (ξ)w1 +XC

2 w2, (31)

where ξ = [ξ1 . . . ξ6]
⊤ is the coordinate vector, w1 and w2

denote the control inputs, while XC
1 and XC

2 are vector fields
given by

XC
1 (ξ) := [1 0 ξ2 ξ3 ξ4 ξ5]

⊤
,

XC
2 := [0 1 0 . . . 0]⊤ .

(32)

In fact, systems (31) and (8) can be seen as equivalent con-
trol systems since they can be transformed (at least locally)
to each other using the coordinate and input maps.

Referring to results given in the Appendix the coordi-
nate transformation (114) is local and it is well defined for

|θ| 6=
π

2
. This limitation is too restrictive since it imposes that

orientation of the last trailer could not be arbitrary and some
configurations would become no feasible. In order to over-
come this difficulty, the coordinate transformation based on
(114) is applied with respect to variable g̃ instead of g. Then,

the given restriction affects orientation error
(

|θ̃| 6=
π

2

)

that

is clearly more acceptable.
Taking into account definitions (30), (24) the coordinate

transformation (114) is redefined as follows

ξ := Φ (g̃, ψ) =























x̃

3ψ3
1 + 12ψ3

1 sin2 θ̃ + 5ψ1ψ2 sin
(

2θ̃
)

+ ψ3 cos2 θ̃

cos7 θ̃

3ψ2
1 tan θ̃ + ψ2

cos4 θ̃
ψ1

cos3 θ̃

tan θ̃

ỹ
























(33)

and the transformed system becomes

ξ̇ =
∂Φ (g̃, ψ)

∂g̃
˙̃g +

∂Φ (g̃, ψ)

∂ψ
ψ̇

(30),(24)
=

(
∂Φ (g̃, ψ)

∂g̃
XE (g̃)Cg (ψ) +

∂Φ (g̃, ψ)

∂ψ
Cψ (ψ)

)

η

−
∂Φ (g̃, ψ)

∂g̃
XE (g̃)AdX

E (
g̃−1
)
ur

= XC
1 (ξ)w1 +XC

2 w2 + p (g̃, ψ, ur) ,
(34)

with

w =

[

w1

w2

]

:= U
(

θ̃, ψ
)

η
(115)
=

[

cos θ̃ 0
∂ξ2(θ̃,ψ)

∂θ̃
ψ1+

∂ξ2(θ̃,ψ)
∂ψ1

ψ2+
∂ξ2(θ̃,ψ)
∂ψ2

ψ3
∂ξ2(θ̃,ψ)
∂ψ3

]

η

(35)

being the control input, while

p (g̃, ψ, ur) = −
∂Φ (g̃, ψ)

∂g̃
XE (g̃)AdX

E (
g̃−1

)
ur =

















−vrx + ỹvrθ

−
15ψ3

1 tan θ̃(3+4 sin2 θ̃)+10ψ1ψ2(5 sin2 θ̃+1)+
5

2
ψ3 sin(2θ̃)

cos7 θ̃
vrθ

−
3ψ2

1(4 sin2 θ̃+1)+2ψ2 sin(2θ̃)
cos6 θ̃

vrθ

−
3ψ1 sin(θ̃)

cos4 θ̃
vrθ

− 1
cos2 θ̃

vrθ

−vry − x̃vrθ

















(36)
denotes the drift. It is worth to note that system (34) corre-
spond to the IV-order chained system only for ur ≡ 0, namely
in the case when a constant reference point qr is assumed. In
the more general case system (34) is not a driftless system
anymore, however its vector fields associated with inputs are
the same as for system (31).

From (33) it is clear that auxiliary configuration ξ reflects
configuration error g̃ ∈ G and the current internal configu-
ration of the vehicle. Hence, in order to satisfy the control
objective and to include also the error defined with respect to
the internal variables it is assumed that ξ converges to some
neighborhood of the reference trajectory given by

ξr := Φ (eg, ψr) =
[
0 3ψ3

r1 + ψr3 ψr2 ψr1 0 0
]⊤
. (37)

To be more specific, the following implication can be consid-
ered

(ξ → ξr) ⇒ ((g̃ → 0) and (ψ → ψr)). (38)

Consequently, in order to define the transformed tracking er-
ror we take advantage of the fact that system (31) is defined
on some Lie group GC with the group operation given by Eq.
(117) in the Appendix. Then, we have

ξ̃ = ξ−1
r ⋆ ξ, (39)

with ξ−1
r in view of (37) being ξ−1

r = −ξr. Taking the time
derivative of (39) the following open-loop dynamics is ob-
tained

˙̃
ξ = dlξ−1

r
(ξ) ξ̇ + drξ

(
ξ−1
r

) d

dt
ξ−1
r = XC

1

(

ξ̃
)

w1

+XC
2 w2 + dlξ−1

r
(ξ) p+ drξ

(
ξ−1
r

) d

dt
ξ−1
r ,

(40)

where dlξa
(ξb) and drξa

(ξb) describe differential operators
defined by Eqs. (118) and (119) in the Appendix while the
time derivative of the term associated to the reference trajec-
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tory can be written as

d

dt
ξ−1
r = −ξ̇r = −

∂Φ (e, ψr)

∂ψr
ψ̇r

= −













0

9ψ2
r1ψ̇r1 + ψ̇r3

ψ̇r2

ψ̇r1

0

0













.

(41)

In order to facilitate design of the controller, error dynamics
(40) is rewritten as follows

˙̃
ξ = XC

(

ξ̃
)

(Cξw + p̃) (42)

where

Cξ :=

[

1 0 0 . . . 0

0 1 0 . . . 0

]⊤

∈ R
6×2 (43)

and

p̃ =
(

XC
(

ξ̃
))−1

(

dlξ−1
r

(ξ) p+ drξ
(
ξ−1
r

) d

dt
ξ−1
r

)

, (44)

with XC being a basis of Lie algebra associated to Lie group
GC and defined in the Appendix.

Transverse function design. The control approach consid-
ered here is based on the transverse functions which are de-
signed for system (31). Now we recall a definition of the
transverse function.

Definition 1. Let f ξ : T
k × (0, εmax) → GC , with k =

4, 5, . . . and εmax > 0, be a smooth function which satisfies

∀α ∈ T
k, ε ∈ (0, εmax)

rank

[

XC
1

(
f ξ (α, ε)

)
XC

2

(
f ξ (α, ε)

)
−
∂f ξ (α, ε)

∂α

]

= dimGC = 6
(45)

and
∀α ∈ T

k lim
ε→0+

∥
∥f ξ (α, ε)

∥
∥ = 0. (46)

Then function f ξ is transverse with respect to vector fields of
control system (31) and is centered at the neutral element eξ
of group GC .

