
BULLETIN OF THE POLISH ACADEMY OF SCIENCES

TECHNICAL SCIENCES, Vol. 60, No. 3, 2012

DOI: 10.2478/v10175-012-0066-x

SELECTED PROBLEMS OF ROBOT CONTROL

Trajectory tracking control with obstacle avoidance capability

for unicycle-like mobile robot
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Poznań University of Technology, Chair of Control and Systems Engineering, 3a Piotrowo St., 60-965 Poznań, Poland

Abstract. In this paper the trajectory tracking control algorithm with obstacle avoidance capability is presented. As a robot gets into a

neighborhood of the obstacle, the collision avoidance behavior is turned on. It is implemented using the artificial potential function (APF)

that increases to infinity as the robot approaches a boundary of the obstacle. This feature guarantees collision avoidance. As avoidance

behavior is active only in the neighborhood of the obstacle it does not affect the motion when there is no risk of the collision. Authors

show that trajectory of the robot converges to desired one when a robot is out of the APF area. Due to a local characteristic of the APF,

the implementation of the algorithm of the robot that uses only on-board sensors is possible. The stability proof is presented for both a near

obstacle and obstacle-free areas. Effectiveness of the algorithm is illustrated with experiments on a real robot in an environment with static

circle-shaped obstacles.
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1. Introduction

One of the classical motion control tasks for mobile robots is

the trajectory tracking one, which has been treated by many

authors during the last two decades of robotics research (se-

lected surveys can be found in [1–3]). Usually, the motion

control solutions are proposed under assumption that the ro-

bot movement takes place in an obstacle-free environment.

As a consequence, the stability and convergence analysis of a

closed-loop control system does not take into account possible

collisions which may happen between a robot and obstacles.

Furthermore, it is also commonly assumed that the a’priori-

planned reference trajectory is itself collision-free. In practice,

however, such the prerequisites may become quite limiting,

not only due to the obvious reasons but also due to the high

computational power usually required for the collision-free

motion planning task when performed for a cluttered robot

environment [4]. Hence, the practically-motivated approaches

to trajectory tracking problem should go further toward the

motion control problem extension which admits existence of

obstacles in the robot motion space, and toward its solution

which would improve reliability to the possible and unexpect-

ed collision events.

So far, a number of different collision avoidance strategies

have been proposed in the literature. The fundamental work

[5] treats the avoidance problem from the formal Lyapunov

perspective. Some new results can be also found in [6]. When

considering obstacles they usually are surrounded by convex

local zones (usually of circular shape) within which artifi-

cial potential functions (APFs) are defined [7–9]. The role

of APFs is to repel the robot body when it is too close to

the obstacle boundary. This approach can be used in a case

of static obstacles but it can be efficient also in the case of

dynamic obstacles, which can be represented by other robots

moving in a task space in the multiagent systems of mobile

sensor networks [10–21]. The collision-cone concept adopt-

ed for instance in [22] and [23] is based on the geometrical

approach formulated by using some azimuthal and radial dis-

tances. Fluid-flow techniques has been adapted to avoidance

control and presented for example in the recent papers [24,

25]. An alternative approach utilizes the so-called navigation

function [26] which leads to the solution without any local

minima. In this case the control problem can be solved even

for a very complex geometry of robot environment [27], but

utilization of the method requires very large computational

effort making the concept less popular in applications.

In the paper we propose a geometrically motivated control

solution to the merged two control problems – trajectory track-

ing and obstacle collision avoidance. We consider the problem

of asymptotic tracking of admissible and persistently exciting

reference trajectories in the task space where multiple sepa-

rated static obstacles are present. Our solution is dedicated to

the unicycle-like robot in the form of a differentially driven

kinematic vehicle of (2,0) type [28]. The characteristic proper-

ties of the concept proposed in the result from its geometrical

origins (VFO) with clear physical interpretation of particular

control components, and integration of an additional avoid-

ance (repelling) control term to the original VFO tracking

controller presented in details in [29]. Thus, the method is

an intuitive extension of the VFO tracking controller, which

adds a practical feedback (reactive) functionality of collision

avoidance activated only inside the defined local zones sur-

rounding obstacles by the artificial potential functions. This

paper is an expanded version of our recent work presented

in [30].

