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Abstract. Independent Component Analysis (ICA) plays an important role in biomedical engineering. Indeed, the complexity of processes

involved in biomedicine and the lack of reference signals make this blind approach a powerful tool to extract sources of interest. However, in

practice, only few ICA algorithms such as SOBI, (extended) InfoMax and FastICA are used nowadays to process biomedical signals. In this

paper we raise the question whether other ICA methods could be better suited in terms of performance and computational complexity. We

focus on ElectroEncephaloGraphy (EEG) data denoising, and more particularly on removal of muscle artifacts from interictal epileptiform

activity. Assumptions required by ICA are discussed in such a context. Then fifteen ICA algorithms, namely JADE, CoM2, SOBI, SOBIrob,

(extended) InfoMax, PICA, two different implementations of FastICA, ERICA, SIMBEC, FOBIUMJAD, TFBSS, ICAR3, FOOBI1 and 4-

CANDHAPc are briefly described. Next they are studied in terms of performance and numerical complexity. Quantitative results are obtained

on simulated epileptic data generated with a physiologically-plausible model. These results are also illustrated on real epileptic recordings.
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1. Introduction

The removal of muscular artifacts from ElectroEncephalo-

Graphic (EEG) data is a crucial preprocessing step for further

analysis of EEG in the diagnosis of epilepsy from Video-EEG

recordings. Indeed, in the particular context of epilepsy, EEG

signals of interest, such as interictal spikes or ictal discharges,

may be corrupted by muscular or myogenic activity arising

from the contraction of head muscles. As already reported [1],

these artifacts are difficult to remove. This is especially due

to i) their high amplitude (possibly several times larger than

the EEG signal), ii) the large frequency range of their com-

ponents and iii) their variable topographical distribution. Due

to the complexity of the involved physiological processes and

the lack of reference signals, researchers have mostly consid-

ered Blind Source Separation (BSS) techniques to solve the

EEG denoising problem [2–6].

Among BSS approaches, Independent Component Analy-

sis (ICA) is one of the most famous, especially in biomedical

engineering [7, 8]. It was historically the first to be applied

to EEG denoising for muscular activity [1, 9, 10]. Indeed,

by assuming that EEG data can be modeled as a noisy static

mixture of mutual independent sources associated with dif-

ferent physiological phenomena, ICA is generally considered

as a powerful tool for extracting the EEG signals of interest

[11–13]. However to date, only a few ICA algorithms such as

SOBI [14, 15], (extended) InfoMax [16, 17] and FastICA [18,

ch.6] are used in practice to process biomedical signals.

In this paper, we have examined whether other ICA meth-

ods perform better or enjoy lower computational complexity,

especially for the removal of muscle artifacts from interictal

epileptiform activity. We first discuss the EEG denoising prob-

lem and the assumptions required by ICA. Second, classical

statistical tools are provided in order to understand how the

ICA concept can be implemented. Next, representative meth-

ods of two classes, including the most used ICA techniques in

signal processing, are briefly described and studied in terms of

performance and numerical complexity: techniques based on

the Differential Entropy (DE) such as (extended) InfoMax [16,

17], PICA [19] and two different implementations of FastICA

[18, ch.6] versus cumulant-based methods. Among cumulant-

based techniques, representative algorithms of three subfam-

ilies are studied: i) the techniques using only SO statistics of

the data such as SOBI [14, 15], SOBIrob [20], TFBSS [21],

ii) the algorithms based on SO and FO statistics such as JADE

[22], CoM2 [23], and iii) the methods requiring only HO sta-

tistics such as ERICA [24], SIMBEC [25], FOBIUMJAD [26,

27], ICAR3 [28, 29], FOOBI1 [30], 4-CANDHAPc [31, 32].

Quantitative results are obtained on simulated epileptic da-

ta generated with a physiologically-plausible model [33–35].

These results are also illustrated on real data recorded in a pa-

tient with epilepsy.

2. Problem formulation and assumptions

Let’s model the EEG signal recorded from N electrodes as

one realization of an N -dimensional random vector process

{x[k]}. Each random vector x[k] can then be written as the

following noisy static mixture of statistical random processes

called sources:
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x[k] = A(e)s(e)[k] + A(b)s(b)[k] + A(m)s(m)[k] + n[k]

x[k] = A s[k] + n[k]
(1)

where {s(e)[k]}, {s(b)[k]}, {s(m)[k]}, {n[k]} are random vec-

tor processes representing the Pe epileptic activity sources,

the Pb background activity sources, the Pm muscular activity

sources and the N -dimensional instrument noise, respectively.