According to the result given in [11] a transverse function
exists for any driftless systems satisfying the LARC condi-
tion. Taking into account the general formula introduced in
[11] one can formally calculate transverse function by finding
a flow of differential equation evaluated at time t = 1. More-
over, due to the existence of the Lie group for the particular
control Lie algebra the derivation of the transverse function
is simplified, [13]. For system (31) one can consider the fol-
lowing definition of the transverse function

f ξ (α) := 4f ξ (α4) ⋆
3f ξ (α3) ⋆

2f ξ (α2) ⋆
1f ξ (α1) (47)

where
1f ξ (α1) = exp

(
XC

1 εβ1,1 sinα1 +XC
2 εβ1,2 cosα1

)
,

2f ξ (α2) = exp
(
XC

1 εβ2,1 sinα2 +XC
3 ε

2β2,2 cosα2

)
,

(48)

3f ξ (α3) = exp
(
XC

1 εβ3,1 sinα3 +XC
4 ε

3β3,2 cosα3

)
,

4f ξ (α4) = exp
(
XC

1 εβ4,1 sinα4 +XC
5 ε

4β4,2 cosα4

) (49)

are basic components of the transverse function, such that
if ξ is responsible for generating of the direction associated to
vector field XC

i+2 (namely the Lie bracket which is necessary
to ensure the controllability of the chained system – refer to
(116)). It is assumed that functions if ξ are parametrized by
the set of eight coefficients βi,j ∈ R, where i = 1, 2, 3, 4 and
j = 1, 2, and ε > 0. Calculating each component function if ξ

one has (cf. the result given in [13, 6])

1f ξ =




















εβ1,1 sinα1

εβ1,2 cosα1

ε2β1,1β1,2

4
sin (2α1)

ε3β2
1,1β1,2

6
sin2 α1 cosα1

ε4β3
1,1β1,2

24
sin3 α1 cosα1

ε5β4
1,1β1,2

120
sin4 α1 cosα1




















,

2f ξ =


















εβ2,1 sinα2

0

ε2β2,2 cosα2

ε3β2,1β2,2

4
sin (2α2)

ε4β2
2,1β2,2

6
sin2 α2 cosα2

ε5β3
2,1β2,2

24
sin3 α2 cosα2


















,

(50)

and

3f ξ =


















εβ3,1 sinα3

0

0

ε3β3,2 cosα3

ε4β3,1β3,2

4
sin (2α3)

ε5β2
3,1β3,2

6
sin2 α3 cosα3


















,

4f ξ =

















εβ4,1 sinα4

0

0

0

ε4β4,2 cosα4

ε5β4,1β4,2

4
sin (2α4) .

















(51)
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The example of calculations are presented in the Appendix.
Parameter ε can be seen as a scaling coefficient. Accord-

ing to the result given in [13] for the chained system the
transverse function f ξ is well defined for any ε > 0 (it means
that upper bound εmax introduced in definition can be made
arbitrary large). To be more specific, it can be shown that
function f ξ satisfies

f ξ (α, ε) = ∆r
ε

(
f ξ (α, 1)

)
= D (ε) f ξ (α, 1) , (52)

where ∆r
ε stands for the dilation operator with r =

[1, 1, 2, 3, 4, 5] being the weights (for the definition of ho-
mogeneity and dilation the reader may refer to [9]) while

D (ε) :=













ε 0 0 0 0 0

0 ε 0 0 0 0

0 0 ε2 0 0 0

0 0 0 ε3 0 0

0 0 0 0 ε4 0

0 0 0 0 0 ε5













∈ R
6×6 (53)

is a scaling matrix which invertible for any ε > 0. Usually
parameter ε is assumed to be a constant (or piecewise con-
stant) coefficient. However, in this paper we assume that in the
general case ε can be time-varying. This gives a possibility
to scale the transverse function during the control process in
order to improve the transient states. Then the time derivative
of f ξ can be expressed as follows

ḟ ξ =
∂f ξ

∂α
α̇+

∂f ξ

∂ε
ε̇, (54)

where derivatives
∂f ξ

∂α
and

∂f ξ

∂ε
are given by Eqs. (124) and

(125) in the Appendix. Alternatively, taking advantage of Eq.

(52) derivative
∂f ξ

∂ε
can be defined in a simpler way, namely

∂f ξ

∂ε
=
∂D (ε)

∂ε
f ξ (α, 1) . (55)

To facilitate the control design and analysis it is convenient to
express the derivatives of function f ξ in basis of Lie algebra
XC such that

ḟ ξ = XC
(
f ξ
)
(Aαα̇+ Aεε̇) , (56)

where

Aα := XC
(
f ξ
)−1 ∂f ξ

∂α
∈ R

6×4,

Aε := XC
(
f ξ
)−1 ∂f ξ

∂ε
∈ R

6.

(57)

In particular, the matrix notation introduced in (56) can be
convenient for checking the transversality condition. Conse-
quently, transversality condition (45) can be rewritten as fol-
lows
[

XC
1

(
f ξ
)

XC
2

(
f ξ
)

−XC
(
f ξ
)
Aα

]

= XC
(
f ξ
)
Cξ,

(58)
with

Cξ :=

[

Cξ
−A1

−A2

]

∈ R
6×6, (59)

where A1 ∈ R
2×4 and A2 ∈ R

4×4 satisfies
[

A⊤
1 A⊤

2

]

=

A⊤
α . Assuming that f ξ is the transverse function, matrix Cξ is

invertible ∀α ∈ T
4. Moreover, taking into account the partic-

ular structure of matrix Cξ the following implication can be
concluded: (detA2 6= 0) ⇒

(
detCξ 6= 0

)
⇒ transversality

condition is met.
It is important to emphasize that function (47) with (50)

and (51) satisfies transversality condition (45) only with a
proper selection of parameters βi,j . Namely, a given set of
βi,j can be verified by checking of the determinant of ma-
trix A2 instead of verifying the rank condition for a higher
dimensional matrix defined by Eq. (45). Taking into account
that parameter ε does not have any impact on the transversal-
ity condition, the determinant of A2 can be verified for any
arbitrary chosen positive value of ε (typically it is assumed
that ε = 1).

The selection of parameters of function f ξ and utilizing
scaling factor ε is not a unique way to shape the transverse
function. In [12] an extension of the transverse function is pro-
posed that gives a possibility to change norm of the function
to zero without violating the transversality condition (name-
ly for ε > 0). Referring to the Lie structure once again the
modified transverse function can be defined as follows

f
ξ
(α, αr, ε) = f ξ (αr, ε)

−1 ⋆ f ξ (α, ε) , (60)

where αr ∈ T
4 is an auxiliary variable. In particular based

on (60) the following relationship can be taken into account

lim
α→αr

f
ξ
(α, αr , ε) = 0. (61)

It can be proved (see [12]) that f
ξ

defined by Eq. (60) is a
transverse function if f ξ satisfies transversality condition giv-

en by (45). Moreover, function f
ξ

still satisfies homogeneity
property defined by Eq. (52).

For the modified function (60) calculating the time deriv-
ative yields in

ḟ
ξ

=
∂f

ξ

∂α
α̇+

∂f
ξ

∂αr
α̇r +

∂f
ξ

∂ε
ε̇. (62)

Taking into account definition (60) the time derivative given
by (62) can be rewritten as follows

ḟ
ξ

= dlfξ(αr ,ε)
−1

(
f ξ (α, ε)

)
ḟ ξ

+drfξ(α,ε)

(

f ξ (αr, ε)
−1
) d

dt

(

f ξ (αr, ε)
−1
)

= dlfξ(αr,ε)
−1

(
f ξ (α, ε)

)
ḟ ξ (α, ε)

−drfξ(α,ε)

(

f ξ (αr, ε)
−1
)

drfξ(αr ,ε)
−1 (eξ)

·dlfξ(αr,ε)
−1

(
f ξ (αr, ε)

)
ḟ ξ (αr, ε) .

(63)

Comparing (62) and (63) yields in

∂f
ξ

∂α
= dlfξ(αr ,ε)

−1

(
f ξ (α, ε)

) ∂

∂α
f ξ (α, ε) , (64)
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∂f
ξ

∂ε
= dlfξ(αr ,ε)

−1

(
f ξ (α, ε)

) ∂

∂ε
f ξ (α, ε)

−drfξ(α,ε)

(

f ξ (αr, ε)
−1
)

drfξ−1(αr,ε)
(eξ)

·dlfξ−1(αr,ε)

(
f ξ (αr, ε)

) ∂

∂ε
f ξ (αr, ε)

(65)

∂f
ξ

∂αr
= −drfξ(α,ε)

(

f ξ (αr, ε)
−1
)

drfξ−1(αr ,ε)
(eξ)

·dlfξ−1(αr ,ε)

(
f ξ (αr, ε)

) ∂

∂ε
f ξ (αr, ε) .