The paper is organized as follows. In Sec. 2 kinematic

model of the robot and artificial potential function utilized to

avoid collisions are presented. In Sec. 3 VFO control algo-
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rithm expanded with collision avoidance module is described.

In Sec. 4 a stability and convergence proofs of the closed-loop

system are provided. Experimental results are presented and

commented on in Sec. 5. Section 6 concludes the paper.

2. Robot kinematics and APFs

2.1. Unicycle-like mobile robot. The kinematic model of a

robot is given by the equation:






θ̇

ẋ

ẏ






=







1 0

0 cos θ

0 sin θ







[

u1

u2

]

, (1)

where x, y, and θ are position and orientation coordinates

of the robot (Fig. 1), and u =
[

u1 u2

]T

is the control

vector, which includes u1 – angular velocity control and u2

– longitudinal velocity control.

Fig. 1. Model of the mobile robot

2.2. Artificial potential functions. Each obstacle located at

position poi = [xoi yoi]
T is surrounded by the artificial po-

tential field which exerts a repelling force on robot entering

neighborhood of the obstacle. In this paper it is assumed that

all obstacles are covered by the circles (Fig. 3).

Let us define the set of coordinates for the collision area

of the i-th obstacle:

∆i =
{

p ∈ R
2, li ≤ ri

}

, (2)

where p =
[

x y
]T

and li = ‖p − poi ‖, the set of coor-

dinates for the repel area:

Γi = {p /∈ ∆i, ri < li < Ri} , (3)

and Di = ∆i ∪Γi - the set that includes both areas, where ri

is the radius of the least circle that covers the obstacle, and

Ri is the radius of the area where the repel force caused by

APF acts.

The artificial potential function (APF) is given by the fol-

lowing equation [9]:

Boi(li) =











not defined for li < ri

e
li−ri

li−Ri for ri ≤ li < Ri

0 for li ≥ Ri

, (4)

where ri > 0, Ri > 0 fulfill inequality Ri > ri, and li is the

distance to the obstacle.

The collision avoidance task requires the APF to attain

to infinity as the Euclidean distance to the boundary of the

colliding object decreases to zero. To fulfill this condition Eq.

(4) is mapped to 〈0,∞〉 using the following transformation:

Voi(li) =
Boi(li)

1 − Boi(l)
. (5)

In Fig. 2 an example of the APF for r = 1 and R = 2 is pre-

sented. The function is smooth in the whole range: l ∈ 〈r,∞).
Other APF’s can be found in the literature [12, 10]. The for-

mer is non-smooth but applicable to the kinematic algorithm

presented here, the latter is smooth but it is integral-based and

requires many iterations to be computed precisely.
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Fig. 2. Scaled APF: Voi(li) ∈ 〈0,∞)

3. Control law formulation

Definition 1. [Control problem] Let us define the admis-

sible reference trajectory qd(t) = [θd(t) pT
d (t)]T ∈ R3,

pd(t) = [xd(t) yd(t)]
T ∈ R2 which fulfills kinematics (1) for

some bounded reference input ud(t) = [u1d(t) u2d(t)]
T ∈ R2

with the following persistent excitation condition: ∀ t ≥ 0 :
u2d(t) 6= 0. Assuming that:

A1. ∀ t ≥ 0 pd(t) /∈ D = ∪iDi

A2. p(t) ∈ Γ = ∪iΓi ⇒ qd(t) = qd(t
−), q̇d(t) = q̈d(t) ≡ 0

A3. Di ∩ Dj = ∅, i 6= j

the aim is to find the bounded feedback control law u =
u(qd, q, ·) which guarantees that the tracking errors

eθ = fθ(θd − θ), fθ : R 7→ S1 (6)

e(t) = pd(t) − p(t) =

[

ex

ey

]

(7)

asymptotically converge to zero and p(t) /∈ ∆ = ∪i∆i.

Assumption A1 means that planned trajectory does not in-

tersect APF regions. In the case the robot is out of the APF the

task for the robot is pure trajectory tracking. As later shown

that the robot’s trajectory converges to the desired trajectory

only out of the APF area the assumption A1 is necessary to
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let the position error converge to zero. When the robot gets

near the obstacle the tracking task is modified to avoid col-

lision. As the robot approaches the boundary of the obstacle

the tracking task become less important and convergence is

more disturbed.