The mixing matrices A(e), A(b) and A(m) model the transfer

from all possible sources of activity within the brain to scalp

electrodes.

The assumption of static linear model comes from the

mathematical formulation of the EEG/MEG forward prob-

lem. More precisely it comes from the use of the quasi-

static formulation of Maxwell’s equations, called Poisson’s

equations, in order to compute the electrical transfer between

the cortex and the scalp [36]. Indeed, the time-derivatives

of the associated electric fields are sufficiently small to be

ignored in classical Maxwell’s equations. As far as the statis-

tical properties of vector random process {s(e)[k]}, {s(b)[k]},

{s(m)[k]} and {n[k]} are concerned, we can assume that they

are independent as they correspond to different physiologi-

cal/physical phenomena. Nevertheless, such an assumption is

not valid within each vector random processes regarding its

components. In particular, the Pe epileptic activity sources of

{s(e)[k]} may be statistically mutually dependent. Eventual-

ly, the {n[k]} vector random process can be assumed to be

Gaussian as most of instrument noises.

Consequently, by using ICA, at best we can hope to iden-

tify three vector subspaces corresponding to the epileptic

sources, the muscular sources and the background sources, re-

spectively, but not exactly the Pe +Pb +Pm sources involved

in Eq. (1). Note that this subspace identification is sufficient

for the EEG denoising problem since we don’t want to ex-

actly extract the Pe epileptic sources; in fact, we just want to

remove the contribution of the muscular and background ac-

tivities from the scalp data. Indeed, once the epileptic source

subspace is identified by applying ICA to the scalp data, we

get an estimate of A(e)s(e)[k] for every time index m, say an

estimate of the denoised scalp data. Nevertheless, as shown

in Sec. 5, the estimation of the three subspace dimensions

remains a difficult issue.

3. Statistical tools and ICA methods

3.1. Statistical tools characterizing mutual independence.

Let’s recall how to characterize the statistical independence

of a set of P random signals {yp[k]}m∈N and how to use

it in order to blindly separate mixed mutually independent

sources. A random vector y=[y1, · · · , yP ]T has mutually in-

dependent components if and only if its Probability Density

Function (PDF) py can be decomposed as the product of the

P marginal PDFs, pyp
, where pyp

denotes the PDF of the p-th

component yp of y.

Then a natural way of checking whether y has indepen-

dent components is to measure a pseudo-distance between py

and
∏

p pyp
. Such a measure can be chosen among the large

class of f -divergences. If the Kullback divergence is used, we

get the Mutual Information (MI) of y [18]:

MI(y) =

∫RP

py(u) log

(
py(u)

∏P

p=1 pyp
(up)

)
du. (2)

It can be shown that the MI vanishes if and only if the P
components of y are mutually independent, and MI is strictly

positive otherwise.

Another measure based on the PDF of y is the DE of y:

S(y) = −

∫RP

py(u) log(py(u)) du = −E[log(py(y))] (3)

sometimes referred to as Shannon’s joint entropy, where E[·]
denotes the mathematical expectation. This entropy is not in-

variant by an invertible change of coordinates, but only by or-

thogonal transforms. A fundamental result in information the-

ory is that the DE can be used as a measure of non-gaussianity.

Indeed, among the random vectors having an invertible covari-

ance matrix, the Gaussian vector is the one that has the largest

entropy. Then, to obtain a measure of non-gaussianity of y that

is i) zero only for a Gaussian vector, ii) always positive and

iii) invariant by any linear invertible transformation, one often

uses a normalized version of the DE, called negentropy, and

given by [18, ch.3]:

J(y) = S(z) − S(y), (4)

where z stands for the Gaussian vector with the same mean

and covariance matrix as y. Since MI and negentropy are sim-

ply related to each other [23], estimating the negentropy al-

lows to estimate the MI. However, even if consistent estimators

of PDFs exist (e.g. Parzen estimators [37]), the computation

of integral (3) is time consuming, and often prohibitive.

A way to avoid the exact computation of the negentropy

consists in using another measure of statistical independence

that is less accurate but easier to compute. The contrast func-

tion [23, definition 5] built from the data cumulants satisfies

this condition. From now on, we shall assume that all random

variables are real. If we consider Φx(u) = E[exp(iuTx)] as

the first characteristic function of a random vector x, since

Φx(0) = 1 and Φx is continuous, then there exists an open

neighborhood of the origin, in which Ψx(u)=log(Φx(u)) can

be defined. The r-th order moments are the coefficients of the

Taylor expansion of Φx about the origin, up to a multiplicative

coefficient ir/r!. Similarly cumulants, denoted by Ci,j,··· ,ℓ,x,

are the coefficients of the second characteristic function, Ψx,

up to a multiplicative coefficient of the same form [18, ch.3].