(66)

It is worth to mention that in order to calculate
∂f

ξ

∂ε
instead

of using Eq. (65) one can also refer to the dilation operator.
Following Eq. (55) one obtains

∂f
ξ

∂ε
=
∂D (ε)

∂ε
f
ξ
(α, αr , 1) . (67)

Taking advantage of Lie algebra basis Eq. (62) can be rewrit-
ten as follows

ḟ
ξ

= XC
(

f
ξ
)

(Aαα̇+Aαr
α̇r +Aεε̇) , (68)

where Aα and Aε are defined similar as in Eq. (57), while

Aαr
:= XC

(

f
ξ
)−1 ∂f

ξ

∂αr
∈ R

6×4. (69)

Control law design. The idea of control considered in this pa-
per is based on tracking an auxiliary trajectory which evolves
on group GC and is contained in some neighborhood of the
origin (namely, the neutral element of the group). This trajec-
tory is directly defined by the tranverse function. The auxiliary
tracking error can be defined using the Lie group structure as
follows

zξ := ξ̃ ⋆ f
ξ −1

. (70)

In order to simplify the derivation of error dynamics Eq. (70)
can be rewritten as

ξ̃ = zξ ⋆ f
ξ
. (71)

Taking the time derivative of (71) and using Lie group and
Lie algebra operators one obtains

˙̃ξ = dlzξ

(

f
ξ
)

ḟ
ξ

+ dr
f

ξ (zξ) żξ. (72)

Calculating żξ gives (for details see the Appendix)

żξ = XC (zξ)Ad
XC
(

f
ξ
) (
Cξw + p̃−Aεε̇−Aαr

α̇r
)
,

(73)
where

w :=
[
w⊤ α̇⊤

]⊤
∈ R

6 (74)

is the extended control input with α̇ being the virtual input
determining the evolution of the transverse functions.

Based on the open-loop dynamics (73) and considering

that matrices XC (zξ), AdX
C
(

f
ξ
)

, and Cξ are invertible

one can formulate the following control algorithm.

Proposition 1 (Classic control feedback). The feedback giv-
en as follows

w=C
−1

ξ

(

AdX
C

(

f
ξ −1

)

XC (zξ)
−1
Kzξ−p̃+Aεε̇+Aαr

α̇r

)

,

(75)
where K ∈ R

2 is a Hurwitz-stable matrix, applied to system
(73) ensures its exponential stabilization, namely

∀t ≥ 0, ‖zξ (t) ‖ ≤ ‖zξ (0) ‖ exp (−ct) , (76)

where c > 0 is dependent on the eigenvalues of matrix K ,
and practical stabilization such that

lim
t→∞

‖ξ̃ (t) ‖ ≤ ǫξ, (77)

with ǫξ ≥ ‖f
ξ
‖ being the radius of the neighborhood of zero

in the steady state, which is dependent on parameters of the
transverse functions and can be made arbitrary small.

In order to apply the given control law one has to calculate
the inverse of matrix Cξ given by Eq. (59). The calculation
can be simplified taking into account the particular structure
of Cξ – cf. (43). Considering the inverse of the block square
matrix the following relationship can be derived

C
−1

ξ =

[

I2×2 −A1A
−1
2

04×2 −A−1
2

]

. (78)

It is worth recalling that in view of Eq. (74) the control
signal w consists of control input w and virtual input α̇. Re-
ferring to the control task defined with respect to the original
system the real input v that governs the tractor motion has the
most important meaning. Moreover α̇ can be seen as only an
auxiliary signal that could be subordinated to the other control
objectives. Taking into account this property one can consid-
er the design of the control loop based on the optimization
technique.

Following [14] we introduce the performance index

J (v) =
1

2
v⊤W1v, (79)

where v :=
[
v⊤ α̇⊤

]⊤
∈ R

6 is the modified extended control
input (cf. definition of w) and W1 ∈ R

6×6 denotes symmetric
positive definite matrix. The optimization problem is solved
assuming that ‖zξ‖ converges to zero exponentially, namely
the following constraint is satisfied

z⊤ξ żξ + z⊤ξ W2zξ = 0, (80)

where W2 ∈ R
6×6 is the positive definite square matrix.

Proposition 2 (Optimal control feedback). The control law
defined as follows

v = −
z⊤ξ W2zξ + z⊤ξ H (p̃−Aεε̇−Aαr

α̇r)

z⊤ξ QW1
−1Q⊤zξ

W1
−1Q⊤zξ

(81)
with Q being the matrix defined by Eq. (135), and applied to
system (2) with N = 3 ensures exponential convergence of
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zξ and optimal control effort at each time instant in the sense
of minimization of the performance index (79).

The derivation of optimal control is given in the Appen-
dix.

It can be noted that the optimal control law given by (81)
is quite different from that proposed in [12]. Firstly, the orig-
inal (not transformed) control input is taken into account (cf.
[6]). Secondly, apart from the components related to the sta-
tic case (namely when ε̇ = 0, α̇r = 0 and p̃ = 0), the drift
terms are considered in the optimization problem (a similar
approach can be found in [14]).

The significant drawback of the optimal control law is re-
lated to the fact that Eq. (81) is not well-defined at the origin.
Namely, considering that limzξ→0 v = 0/0 one can conclude
that the solution may be not determined properly. In particular,
this becomes a critical issue for the numerical implementation
of the algorithm. Namely, for ‖zξ‖ ≤ σ, where σ > 0 is some
positive constant, a numerical division of two small numbers
may not give accurate and robust results.

In order to overcome this difficulty one can use a subop-
timal solution (cf. Artus et. al. [14]) that is based on combi-
nation of the classic controller with the optimal one. In order
to facilitate the description referring to (75), (81) and (135)
we introduce

νc
s = Q−1Kzξ, ν

c
d = −T

−1
C

−1

ξ (p̃−Aεε̇−Aαr
α̇r) , (82)

where T is given by Eq. (132) and

νos = −z⊤ξ W2zξW1
−1Q⊤zξ,

νod = −z⊤ξ H (p̃−Aεε̇−Aαr
α̇r)W1

−1Q⊤zξ,
(83)

where superscript “s” and “d” are used in order to describe
the static and dynamic terms of the controller.

Proposition 3 (Suboptimal control law). The control law
defined as follows

v =
λs

m+ λs
νcs+

1

m+ λs
νos +

λd
m+ λd

νcd+
1

m+ λd
νod (84)

with λs and λd > 0 being positive coefficients, while

m := z⊤ξ QW1
−1Q⊤zξ, (85)

applied to system (2) with N = 3 ensures exponential stabi-
lization in the sense given by Eq. (77).

Proof 2. Consider open-loop error dynamics described by
(133). Then applying the control law given by Eq. (84)
yields in

żξ =
λs

m+ λs
Kzξ −

QW−1
1 Q⊤zξ
m+ λs

z⊤ξ W2zξ

−
λd

m+ λd
H (p̃−Aεε̇−Aαr

α̇r)

−
QW−1

1 Q⊤zξ
m+ λd

z⊤ξ H (p̃−Aεε̇−Aαr
α̇r)

+H (p̃−Aεε̇−Aαr
α̇r) .

(86)

Next, calculating the term z⊤ξ żξ and assuming that K = −W2

gives

z⊤ξ żξ = −
z⊤ξ QW

−1
1 Q⊤zξ + λs

m+ λs
z⊤ξ W2zξ

−
z⊤ξ QW

−1
1 Q⊤zξ + λd

m+ λd
z⊤ξ H (p̃−Aεε̇− Aαr

α̇r)

+z⊤ξ H (p̃−Aεε̇−Aαr
α̇r)

(85)
= −z⊤ξ W2zξ.

(87)

From (87) it follows that exponential stabilization is ensured
with the convergent rate related to selection of matrix W2.