As collision avoidance is of a higher priority problem, because

possible collision could lead to system damage, the trajectory

tracking is temporarily suspended to facilitate bypassing the

obstacle (assumption A2). After the robot leaves the colli-

sion avoidance region the desired trajectory is updated. This

behavior causes that desired trajectory jumps form the point

where it was suspended to the current desired position.

Assumption A3 means that obstacle’s APFs are separat-

ed from each other. This feature guarantees that there are no

local minima in the task space. Local minima can lead to a

deadlock.

Now the trajectory tracking algorithm with collision avoid-

ance will be presented. We propose to use the modified Vec-

tor Field Orientation method (VFO) [29]. It was expanded to

avoid collisions by replacing tracking error from the original

algorithm with modified tracking error that incorporates repel

term.

We propose the following convergence vector:

h =







h1

h2

h3






,







k1ea + θ̇a

kpEx + ẋd

kpEy + ẏd






, (8)

where k1, kp > 0 are orientation and position control gains,

respectively. Modified tracking error E is computed as a dif-

ference between the tracking error and the sum of gradients

of the APFs associated with the obstacles:

E =
[

Ex Ey

]T

, e − w, (9)

where w is defined as follows:

w =
M
∑

i=1

[

∂Voi(li)

∂p

]T

. (10)

In the above equation Voi(li) is the APF of the i-th obstacle,

li = ‖p − pi‖ is the distance between the robot and the cen-

ter of the i-th obstacle for i = 1, . . . , M , M - the number

of obstacles. Due to assumption A3 only one component of

the sum in the right hand side of Eq. (10) is active at the

moment. A graphical interpretation of the modified position

error is shown in Fig. 3.

The auxiliary orientation error is defined as ea = θa − θ.

The auxiliary orientation variable θa has the following form:

θa = Atan2c(σdh3, σdh2) (11)

where σd = sgn(u2d) denotes the signum function and

Atan2c(·, ·) is a continuous version of Atan2(·, ·). The def-

inition of Atan2c(·, ·) can be found in [29]. The term σd in

(11) determines the strategy of the platform motion along the

trajectory (forward or backward).

Fig. 3. Robot is in the repel area of obstacle O1. Modified position

error E is computed as a difference between the tracking error and

the gradient of the APF

The control vector u =
[

u1 u2

]T

is given by the

following equation:

u1 = h1

u2 = h2 cos θ + h3 sin θ
. (12)

4. Stability and convergence analysis

In this section proofs of stability and convergence are pre-

sented. According to assumption A3 the indexes denoting the

number of the obstacles are omitted in this section without

loss of generality.

The proof consists of three steps: 1. limt→∞(θ(t) −
θa(t)) = 0 - proof of convergence of the orientation to the

auxiliary orientation variable, 2. limt→∞(p(t) − pd(t)) = 0

- proof of stability and asymptotic convergence of the robot

position to the reference position, 3. limt→∞ eθ = 0 - proof

of convergence of the auxiliary orientation variable to the de-

sired orientation. Finally collision avoidance prof is shown.

Considering the first stem one has to substitute the first

row of (8) into the first equation of (12) and using the first

row of Eq. (1) we get: ėa = −k1ea, which guarantees that an

auxiliary orientation error decreases exponentially to zero:

lim
t→∞

ea = 0, (13)

and the robot orientation converges exponentially to the aux-

iliary orientation.

In order to prove the second step the following Lyapunov

function candidate is proposed:

Vl =
1

2
eT e + Vo(l) =

1

2

(

e2
x + e2

y

)

+ Vo(l), (14)

where Vo is a potential given by (5).