It is noteworthy that the components of the (N × N ) well-

known covariance matrix of an N -dimensional random vector

x exactly match the Second Order (SO) cumulants of x. By

analogy, the (N2 × N2) matrix containing the Fourth Order

(FO) cumulants of x is usually called the quadricovariance
matrix.

Cumulants are more appropriate than moments for ICA

context. Indeed, cumulants enjoy two important properties.

First, if at least two components or groups of components

of x are statistically independent, then all cumulants involv-

ing these components are null. For instance, if all com-

ponents of x are mutually independent, then Ci,j,··· ,ℓ,x =
δ[i, j, · · · , ℓ] Ci,i,··· ,i,x, where the Kronecker δ[i, j, · · · , ℓ]
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equals 1 when all its arguments are equal and is null oth-

erwise. Second, if x is Gaussian, then all its Higher Order

(HO) cumulants, i.e. cumulants of order strictly greater than

two are null. So HO cumulants may be seen as a distance

to normality. Note that moments do not enjoy these two key

properties. Moments and cumulants share two other useful

properties. On the one hand, they are both symmetric arrays,

since the value of their entries does not change by permutation

of their indices. Consequently, covariance and quadricovari-

ance matrices are necessarily symmetric. On the other hand,

moments and cumulants satisfy the multi-linearity property

[38], which is illustrated in [12, equ. (5) and (6)]. In practice,

cumulants can be estimated using both the Leonov-Shiryaev

formula [39] and sample statistics [38]. More precisely, the

Leonov-Shiryaev formula allows us to relate any qth order

cumulant to moments of order lower than or equal to q. For

example, the SO and FO cumulants of any zero-mean random

vector x symmetrically distributed are given by:

Cn1,n2,x = E[xn1
xn2

]

Cn1,n2,n3,n4,x = E[xn1
xn2

xn3
xn4

] − E[xn1
xn2

]E[xn3
xn4

]

−E[xn1
xn3

]E[xn2
xn4

] − E[xn1
xn4

]E[xn2
xn3

]

And a consistent estimate of q-th order moments of any

stationary ergodic process is given by sample statistics. Hence

the above relations allow to define consistent estimates of cu-

mulants, called κ-statistics [38].

3.2. Classical ICA techniques. The InfoMax [16, 17] and

FastICA [18, ch.6] methods avoid the exact computation of

the integral given in (3). In fact, InfoMax solves the ICA

problem by maximizing the DE of the output of an invert-

ible non-linear transform of y[k]=WTx[k] with respect to W

using the natural gradient algorithm [40]. In practice, non-

linearities whose derivative are sub-Gaussian (resp. super-

Gaussian) PDFs are sufficient for sub-Gaussian (resp. super-

Gaussian) sources [16]. Regarding the deflationary implemen-

tation of FastICA, referred as to FastICAdef in the sequel, the

p-th (1≤p≤P ) source is extracted by maximizing an approxi-

mation of the negentropy J(w T

p x[k]) with respect to the (N×1)

vector wp. This maximization is achieved using an approxi-

mate Newton iteration, which actually reduces to a variable-

step gradient algorithm. To prevent all vectors wp from con-

verging to the same maximum (which would yield several

times the same source), the p-th output is decorrelated from

the previously estimated sources after every iteration using a

simple Gram-Schmidt orthogonalization. A non-deflation im-

plementation of FastICA, referred as to FastICAsym in the

following, which simultaneously extracts all sources, also ex-

ists. The joint orthogonalization is similar to that originally

proposed in [41, 42].

In order to cover a wide range of source distributions (i.e.

symmetric, assymmetric and multimodal), authors in [19] pro-

pose the Pearson-based ICA method, named PICA. This al-

gorithm solves the ICA problem by maximizing the DE via

a maximization of the likelihood of the separator W. In this

approach, the parametric Pearson model is used to model the

source distributions. Parameters of this model can be comput-

ed using the statistical moments up to the fourth order [19].

In addition to the easy and fast computation of these parame-

ters, Pearson parametric model also shows a good robustness

against outliers. Finally, either the relative gradient [43], the

natural gradient [40] or the fixed-point [44] algorithms can

be used in order to maximize the used maximum likelihood

function.