The idea of suboptimal control scheme is based on weight-
ing the classical and optimal algorithms. Namely based on
Eq. (84) it can be concluded that for the significant tracking
error zξ, such that m >> λs and m >> λd, the optimal part
of the controller is predominant. On the other hand, when the
magnitude of zξ decreases and m becomes much less that
λd and λs the classical solution based on Proposition 1 is
responsible for generation of control input. Hence, at some
neighborhood of equilibrium point zξ = eξ the feedback is
not optimal in the sense of minimization of the performance
index (79). However, for a small norm of error zξ the require-
ment of the control optimization is not critical. As a result, the
suboptimal controller can be seen as a compromise between
the robust and optimal control solution.

Now, we return to the main control problem formulated
in Subsec. 4.1. Each variant of the proposed controller guar-
antees that for ‖zξ (0) ‖ < ∞ the auxiliary control task is
satisfied, namely zξ = eξ is the equilibrium point and zξ con-
verges exponentially to zero (neutral element of group GC ).

In view of definition (71) it implies that ξ̃ → f
ξ
. Recalling

that norm of f
ξ

is dependent on parameter ε it follows that
transformed error ξ̃ tends to the neighborhood of zero with
the radius which can be arbitrarily adjusted. Further, taking
into account definitions (39), (37) and inverse map of (33)
one can write that

lim
t→∞

([

g̃

ψ

]

(t) − Φ−1
(

Φ (eg, ψr) ⋆ f
ξ
)

(t)

)

= 0. (88)

Finally, it can be shown that

lim
t→∞

qe (t) ∈ B0,ǫ, (89)

with
ǫ = δ (ϕr) ‖f

ξ
‖ (90)

being some positive constant, while δ (ϕr) is a nonlinear posi-
tive function that is dependent on the selected reference angles
ϕr. Hence, it can be stated that the control problem defined
in the configuration space is solved assuming that the mag-
nitude of the initial orientation error does not exceeded π/2
and that the reference trajectory qr ∈ Q is smooth enough.
The control signals are bounded and q stays in the set Q as
a result of the regularity of coordinate transformations (33)
and (9).

Controller tuning. Tuning the controller based on the trans-
verse functions becomes a very important and non trivial task,
especially when practical aspects are taken into account such
as input saturation, limitation of oscillatory behavior during
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the transient stage, limitation of the frequency bandwidth, etc.
– cf. [15].

The properties of the controller investigated in this pa-
per are strongly dependent on the parameters of the trans-
verse functions. The parametrization of the transverse func-
tion becomes an important issue. The selection of coefficients
βi,j (i = 1, 2, j = 1, 2, 3, 4) should take into account the
transversality condition and in the considered case is relative-
ly complicated. Consequently, it is difficult to change these
coefficients in order to shape the transverse functions in an
arbitrary way. Instead, one can scale the transverse function
by changing parameter ε for the selected set of βi,j .

From relationship (89) it follows that the accuracy in
the configuration space can be easily increased by making

norm ‖f
ξ
‖ small enough. This norm can be efficiently ad-

justed by parameter ε according to Eq. (52). We consid-
er this problem in more detail. In order to do that ma-
trix Aα defined by (57) is rewritten as follows: Aα :=

XC
(

D (ε) f
ξ
(α, αr , 1)

)−1

D (ε)
∂f

ξ
(α, αr, 1)

∂α
(notice that

in this case function f ξ is replaced by the more general form

f
ξ
). Then referring to Eq. (59) one has

Cξ :=

[

Cξ −XC
(

D (ε) f
ξ
(α, αr, 1)

)−1

D (ε) ∂f
ξ
(α,αr,1)
∂α

]

.

(91)
Considering the determinant of matrix Cξ more thoroughly it
can be shown that

detCξ = ε14 det

[

Cξ −XC
(

f
ξ
(α, αr, 1)

)−1
∂f

ξ
(α,αr ,1)
∂α

]

.

(92)
Hence, evoking Eq. (75) one can interpret that the selection of
small value of parameter ε increases the resultant gain in the
control loop. Consequently, it implies that for ‖zξ(0)‖ << ǫ
the extremely high magnitude and high frequency control in-
put, that deteriorates the performance of the controller, may
appear. This problem can be solved partly using the subop-
timal control law formulated by Proposition 3; however this
method may still not attenuate the oscillations to a satisfactory
level.

Another possibility of improving the controller perfor-
mance is based on a proper scaling of parameter ε during
the transient states. Namely, the initial value of this parame-
ter should correspond to the initial auxiliary error zξ in order
to prevent high control input magnitude. Then, the parameter
can be smoothly decreased towards the final value which de-
termine the desired accuracy. For example one can consider
the following off-line scaling

ε (t) = ζ0 exp (−ζ1t) + ζ2, (93)

where ζ0, ζ1 and ζ2 are some positive coefficients. It can be
easily find that ε (0) = ζ0 + ζ2, while limt→∞ ε (t) = ζ2.
Parameter ζ1 determines the convergence rate and it should
be selected such that ζ1 < c, where c describes the conver-
gent rate of zξ according to Eq. (76). The explanation of this
rule is quite clear – namely ε should not tend to zero faster
than zξ.

Alternatively, the scaling of ǫ can be realized by introduc-
ing an additional dynamic system. For example, one may take
advantage of the following low-pass filter

T1T2ε̈+ (T1 + T2) ε̇+ ε =
√

µ2
1z

⊤
ξ zξ + µ2

2, (94)

with ε̇ (0) = 0, ε (0) > 0, T1, T2, µ1 and µ2 > 0 being the pa-
rameters. Taking into account that zξ → eξ and the filter (94)
is asymptotically stable, one can easily prove that ε → µ2.
Coefficients T1 and T2 describe the inertia of the filter (94),
while µ2 determines the accuracy in the steady state.

Additional possibility of tuning the controller may follow
from definition of transverse function (60) and implication

(61). Namely, one can decrease ‖f
ξ
‖ by a suitable changing

of variable αr. Unfortunately, in the case of regulation prob-
lem this possibility, at least for highly dimensional systems,
is still not well developed (some initial results related to this
concept have been presented in [16]). The main advantage
of the form (60) can be found for some class of admissible
reference trajectories. In [12] it is proved that for these ref-
erence trajectories there exist constant values of αr such that
for a proper selection of signs of coefficients βi,j asymptot-
ic convergence of configuration error can be restored (in this

particular case f
ξ

is shrink to zero). Namely, the following
implication holds

((

f
ξ
→ eξ

)

and (zξ → eξ)
)

⇒ (qe → 0) . (95)

The input control saturation can be relatively easy solved
for the regulation case using the magnitude and time scaling.
Assume that v is saturated as follows

|v1| ≤ V1max, |v2| ≤ V2 max, |α̇i| ≤ Ωmax, (96)

where i = 1, 2, 3, 4 while V1 max, V2 max, and Ωmax denote
positive upper bounds. In order to determine how much the
nominal control input given by the kinematic controller vio-
lates the assumed bounds we introduce the following scaling
factor

χ := max

{

1,
|v1|

V1 max
,

|v2|

V2 max
,
|α̇1|

Ωmax
, . . . ,

|α̇4|

Ωmax

}

. (97)

In order to guarantee that the control input is within the as-
sumed range, the control input is redefined as follows

v := χ−1v. (98)

Similarly, in order to guarantee the stability result, each time-
dependent term in the control law should be scaled as well.
This gives a motivation to scale the tuning function in or-
der to ensure Lyapunov stability of the closed-loop system,
[17]. As a consequence this method may fail for more general
tracking problem if the evolution of reference trajectory is not
properly slowed down. In this case it is necessary to assume
that – at least locally – the reference trajectory can be tracked
with the assumed limitation of the control input. Unfortunate-
ly, the global stability may not be guaranteed. On the other
hand, considering an implementation of the algorithm in the
discrete time domain, control input scaling gives possibility
to improve numerical stability and to relax the requirement
with respect to sampling time.
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Fig. 2. Diagram of the control loop

The diagram of the controller including tuning and scal-
ing blocks is given in Fig. 2. The numbers put in the brackets
refer to the equations which describe the particular blocks.