Time derivative of (14) is as follows:

dVl

dt
= exėx + ey ėy +

∂Vo

∂x
ẋ +

∂Vo

∂y
ẏ. (15)

Substitution of θ = θa − ea into second row of Eq. (12)

results in so colled transformed pushing control:

u2 = h2 cos(θa − ea) + h3 sin(θa − ea). (16)
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Using trigonometric identities in Eq. (16) gives:

u2 = h2(cos(θa) cos(ea) + sin(θa) sin(ea))

+h3(sin(θa) cos(ea) − cos(θa) sin(ea)).
(17)

Taking into account that:

sin(θa) = σd

h3

‖h∗‖
, cos(θa) = σd

h2

‖h∗‖
, (18)

where h∗ =
[

h2 h3

]T

, equation (17) is simplified to:

u2 = σd ‖h
∗‖ cos(ea). (19)

Using above equation the second and the third row of the

model (1) are transformed as follows:

ẋ = σd ‖h
∗‖ cos(ea) cos(θ) (20)

ẏ = σd ‖h
∗‖ cos(ea) sin(θ). (21)

Substituting θ = θa − ea into above equations and using

trigonometric identities yields:

ẋ = σd ‖h
∗‖ cos(ea) [cos(θa) cos(ea) + sin(θa) sin(ea)]

(22)

ẏ = σd ‖h
∗‖ cos(ea) [sin(θa) cos(ea) − cos(θa) sin(ea)] .

(23)

Substituting (18) into (22) and (23), taking into consider-

ation that σ2
d = 1 and simplifying results in:

ẋ = h2 cos2(ea) + h3 sin(ea) cos(ea) (24)

ẏ = −h2 sin(ea) cos(ea) + h3 cos2(ea). (25)

Time derivative of the Lyapunov function (15) can be cal-

culated as follows:

dVl

dt
= ex(ẋd − ẋ) + ey(ẏd − ẏ) +

∂Vo

∂x
ẋ +

∂Vo

∂y
ẏ. (26)

Taking into account that

ex = Ex +
∂Vo

∂x
and ey = Ey +

∂Vo

∂y

one obtains:

dVl

dt
= exẋd + ey ẏd − Exẋ − Ey ẏ. (27)

Substituting equations (24) and (25) into (27) and simpli-

fying gives:

dVl

dt
= exẋd + ey ẏd

+Ex(−h2 cos2(ea) − h3 sin(ea) cos(ea))

+Ey(h2 sin(ea) cos(ea) − h3 cos2(ea)).

(28)

The last equation can be transformed using the definition of

convergence vector as follows:

dVl

dt
= exẋd + eyẏd − kpE

2
x cos2(ea)

−kpE
2
y cos2(ea) − Exẋd cos2(ea) − Ey ẏd cos2(ea)

−Exẏd sin(ea) cos(ea) + Eyẋd sin(ea) cos(ea).

(29)

Two cases are investigated separately:

C1. p ∈ Dc, Dc = R
2\D,

C2. p ∈ Γ.

In case C1 Ex = ex and Ey = ey . The time derivative of

the Lyapunov function is as follows:

dVl

dt
= exẋd + eyẏd − kpe

2
x cos2(ea) − kpe

2
y cos2(ea)

−exẋd cos2(ea) − ey ẏd cos2(ea)

−exẏd sin(ea) cos(ea) + eyẋd sin(ea) cos(ea).

(30)

Using identity sin2(·) = 1 − cos2(·) and substituting exẏd −
eyẋd = ‖e× q̇d‖ into above equation one can write:

dVl

dt
= exẋd sin2(ea) + ey ẏd sin2(ea) − kpe

2
x cos2(ea)

−kpe
2
y cos2(ea) − ‖e × q̇d‖ sin(ea) cos(ea).

(31)

Taking into account that ‖e× q̇d‖ = ‖e‖ ‖q̇d‖ sin α,

where α = ∠(e,q̇d) and introducing matrix Q =
diag{kp cos2(ea), kp cos2(ea)} time derivative of the Lya-

punov function fulfills the following inequality:

dVl

dt
6 −eT Qe + ‖e‖ ‖ṗd‖ [sin2(ea)

− sinα sin(ea) cos(ea)] = −W.
(32)

Using (32) one can easily show that function W is positive

definite if:

‖e‖ >
1

λmin(Q)
[‖ṗd‖ sin ea(sin ea − sin α cos ea)] , (33)

where λmin(Q) is the smallest eigenvalue of matrix Q. Tak-

ing into account that ea converges exponentially to zero ac-

cording to Eq. (13) one can conclude that

lim
t→∞

e(t) = 0. (34)

In case C2 the time derivative of the Lyapunov function is as

follows:

dVl

dt
= −kpE

2
x cos2(ea) − kpE

2
y cos2(ea). (35)

It always fulfills the condition V̇l 6 0 and the system is stable.