Cumulants can be used instead of non-linearities matched

to the PDFs of the sources as proposed in [24]. According to

[24], a solution to the ICA problem is nothing else than a sad-

dle point of the obtained cumulant-based DE cost function.

This is the principle of the Equivariant Robust ICA (ERICA)

algorithm [24], which uses a quasi-Newton approach to get the

saddle point. Authors show that its convergence is isotropic

and independent of the source statistics. In addition, the SIM-

BEC (SIMultaneous Blind signal Extraction using Cumulants)

algorithm proposed in [25] optimizes the maximum likelihood

criterion using a gradient algorithm on the Stiefel manifold.

This is done by resorting to a cumulant index-based objective

function and consequently no a priori on the sources densities

is required [25]. This function satisfies two important prop-

erties. First, it is real positive and its minimum value occurs

when the normalized random variables follows a Gaussian

distribution. Second, it is strictly convex with respect to the

linear combination of the independent sources. Then, SIM-

BEC solves the ICA problem by looking for the maxima of

that cumulant index-based objective function [25, Theorem 1].

The JADE [22], CoM2 [23], SOBI [14, 15], SOBIrob [20],

FOBIUMJAD [27], TFBSS [21], ICAR3 [29], FOOBI1 [30]

and 4-CANDHAPc [32] methods also perform ICA using cu-

mulants of the data [18]. SOBI, SOBIrob and TFBSS use SO

cumulants, CoM2 and JADE use both the SO and FO cumu-

lants, and FOBIUMJAD, ICAR3, FOOBI1 and 4-CANDHAPc

only use the FO cumulants of the data. Next, JADE, SOBI,

SOBIrob, TFBSS, FOBIUMJAD, ICAR3, FOOBI1 take ad-

vantage of the algebraic structure of the covariance and/or

quadricovariance matrices by reformulating the ICA problem

as a joint diagonalization problem [45, 46], while CoM2 ex-

plicitly maximizes a contrast function based on the FO cumu-

lants of the data by rooting successive polynomials. Note that

the JAD method [45] was originally used to implement the

JADE, SOBI, SOBIrob, TFBSS, FOBIUMJAD, ICAR3 and

FOOBI1 algorithms. Eventually 4-CANDHAPc makes use of

the canonical decomposition [47] of a third order array having

one unitary loading matrix. Such a decomposition is achieved

by alternating between solving the Procrustes problem [48]

and the computation of rank-one matrix approximations. Note

that both SOBI approaches and the TFBSS method jointly

diagonalize time delayed and time-frequency covariance ma-

trices of the standardized data, respectively.

In an attempt to analyze more specifically the differences

between these ICA methods, the following remarks can be

made. First of all, contrary to the other algorithms, CoM2,

along with the seven methods based on a joint diagonaliza-

tion scheme are semi-algebraic, i.e. they are based on a finite

sequence of optimization problems for which an algebraic so-
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lution is available. No particular initialization is required con-