5. Simulation results

General description. In order to illustrate the properties of
the described controller, extensive numerical simulations have
been conducted in Matlab/Simulink environment. Here, we
present the results of simulations obtained for selected sce-
narios which are outlined below.

• Sim 1 – regulation case (parallel parking): q (0) = 0,
qr = [0 10 0 0 0 0]⊤, classic feedback withK = −5·I6×6,
α (0) = 0, ζ0 = 2, ζ1 = 0.5 and ζ2 = 0.02

• Sim 2 – regulation case – suboptimal controller with
W1 = diag {200, 100, 1, 1, 1, 1}, W2 = 5 ·I6×6; other con-
ditions are the same as in simulation Sim 1

• Sim 3 – regulation case (reconfiguration of the
kinematic chain), suboptimal controller, qr =
[

0 0 −
π

3

π

6
−
π

3
0
]⊤

, ζ0 = 2.5, ζ1 = 0.5 and

ζ2 = 0.02; other conditions are the same as in simula-
tion Sim 2

• Sim 4 – tracking of an eight-like shaped admissible tra-
jectory parametrized as follows: xr (t) = 5 sin (0.05t)
and yr (t) = 5 sin (0.025t), suboptimal controller, q (0) =

[0 − 3 0 0 0 0]⊤; other conditions are the same as simu-
lation Sim 2

• Sim 5 – tracking of an eight-like shaped admissible tra-
jectory, classic feedback with K = −5 · I6×6, ζ0 = 2,
ζ1 = 0.5 and ζ2 = 0.02; other conditions are the same as
simulation Sim 2

• Sim 6 – tracking of a nonadmissible reference trajecto-
ry (rotation only) parametrized as follows: xr = yr = 0,
θr (t) = 0.05t, ϕr = 0, suboptimal controller with W2 =

I6×6, ζ0 = 1, ζ1 = 0.2 and ζ2 = 1, qr = [0 − 2 0 0 0 0]
⊤;

other conditions are the same as in simulation Sim 1
• Sim 7 – tracking of a nonadmissible reference trajecto-

ry (linear motion violating the nonholonomic constraint

for the last trailer) parametrized as follows: xr = 0,
yr (t) = 0.05t, θr = 0, ϕr = 0; other conditions are the
same as in simulation Sim 6

The set of parameters βi,j (i = 1, 2, 3, 4 and j = 1, 2) have
been verified numerically in order to meet transversality con-
dition and have been selected as: β1,1 = 0.2, β1,2 = 1,
β2,1 = 0.4, β2,2 = 0.8, β3,1 = 0.8, β3,2 = 0.4, β4,1 = 1.8,
and β4,2 = 0.2. In simulations Sim 1, Sim 2, Sim 3, Sim 6 and
Sim 7 typical form of transverse function given by Eq. (47)
is used while the extended transverse function defined by Eq.
(60) is taken into account in simulations Sim 4 and Sim 5 with

αr =
[

−
π

2
−
π

2
−
π

2
−
π

2

]⊤

. The transverse functions are

scaled using an off-line method that is based on relationship
(93) with parameters ζi for i = 1, 2, 3 defined above. The
control input is saturated as follows: V1 max = V2 max = 1
while Ωmax = 30. The saturation is taken into account in
simulations Sim 1, Sim 2, Sim 3, Sim 4 and Sim 5.

Description of simulation results. The results of simulations
Sim 1 and Sim 2 presented in Figs. 3 and 4 illustrate a signif-
icant advantage of the suboptimal feedback design. Although
for both cases the goal of the control is achieved (namely
the configuration of the vehicle with trailers converges to the
neighborhood of the desired point and practical stabilization
at this point is ensured), the performance of the controller
based on Proposition 3 is clearly better. From Figs. 10a and
3a one can conclude that in Sim 1 the position error increases
significantly in the y-axle as a result of the vehicle extensive
motion. This phenomenon is related to the selection of quite
a high initial value of ε in order to suppress oscillatory be-
havior. Therefore, penalizing the real control inputs v1 and v2
more significantly than the virtual signal α̇ (notice the weights
assumed in matrix W1) gives a possibility to limit unneces-
sary motion of the tractor during the transient stage (cf. 10a
and 3a). Consequently, the regulation time in the presence of
input saturation for the optimal controller is decreased, com-
pared to the classic feedback solution. As a result the transient
stage performance can be improved considerably.
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Fig. 3. Results of simulation Sim 1

Fig. 4. Results of simulation Sim 2
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Fig. 5. Results of simulation Sim 3

In simulation Sim 3 a more demanding control task is
considered. The goal is to change the orientation of the last
trailer as well as the internal configuration of the chain assum-
ing that the desired position of the trailer remains unchanged.
According to the results obtained (see Fig. 5) it follows that
the task is realized in an oscillatory way. This issue has been
observed in many simulation experiments. Namely if the de-
sired point describes no straight kinematic chain (ϕr 6= 0) the
performance of the controller is negatively affected during the
transient stage. Moreover, in such a case the steady-state er-
rors can increase (in fact, the error bound is dependent on the
selection of ϕr – cf. Eq. (90)). This property can be illus-
trated taking into account Fig. 5b – the value of error ϕe3 in
the steady state is quite high compared to the assumed low-
er bound of ε. Additionally, from Fig. 5e it can be seen that
norm ‖zξ‖ at some time interval increases which does not
correspond to the theoretical considerations. We believe that
the observed behavior of the closed-loop system is caused by
numerical instability which comes from non-sufficient accu-
racy of the double floating point precision used in numerical
computations.

Next simulations Sim 4 and Sim 5 take advantage of the
extended transverse function given by Eq. (60). The reference
motion is assumed to be admissible with positive longitudi-
nal velocity vrx > 0. The selected transverse function with
positive coefficients βi,j gives a possibility to achieve asymp-
totic stability in the original coordinate space. This property
is confirmed in simulation Sim 4 (cf. Fig. 6). It should be em-
phasized that the asymptotic convergence is achieved in spite
of input saturation, which illustrates some robustness to this
kind of nonlinearity. However, taking into account Fig. 6e one
can conclude that input saturation may deteriorate the stability
of the controller – the norm of zξ does not tend monotically
to zero at some time intervals. As a result the stability is lo-
cal and the region of the convergence is not given accurately.
A negative example that illustrate this drawback is illustrated
by the results of simulation Sim 5. Considering Fig. 7 one
can observe that the control task is not achieved – norm of
the auxiliary error becomes unbounded (it can be interpret-
ed that magnitude of orientation error approaches π

2 and the
transformation map (33) becomes not well defined).
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Fig. 6. Results of simulation Sim 4

Fig. 7. Results of simulation Sim 5
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Fig. 8. Results of simulation Sim 6

Fig. 9. Results of simulation Sim 7

In simulations Sim 6 and Sim 7 an approximation of non-
admissible trajectories is taken into account. The reference
trajectory considered in simulation Sim 6 describes pure ro-
tation of the last trailer without changing its position. On the
other hand, in simulation Sim 7 the linear reference motion
in the y direction with constant orientation is assumed. In
both simulations control input is not saturated. From Figs. 8
and 9 it can be seen that the control task is realized properly,
namely the configuration errors are bounded and the reference
motion is tracked with the assumed accuracy. The control in-
puts given in Figs. 8c, 8d, 9c and 9d achieve significantly high
values which indicates that the reference trajectory is quite de-

manding for the considered system. However, the magnitude
of control input can be quite easily limited by decreasing the
velocity of the reference motion.