To show the convergence of eθ, in the third step note that for

e → 0 the auxiliary orientation variable (11) takes the form

θa = Atan2c(σdẏd, σdẋd), that is equivalent to the reference

orientation generated according to model (1). The above result

together with (13) leads to:

lim
e→0

(θa(e)−θd) = 0
(13,34)
⇒ lim

t→∞

eθ(t) = 0±2kπ (36)

where k = 0, 1, . . ..

In [17] methodology for designing control laws that guar-

antees collision avoidance in multiagent systems is presented.

These concepts can be applied also to a single robot control

system in the environment with static obstacles. Taking into

account that Vl is nonincreasing in Γ as shown above (case

C2) and designed APF fulfills condition liml→r+ Vo(l) =
+∞ utilizing results from [17] we conclude that the robot
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will never enter the set ∆. Thus, collision avoidance is guar-

anteed.

Remark 4.1. When the robot reaches a saddle point, the

reference trajectory is disturbed to drive the robot out of a

local equilibrium point.

A saddle point is non-attracting, however, robot can
get stuck in it. The disturbance on the reference trajecto-
ry is necessary to push it way. This technique was dis-
cussed in detail in [7]. As shown in [26] there is one sad-
dle point associated with each circle-shaped obstacle (Fig. 4).

Fig. 4. Saddle point near the obstacle

Remark 4.2. In some configurations the following con-

dition may occur: ‖h∗‖ = 0. In this case θa(t) cannot be

computed by Eq. (11) and the previous value of the auxiliary

orientation variable is taken: θa(t) = θa(t−).

The situation described in Remark 4.2 occurs at a saddle

point. Equality ‖h∗‖ = 0, may also occur outside Γi, howev-

er, this state is non-attracting and the same strategy as shown

in Remark 4.2 is applicable.

5. Experimental results

Before the control values are applied to the motion controllers

they are transformed to the wheel velocities:

ωR =
u2 +

1

2
bu1

rw

, ωL =
u2 −

1

2
bu1

rw

, (37)

where rw is the radius of the robot wheels and b is the dis-

tance between robot wheels.

Practical realization of the control algorithm requires con-

trol input consideration. In the case of a differentially-driven

wheeled vehicle the kinematic limitation is imposed on the

maximum angular velocity ωw max > 0 which can be realized

by the vehicle wheel. In order to take into account this limit

the following control scaling procedure is proposed. Denoting

by ω = [ωR ωL]T the computed and unlimited control input

vector from (37), the scaled and physically realizable input

ωd = [ωRd ωLd]
T can be obtained as follows:

ωd(τ) =
ω(τ)

s(τ)
, (38)

where

s(τ) = max

{

1,
|ωR(τ) |

ωw max
,
|ωL(τ) |

ωw max

}

≥ 1. (39)

The above scaling procedure keeps the direction of the

rescaled (limited) control vector ωd equal to the previously

computed control vector ω preserving in turn the instanta-

neous vehicle motion curvature κ = ω/v, where v is linear

velocity of the platform.

As Eq. (10) produces infinitely large values for l = r and

the procedure given by (38) is used to make control feasible,

the condition R− r ≫ 0 must be fulfilled to avoid collisions.

5.1. Experimental set-up. Experimental tests were carried

out using the MTV3 differentially-driven mobile robot pre-

sented in Fig. 5. Three LED markers were mounted on the

vehicle top for use with the vision localization system em-

ployed in the control scheme as illustrated in Fig. 5. All the

control blocks of the proposed algorithm were implemented

on an external PC computer (platform control level). The de-

sired angular wheel velocities ωd computed on the platform

control level were transmitted through the radio link to the PI

regulatory loops working on the vehicle board (drive control

level). The feedback rate of the platform control level with

vision feedback was equal to 45 Hz; the drive control level

worked at the rate of 512 Hz. In the theoretical analysis the

time delay of the control loop was not taken into account.