Comparing position paths of the last trailer and the tractor
illustrated in Fig. 10 one can observe that the motion of the
tractor is quite extensive with respect to motion of the last
trailer. This phenomena can be quite easily explained refer-
ring to the complex structure of the considered nonholonomic
vehicle. Taking into account high nonholonomy degree of the
system the tractor movement has to generate “difficult” direc-
tions in highly dimensional coordinate space in order to solve
the control task.
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Fig. 10. Path describing position of the last trailer ( ) and the tractor ( )

574 Bull. Pol. Ac.: Tech. 60(3) 2012



Control of a unicycle-like robot with trailers using transverse function approach

6. Concluding remarks

In this paper the design of the controller for a unicycle-like
vehicle with three on-axis trailers is investigated in details.
The considered control solution ensures local convergence and
practical (or conditionally asymptotic) stabilization in the reg-
ulation and trajectory tracking case. The algorithm is based on
the transverse function calculated for the IV-order two-input
chained system.

Taking into account a possibility of implementation of the
controller in practice the optimal control feedback is designed.
Moreover, selected tuning techniques which limit oscillatory
behavior during transient stage are discussed. In order to meet
the assumed saturation of the control input and to improve
numerical stability of the algorithm input and time scaling is
taken into account.

Examination of the controller performance is realized us-
ing numerical simulations. The selected scenarios illustrate
properties of the algorithm assuming significant initial con-
figuration errors. In particular, the advantage of the optimal
control over the classic approach is shown. Based on the given
results one can conclude that a proper scaling of the transverse
function gives a possibility to limit oscillations during tran-
sient stage at least for some cases. However, it is shown that
for some desired configurations, for which no straight kine-
matic chain of the vehicle is assumed, the performance of the
controller is still not satisfactory. It is shown that the satura-
tion of control input can be quite efficiently overcome in the
regulation case. Unfortunately, in the trajectory tracking case
the saturation may deteriorate system stability (even if the ref-
erence trajectory can be tracked by the vehicle with velocities
satisfying the limitations), that is illustrated by simulations.

The control solution presented here can be seen as a gen-
eral approach for the stabilization. However, implementation
of this solution in practice may be difficult. Still the open
problems include optimization of the control loop in order
to obtain better performance. In spite of some progress that
has been achieved with respect to tuning of the controller the
detailed rules of the tuning are still not formulated precisely,
at least with respect to highly dimensional systems.

The future works can be devoted to attenuation of oscil-
latory motion when it is not necessary for realization of the
task. In order to do that one can for example investigate the
problem of using αr as additionally tuning variable and con-
sider the optimal selection of transverse function coefficients.
The comparison of the presented algorithm to other variant
of the control law for which no explicit coordinate transfor-
mation to the chained form is used (an extensive simulations
has been reported in [18]) can be also take into account. In
particular one can verify which solution ensures better perfor-
mance for stabilization task at ”difficult” desired points (with
no straight kinematic chain).

Finally, it is worth to point out the problem directly relat-
ed to the complexity of the controller. It turns out that further
extension to the vehicles with more trailers may be extremely
difficult. According to authors’ knowledge accuracy of typical
numerical representation may be not sufficient to ensure sta-

bility of the algorithm. These problems seem to be demanding
and still unsolved.

Appendix

Derivation of transformations (5) and (6). Considering the
case N = 3 and comparing kinematics (2) and (7) one has:

ẋ = cos θ cosϕ1 cosϕ2 cosϕ3v1 = cos θη1, (99)

where

η1 = cosϕ1 cosϕ2 cosϕ3v1. (100)

Based on definition (100) dynamics of variables ϕ1, ϕ2 and
ϕ3 described by Eq. (2) can be rewritten as follows:






ϕ̇1

ϕ̇2

ϕ̇3




 =











1

cosϕ1

(
tanϕ2

l1
−

sinϕ1

l0

)

1

cosϕ1 cosϕ2

(
tanϕ3

l2
−

sinϕ2

l1

)

−
1

cosϕ1 cosϕ2

tanϕ3

l2











η1 +






0

0

1




 v2.

(101)
Then variable ψ1 can be derived taking into account that

θ̇ =
1

l0
sinϕ1 cosϕ2 cosϕ3v1

(100)
=

tanϕ1

l0
η1

(7)
= ψ1η1

(102)

which implies that ψ1 :=
tanϕ1

l0
. Calculating the time deriv-

ative of ψ1 yields in

ψ̇1 =
1

cos2 ϕ1l0
ϕ̇1

(101)
=

1

cos3 ϕ1l20l1
(l0 tanϕ2 − l1 sinϕ1) η1

(7)
= ψ2η1

(103)

and gives ψ2 :=
l0 tanϕ2 − l1 sinϕ1

cos3 ϕ1l20l1
. In the similar way

transformation with respect to variable ψ3 can be derived.
Calculating ψ̇2 gives

ψ̇2 =
3 sinϕ1

l20l1 cos4 ϕ1
(l0 tanϕ2 − l1 sinϕ1) ϕ̇1

+
1

cos3 ϕ1l20l1

(
l0

cos2 ϕ2
ϕ̇2 − l1 cosϕ1ϕ̇1

)

(101)
=

(

3 tanϕ1 (l0 tanϕ2 − l1 sinϕ1)
2

l30l
2
1 cos4 ϕ1

−
l1 cosϕ1 (l0 tanϕ2 − l1 sinϕ1)

l30l
2
1 cos4 ϕ1

+
l1 tanϕ3 − l2 sinϕ2

l0l21l2 cos4 ϕ1 cos3 ϕ2

)

η1
(7)
= ψ3η1.

(104)

Hence, one obtains

ψ3 = (l0 tanϕ2−l1 sinϕ1)(3 tanϕ1(l0 tanϕ2−l1 sinϕ1)−l1 cosϕ1)
l3
0
l2
1
cos4 ϕ1

+ l1 tanϕ3−l2 sinϕ2

l0l
2
1
l2 cos4 ϕ1 cos3 ϕ2

.
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Then, calculating the time derivative of ψ3 gives

ψ̇3 =

3∑

i=1

∂ψ3

∂ϕi
ϕ̇i

(101)
=

(

∂ψ3

∂ϕ1

tanϕ2

l1
− sinϕ1

l0

cosϕ1

+
∂ψ3

∂ϕ2

tanϕ3

l2
− sinϕ2

l1

cosϕ1 cosϕ2
−
∂ψ3

∂ϕ2

tanϕ3

l2 cosϕ1 cosϕ2

)

η1

+
∂ψ3

∂ϕ3
v2

(7)
= η2.

(105)

Derivation of kinematic error (30). Calculating the time
derivative of (29) we have

˙̃g = dlg−1
r

(g) ġ + drg
(
g−1
r

) d

dt
g−1
r . (106)

Next, using the following relationship:
d

dt
g−1
r :=

−drg−1
r

(eg)X
E (eg)ur (cf. Eq. (25) and refer to [12]) and

taking advantage of (30) give

˙̃g = dlg−1
r

(g)XE (g)Cg (ψ) η

−drg
(
g−1
r

)
drg−1

r
(eg)X

E (eg)ur

(17),(12)
= XE

(
g−1
r g

)
Cg (ψ) η

−drg−1
r g (eg)X

E (eg)ur
(29)
= XE (g̃)Cg (ψ) η

−drg̃ (eg)X
E (eg)ur,

(107)

where

drg̃ (eg)X
E (eg) = dlg̃ (eg)Ad

(
g̃−1

)
XE (eg)

= dlg̃ (eg)X
E (eg)Ad

XE (
g̃−1

)
= XE (g̃)AdX

E (
g̃−1

)
.

(108)
Finally, substituting (108) to (107) we obtain Eq. (30).

Derivation of transformation of system (8) to the VI-order

chained form. Here we refer to the algorithm proposed by
Sørdalen in [7]. The task is to find coordinate and input trans-
formation which transform system (8) (at least locally) to IV-
order chained system given by (31).

Following Sørdalen [7] we start the calculations assuming
that w1 := η1 cos θ. It allows one to rewrite Eq. (8) as

q̇ = XA
1 w1 +XA

2 η2 (109)

with

XA
1 (q) :=

[

1 tan q3
q4

cos q3

q5
cos q3

q6
cos q3

0

]⊤

,

XA
2 :=

[

0 0 0 0 0 1
]⊤

(110)
being vector fields.

Next, consider two outputs functions h1 (q) := q1 and
h2 (q) := q2 and assume that ξ1 := h1, ξ6 := h2. Then one
has

ξk = LN−k

XA
1

h2, (111)

where LiXf denotes iterative Lie derivative of a scalar func-
tion f in direction determined by vector field X , while in the

case considered it is assumed that N = 6 and k = 2, . . . , 5.
Consequently, taking advantage of (111) it follows that

ξ5 = LXA
1
h2 =

∂h2

∂q
XA

1 = tan q3,

ξ4 = L2
XA

1

h2 =
∂ξ5 (q)

∂q
XA

1 =
q4

cos3 q3
,

ξ3 = L3
XA

1

h2 =
∂ξ4 (q)

∂q
XA

1 =
3q24 tan q3 + q5

cos4 q3

(112)

and

ξ2 = L4
XA

1

h2 =
∂ξ3 (q)

∂q
XA

1

=
3q34 + 12q34 sin2 q3 + 5q4q5 sin (2q3) + q6 cos2 q3

cos7 q3
.

(113)

Finally one can write the following map

ξ :=





















q1

3q34 + 12q34 sin2 q3 + 5q4q5 sin (2q3) + q6 cos2 q3
cos7 q3

3q24 tan q3 + q5
cos4 q3
q4

cos3 q3

tan q3

q2





















.

(114)
The input transformation is derived taking time derivative of
ξ1 and ξ2 which yields to

[

ξ̇1

ξ̇2

]

=







cos q3η1

∑3
i=1

∂ξ2 (q)

∂qi+2

ψiη1 +
∂ξ2 (q)

∂q6
η2







(31)
=

[

w1

w2

]

.

(115)

Description of VI-order chained system on Lie group.

Consider control Lie algebra of 6D chained system (31) gener-
ated by two vector fields XC

1 and XC
2 . Calculating Lie brack-

ets XC
3 :=

[
XC

2 , X
C
1

]
= e3, XC

i :=
[
XC
i−1, X

C
1

]
= ei with

i := 4, 5, 6, where ei ∈ R
6 stands for ith base vector of R

6

space, one can define the following distribution

∆C = span
{
XC

1 , X
C
2 , X

C
3 , X

C
4 , X

C
5 , X

C
6

}
, (116)

which spans six-dimensional space for any ξ ∈ GC . As a
result system (31) satisfies LARC and it is controllable.

The control Lie algebra of the system is nilpotent, hence
the system can be defined on Lie group GC with the group
operation given by
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ξa ⋆ ξb=

















ξa1+ξb1

ξa2+ξb2

ξa3+ξb3+ξb1ξa2

ξa4+ξb4+
1
2ξ

2
b1ξa2+ξb1ξa3

ξa5+ξb5+
1
6ξ

3
b1ξa2+

1
2 ξ

2
b1ξa3+ξb1ξa4

ξa6+ξb6+
1
24ξ

4
b1ξa2+

1
6ξ

3
b1ξa3+

1
2 ξ

2
b1ξa4 + ξb1ξa5

















(117)
where ξa, ξb ∈ GC .The differentials of the left and right trans-
lations become

dlξa
(ξb)=













1 0 0 0 0 0

0 1 0 0 0 0

ξa2 0 1 0 0 0

ξb1ξa2+ξa3 0 0 1 0 0

1

2
ξ2

b1ξa2+ξb1ξa3+ξa4 0 0 0 1 0

1

6
ξ3

b1ξa2+
1

2
ξ2

b1ξa3+ξb1ξa4+ξa5 0 0 0 0 1













,

(118)

drξa
(ξb) =






















1 0 0 0 0 0

0 1 0 0 0 0

0 ξa1 1 0 0 0

0
1

2
ξ2a1 ξa1 1 0 0

0
1

6
ξ3a1

1

2
ξ2a1 ξa1 1 0

0
1

24
ξ4a1

1

6
ξ3a1

1

2
ξ2a1 ξa1 1






















, (119)

while adjoint operator is given by

Ad (ξ) := dlξ
(
ξ−1
)
drξ−1 (eξ) =


















1 0 0 0 0 0

0 1 0 0 0 0

ξ2 −ξ1 1 0 0 0

ξ3−ξ1ξ2

1

2
ξ2

1 −ξ1 1 0 0

1

2
ξ2

1ξ2−ξ1ξ3+ξ4 −

1

6
ξ3

1

1

2
ξ2

1 −ξ1 1 0

−

1

6
ξ3

1ξ2+
1

2
ξ2

1ξ3−ξ1ξ4+ξ5

1

24
ξ4

1 −

1

6
ξ3

1

1

2
ξ2

1 −ξ1 1


















.

(120)

Calculation of the transverse function for VI-order

chained system. Taking into account definition (48) we refer
to control Lie algebra and distribution (116). Here, we show
details of calculations of the first component of transverse
function f ξ – cf. Eq. (47). In order to calculate exponential
map 1f ξ (α1) = exp

(
XC

1 εβ1,1 sinα1 +XC
2 εβ1,2 cosα1

)
the

following differential equation can be taken into account

d

ds
1f ξ =

d

ds


















1f ξ1

1f ξ2

1f ξ3

1f ξ4

1f ξ5

1f ξ6


















=
















1

0
1f ξ2

1f ξ3

1f ξ4

1f ξ5
















εβ1,1 sinα1+













0

1

0

0

0

0













εβ1,2 cosα1.

(121)
Integrating Eq. (121) with respect to variable s under assump-
tion that α1 is a parameter (it does not depend on s) one has
in the sequel

1f ξ1 (s) =

s∫

0

εβ1,1 sinα1dτ = sεβ1,1 sinα1,

1f ξ2 (s) =

s∫

0

εβ1,2 cosα1dτ = sεβ1,2 cosα1,

1f ξ3 (s) =

s∫

0

εβ1,1 sinα1
1f ξ2 (s) dτ

= s2
ε2β1,1β1,2

4
sin (2α1) ,

1f ξ4 (s) =

s∫

0

εβ1,1 sinα1
1f ξ3 (s) dτ

= s3
ε3β2

1,1β1,2

6
sin2 α1 cosα1,

1f ξ5 (s) =

s∫

0

εβ1,1 sinα1
1f ξ4 (s) dτ

= s4
ε4β3

1,1β1,2

24
sin3 α1 cosα1,

1f ξ6 (s) =

s∫

0

εβ1,1 sinα1
1f ξ5 (s) dτ

= s5
ε5β4

1,1β1,2

120
sin4 α1 cosα1.

(122)

Next, evaluating 1f ξ (s) at s = 1 yields in definition of the
first component of the transverse function, namely 1f ξ (α1) :=
1f ξ (s) |s=1. This procedure is repeated with respect to oth-
er components of f ξ. Finally one can obtain the transverse
function given by Eq. (47).