By the use of faster control and transmission hardware the

disturbances caused by the delay can be reduced. The upper

bound of the delay is 22ms in case there are no frame losses

(99% frames was transmitted correctly in practice).

a)

b)

Fig. 5. Mobile robot MTV3 used in experiments (a) and a block

schema of the control system (b)

5.2. Experiment 1 – collision avoidance with a single ob-

stacle. In Figs. 6–10 experimental results for robot in an

environment with a single obstacle are shown. The values

of the control parameters are as follows: k1 = 2, kp = 1,

ωw max = 10 rad/s. An obstacle with radius r = 0.1 m is

placed at position PO1 = (0.48 m, −0.3 m) and the radius

of the APF is R = 0.3m. The desired trajectory is a Lissajous

curve with the center at the origin. In Fig. 7 time graphs of

the position error components, and in Fig. 8 orientation error

Bull. Pol. Ac.: Tech. 60(3) 2012 541
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and auxiliary orientation error are presented. The discontinu-

ity at t ∼= 5s is caused by updating the desired trajectory when

the robot leaves the APF area of the obstacle (when desired

trajectory is unfrozen desired position ’jumps’ to perform im-

posed task). In Fig. 9 time evolution of controls are shown.

Fig. 6 presents the desired and real path of the robot. In this

figure it also can be observed that after the robot leaves the

APF, the desired point on the trajectory jumps some distance.

In Fig. 10 time evolution of collision avoidance term ‖w‖ is

shown. It is increased as the robot approaches the obstacle.

The dashed line represents a logical variable that indicates

whether the robot is in Γ: it is 0 when the robot is in the area

of the obstacle’s APF and 1 otherwise. This value indicates

also when desired trajectory is frozen (0) or not (1).
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Fig. 6. Experiment 1: trajectory of the robot and desired trajectory

on the (x, y) plane
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Fig. 7. Experiment 1: position errors as a function of time
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Fig. 8. Experiment 1: angle errors as a function of time
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Fig. 9. Experiment 1: longitudinal and angular controls
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Fig. 10. Experiment 1: module of the collision avoidance compo-

nent of the control (‖w‖) and logical value that indicates collision

avoidance is on (value 0) off (value 1)

−0.2 0 0.2 0.4 0.6 0.8 1

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

x [m]

y 
[m

]

Fig. 11. Experiment 2: trajectory of the robot and desired trajectory

on the (x, y) plane
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Fig. 12. Experiment 2: position errors as a function of time
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Fig. 13. Experiment 2: angle errors as a function of time
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Fig. 14. Experiment 2: longitudinal and angular controls
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Fig. 15. Experiment 2: module of the collision avoidance compo-

nent of the control (‖w‖) and logical value that indicates collision

avoidance is on (value 0) off (value 1)

To make the experiment more difficult the initial posi-

tion of the robot was chosen near the saddle point (Fig. 4).

The chattering observed in the transient state is caused by the

delays in the control loop. Oscillations of this kind were not

observed in simulations. The most time consuming operations

are: acquisition of data from the vision system, computation

of the robot’s position and sending the controls to the low

level motion controllers through the serial radio link.

5.3. Experiment 2 – collision avoidance with a single ob-

stacle without freezing the desired trajectory. Experiment

2 was conducted in the same environment as in case of exper-

iment 1. The control parameters are also the same, however,

assumption A1 from definition 1 is removed. There is no sta-

bility proof for this case but the presented experiments show

that the system works well. In Fig. 12 the position errors and

in Fig. 13 orientation errors are shown. Compared to the pre-

vious experiment fewer oscillations are observed when robot

gets into the APF area. The graphs of control signals are sim-

ilar (Fig. 14), but robot leaves the set Γ of the obstacle 2

seconds earlier. In Fig. 15 time evolution of the module of

collision avoidance component of the control ‖w‖ is shown.

The value of collision avoidance component of the control

reaches similar values to these shown in previous case, how-

ever, the number of enterings into the repel area is reduced

significantly. Figure 11 presents the desired and real paths of

the robot.

5.4. Experiment 3 – collision avoidance with two obstacles.

In Figs. 16–20 the results for a more complex environment

are presented. The desired trajectory is frozen as in experi-

ment 1. In Fig. 17 the time graphs of position errors and in

Fig. 18 orientation errors are shown. A discontinuity caused

by switching on the desired trajectory can be easily observed

at t ∼= 4s. The robot gets to the APF area of both obstacles.

Fig. 16 presents the position on the (x, y) plane. Control sig-

nals reach higher values (Fig. 19) as compared to these in

experiments 1 and 2. Collision avoidance ‖w‖ of control is

presented in Fig. 20.
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Fig. 16. Experiment 3: trajectory of the robot and desired trajectory

on the (x, y) plane
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Fig. 17. Experiment 3: position errors as a function of time
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Fig. 18. Experiment 3: angle errors as a function of time

0 5 10 15

−20

−10

0

10

20

30

t [s]

u 1 (
−

) 
[r

ad
/s

], 
u 2 (

−
 −

) 
[m

/s
]

Fig. 19. Experiment 3: longitudinal and angular controls
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Fig. 20. Experiment 3: module of the collision avoidance compo-

nent of the control (‖w‖) and logical value that indicates collision

avoidance is on (value 0) off (value 1)

5.5. Experiment 4 – collision avoidance with two obstacles

without freezing the desired trajectory. In Figs. 21–25 the

results for an environment with two obstacles are shown. The

desired trajectory is not frozen when robot gets into the APF.

In this case a second collision caused multiple changes of the

motion direction (Fig. 21). In this case position error (Fig.

22) and orientation error (Fig. 23) graphs are similar to these

presented in the previous case. Also controls (Fig. 24) are

similar, however leaving the repel area of the obstacle takes

about 0.5s longer as compared to the previous case. This can

be observed in the time graph of repulsive control component

‖w‖ (Fig. 25).
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Fig. 21. Experiment 4: trajectory of the robot and desired trajectory

on the (x, y) plane
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Fig. 22. Experiment 4: graph of ex, ey as a function of time
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Fig. 23. Experiment 4: angle errors as a function of time
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Fig. 24. Experiment 4: longitudinal and angular controls
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Fig. 25. Experiment 4: module of the collision avoidance compo-

nent of the control (‖w‖) and logical value that indicates collision

avoidance is on (value 0) off (value 1)

5.6. Experiment 5 – collision avoidance with two obsta-

cles – high value of ωw max. In this case it is presented how

a value of ωw max parameter influences task performance. In

the experiment limit of 40 rad/s was set on robots wheels.

This parameter can be used to tune the control algorithm

according to practical abilities of the robot. In the present

case the robot’s path approaches closely the boundary of the

obstacle (Fig. 26). It is caused by delays that exist in real

systems due to communication between sensors, main control

module, low-level motor controllers and inertia of the actua-

tors. These delays play more important role as velocity of the

robot increases because the platform passes longer distance

during control-loop time delay. This delay causes that robot
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Fig. 26. Experiment 5: trajectory of the robot and desired trajectory

on the (x, y) plane
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Fig. 27. Experiment 5: graph of ex, ey as a function of time
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Fig. 28. Experiment 5: angle errors as a function of time
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Fig. 29. Experiment 5: longitudinal and angular controls
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Fig. 30. Experiment 5: module of the collision avoidance compo-

nent of the control (‖w‖) and logical value that indicates collision

avoidance is on (value 0) off (value 100)

approaches the obstacle closer. The value of the repulsion

component of the control is significantly larger in comparison

to earlier experiments. The controls (Fig. 29) and ‖w‖ (Fig.

30) reach high values. In Fig. 27 the time graphs of position

errors and in Fig. 28 orientation errors are shown.

6. Conclusions

In this paper the VFO control method expanded with col-

lision avoidance module was presented. Collision avoidance

behavior was implemented utilizing local artificial potential

functions. The main advantages of this approach are low com-

putational power required to perform the task in comparison

to global solutions, like the navigation function approach [26],

[27] and possibility of implementation of the robot equipped

only with on-board sensors (with limited sensing range). On

the other hand, the proposed solution can be applied only in
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the environment where obstacles can be covered with sep-

arated circle-shaped areas. This can be seen as significant

weakness in some applications. The proof of stability and

convergence of the algorithm are given. The effectiveness of

the method was illustrated by a number of experiments. In the

near future results for the proposed approach applied to many

robots will be published.
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