Taking the time derivative of (47) and using differential
operators we have
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ḟ ξ =
d

dt

(
4f ξ (α4) ⋆

3f ξ (α3) ⋆
2f ξ (α2) ⋆

1f ξ (α1)
)

=
d

dt

(
l4fξ⋆3fξ

(
2f ξ ⋆ 1f ξ

))

= dl4fξ⋆3fξ

(
2f ξ ⋆ 1f ξ

) d

dt

(
2f ξ ⋆ 1f ξ

)

+dr2fξ⋆1fξ

(
4f ξ ⋆ 3f ξ

) d

dt

(
4f ξ ⋆ 3f ξ

)

= dl4fξ⋆3fξ

(
2f ξ ⋆ 1f ξ

) (

dl2fξ

(
1f ξ
)

1ḟ ξ + dr1fξ

(
2f ξ
)

2ḟ ξ
)

+dr2fξ⋆1fξ

(
4f ξ ⋆ 3f ξ

) (

dl4fξ

(
3f ξ
)

3ḟ ξ + dr3fξ

(
4f ξ
)

4ḟ ξ
)

=
∂f ξ

∂α
α̇+

∂f ξ

∂ǫ
ε̇,

(123)

where
∂f ξ

∂α
=

[
∂f ξ

∂α1

∂f ξ

∂α2

∂f ξ

∂α3

∂f ξ

∂α4

]

∈ R
6×4, with

∂f ξ

∂α1
= dl4fξ3fξ

(
2f ξ1f ξ

)
dl2fξ

(
1f ξ
) ∂
(
1f ξ
)

∂α1
,

∂f ξ

∂α2
= dl4fξ3fξ

(
2f ξ1f ξ

)
dr1fξ

(
2f ξ
) ∂
(
2f ξ
)

∂α2
,

∂f ξ

∂α3
= dr2fξ1fξ

(
4f ξ3f ξ

)
dl4fξ

(
3f ξ
) ∂
(
3f ξ
)

∂α3
,

∂f ξ

∂α4
= dr2fξf

ξ

I

(
4f ξ3f ξ

)
dr3fξ

(
4f ξ
) ∂
(
4f ξ
)

∂α4

(124)

and

∂f ξ

∂ε
= dl4fξ3fξ

(
2f ξ1f ξ

)

·

(

dl2fξ

(
1f ξ
) ∂
(
1f ξ
)

∂ε
+ dr1fξ

(
2f ξ
) ∂
(
2f ξ
)

∂ε

)

+ dr2fξ1fξ

(
4f ξ3f ξ

)

·

(

dl4fξ

(
3f ξ
) ∂
(
3f ξ
)

∂ε
+ dr3fξ

(
4f ξ
) ∂
(
4f ξ
)

∂ε

)

∈ R
6.

(125)

Derivation of open-loop dynamics (73). Calculating the
term żξ from relationship (72) gives

żξ =
(

dr
f

ξ (zξ)
)−1 ˙̃

ξ −
(

dr
f

ξ (zξ)
)−1

dlzξ

(

f
ξ
)

ḟ
ξ

(16)
= dr

f
ξ −1

(

zξ ⋆ f
ξ
)

˙̃
ξ − dr

f
ξ −1

(

zξ ⋆ f
ξ
)

dlzξ

(

f
ξ
)

ḟ
ξ

(42),(68)
= dr

f
ξ −1

(

ξ̃
)

XC
(

ξ̃
)

(Cξw + p̃)

−dr
f

ξ −1

(

ξ̃
)

dlzξ

(

f
ξ
)

XC
(

f
ξ
)

(Aαα̇+Aαr
α̇r +Aεε̇)

(12)
= dr

f
ξ −1

(

ξ̃
)

dlzξ

(

f
ξ
)

XC
(

f
ξ
)

· (Cξw + p̃− Aαα̇−Aαr
α̇r −Aεε̇) .

(126)

Next we consider term dr
f

ξ −1

(

ξ̃
)

dlzξ

(

f
ξ
)

XC
(

f
ξ
)

more

thoroughly. Taking into account that dlzξ

(

f
ξ
)

XC
(

f
ξ
)

=

dlzξ

(

f
ξ
)

dl
f

ξ (eξ)X
C (eξ) and dl

f
ξ (eξ) = dr

f
ξ (eξ)Ad

(

f
ξ
)

gives

dr
f

ξ −1

(

ξ̃
)

dlzξ

(

f
ξ
)

XC
(

f
ξ
)

= dr
f

ξ −1

(

ξ̃
)

dlzξ

(

f
ξ
)

dr
f

ξ (eξ)Ad
(

f
ξ
)

XC (eξ)

= dr
f

ξ −1

(

ξ̃
)

dlzξ

(

f
ξ
)

dr
f

ξ (eξ)X
C

· (eξ)X
C (eξ)

−1Ad
(

f
ξ
)

XC (eξ)
︸ ︷︷ ︸

AdXC
�
f

ξ
� .

(127)

Expanding the following terms dr
f

ξ −1

(

ξ̃
)

=

drξ̃−1⋆zξ

(

ξ̃
)

= drzξ
(eξ) drξ̃−1

(

ξ̃
)

and dlzξ

(

f
ξ
)

=

dl
ξ̃⋆ f

ξ −1

(

f
ξ
)

= dlξ̃ (eξ) dl
f

ξ −1

(

f
ξ
)

and using them in

(127) yields in

dr
f

ξ −1

(

ξ̃
)

dlzξ

(

f
ξ
)

dr
f

ξ (eξ)X
C (eξ)Ad

XC
(

f
ξ
)

= drzξ
(eξ) drξ̃−1

(

ξ̃
)

dlξ̃ (eξ)
︸ ︷︷ ︸

Ad(ξ̃)

dl
f

ξ −1

(

f
ξ
)

dr
f

ξ (eξ)
︸ ︷︷ ︸

Ad
�
f

ξ −1
�

·XC (eξ)Ad
XC
(

f
ξ
)

= drzξ
(eξ)Ad

(

ξ̃ ⋆ f
ξ −1

)

XC (eξ)Ad
XC
(

f
ξ
)

= drzξ
(eξ)Ad (zξ)

︸ ︷︷ ︸

dlzξ
(eξ)

XC (eξ)Ad
XC
(

f
ξ
)

(12)
= XC (zξ)Ad

XC
(

f
ξ
)

.

(128)
Substituting (127) to (126) implies

żξ = XC (zξ)Ad
XC
(

f
ξ
)

· (Cξw + p̃−Aαα̇−Aαr
α̇r −Aεε̇) .

(129)

Optimization of control law. Assume that control effort is
given by Eq. (79). Taking into account input transformations
(35) and (6) with (10) gives

w = U
(

θ̃,Ψ (ψ)
)

T (ψ) v. (130)

Then, one can consider the following map

w = Tv, (131)

with
T :=

[
U(θ̃,Ψ(ψ))T (ψ) 02×4

04×2 I4×4

]

∈ R
6×6. (132)

In order to simplify calculations the closed-loop dynamics
(73) is rewritten as follows

żξ = H
(
Cξw + b

)
, (133)

where H := XC (zξ)Ad
XC
(

f
ξ
)

and b := p̃−Aεε̇−Aαr
α̇r.

We consider minimization of performance index J (v) un-
der constraint (80). Substituting (133) to (80) gives

z⊤ξ Qv + z⊤ξ Hb+ z⊤ξ W2zξ = 0, (134)
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with
Q := HCξT . (135)

The necessary condition for optimal solution taking into ac-
count constraint (80) can be written as follows

∂

∂v

(
1

2
v⊤W1v + λz⊤ξ (Qv +Hb+W2zξ)

)

= 0, (136)

where λ ∈ R stands for Lagrange multiplier. Consequently,
one obtains

W⊤
1 v + λQ⊤zξ = 0 (137)

which yields in

v = −λW⊤
1

−1
Q⊤zξ. (138)

Next using (138) in (134) one can calculate λ as follows

λ =
z⊤ξ (W2zξ +Hb)

z⊤ξ QW
⊤
1

−1
Q⊤zξ

. (139)

Finally one can formulate optimal control defined by Propo-
sition 2.
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