trary to the other iterative approaches, and, in practice, they

converge to the global solution even if no theoretical global

convergence proof is yet available today. Moreover, contrary

to the other methods, FOBIUMJAD, ICAR3, FOOBI1 and 4-

CANDHAPc require that all sources have FO marginal cumu-

lants with the same sign. Unfortunately, such an assumption

is not always realistic in biomedical contexts [49]. Anoth-

er difference is the need for a spatial whitening (also called

standardization) [23, Subsec. 2.2] [18]. This preprocessing,

based on SO cumulants, is mandatory for JADE, CoM2, SO-

BI, SOBIrob, PICA, for both implementations of for FastI-

CA and TFBSS. Although it is not necessary, spatial whiten-

ing is highly recommended in InfoMax in order to improve

its speed of convergence [50]. Regarding ERICA, SIMBEC,

FOBIUMJAD, ICAR3, FOOBI1 and 4-CANDHAPc, they can

work with HO cumulants without any standardization. In such

a case, they are then asymptotically insensitive to the pres-

ence of a Gaussian noise with a non-diagonal covariance ma-

trix. Nevertheless, preliminary computer results showed that

a whitening should be used for the seven latter methods in the

context of EEG denoising. We think that such a preprocessing

forces the estimated mixing matrix to be well-conditionned

while the original one is clearly underdetermined according

to Eq. (1). Our best results were obtained for a standardization

without any reduction of dimension. It is noteworthy that con-

trary to the other whitening-based approaches, the whitening

of SOBIrob is made using non-zero delayed covariance matri-

ces. SOBIrob is then asymptotically insensitive to the presence

of a temporally white noise. Moreover, contrary to the oth-

er methods, SOBI and SOBIrob need that all sources have

different spectra. As far as TFBSS is concerned, it requires

that all sources are non-stationnary but ergodic. Eventually,

all methods except TFBSS, rely on the stationarity-ergodicity

assumption to ensure an asymptotical mean square conver-

gence of statistical estimators. Such an assumption is very

rarely fulfilled in the context of EEG signals and a consistence

analysis is difficult in the presence of such complex biomed-

ical signals. Nevertheless the good behavior of some of these

techniques on biomedical data shows that the stationnarity-

ergodicity assumption is not absolutely necessary. Regarding

the cumulant-based methods, even if sample statistics do not

estimate accurately the cumulants of the data, they still satis-

fy reasonably the basic properties enjoyed by cumulants (see

Subsec. 3.1).

4. Numerical complexity of ICA algorithms

Although the ultimate goal of comparing denoising approach-

es is to evaluate the quality of methods as reflected by the

reconstructed signals, it is also interesting to assess the nu-

merical complexity of these methods. Numerical complexity

is defined here as the number of floating point operations re-

quired to execute an algorithm (flops). A flop corresponds to

a multiplication followed by an addition. But, in practice, on-

ly the number of multiplications is considered since, most of

the time, there are about as many (and slightly more) multi-

plications as additions. In order to simplify the expressions,

the complexity is generally approximated by its asymptotic

limit, as the size of the problem tends to infinity. We shall

subsequently denote, with some small abuse of notation, the

equivalence between two strictly positive functions f and g:

f(x) = O[g(x)] or g(x) = O[f(x)] (5)

if and only if the ratio f(x)/g(x) tends to 1 as x → ∞.

In practice, knowing whether an algorithm is computationally

heavy is as important as knowing its performances in terms

of SNR. Yet, despite its importance, the numerical complexi-

ty of the ICA algorithms is poorly addressed in the literature.

This section first addresses the complexity of some elementary

mathematical operations needed by ICA algorithms. Then, the

numerical complexity of various ICA algorithms are reported

and compared to each other as a function of the number of

sources.

Many ICA algorithms use standard Eigen Value Decom-

position (EVD) or Singular Value Decomposition (SVD), for

instance when a whitening step is required to reduce the di-

mensions of the space. In addition to these decompositions,

many other elementary operations are also considered such as

solving a linear system, matrix multiplication, joint diagonal-

ization of several matrices and computation of cumulants in

the particular case of cumulant-based algorithms.

• Let A and B be two matrices of size (N×P ) and (P×N ),

respectively. Then the numerical complexity of their prod-

uct G = AB is equal to N2P flops, since each element of

G requires P flops to be computed. The latter amount can

be reduced to (N2 + N)P/2 = O[N2P/2] flops if G is

symmetric.

• The solution of a N ×N linear system via the LU decom-

position requires approximately O[4N3/3] flops.

• The numerical complexity of the SVD of A = UΛVT is

given by O[2N2P +4NP 2+14P 3/3] when it is computed

using the Golub-Reinsch algorithm [51]. This amount can

be considerably reduced to O[2N2P ] when A is tall (i.e.

N ≫P ) using Chan’s algorithm [52], known to be suitable

in such a case.

• The numerical complexity of the EVD G = L Σ LT is

O[4N3/3] flops.

As mentioned previously, all considered methods in this

paper use a whitening step. Therefore computing the numer-

ical complexity of this step is mandatory in our evaluation

study. The so-called spatial whitening of the observed da-

ta consists of applying a linear transform so that the latent

variables (sources) become as decorrelated as possible in the

new coordinate system. To do so, this linear transformation is

computed as the inverse of the square root of the EVD of the

covariance matrix of the observations, [18, ch.1].

Hence and according to Table 1, the numerical complexity

of this whitening step is equal to KN2/2 + 4N3/3 + PNK
flops, where K denotes the number of data samples. How-

ever, for the special case N ≪ K , this linear transformation

can be efficiently computed using the SVD of the data matrix

X as proposed by Chan [52]. Then, the numerical complex-
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ity of such computation is reduced to O[2KN2] flops. As a

result, when the minimal numerical complexity of the whiten-

ing step is considered, it is equal to min(KN2/2+4N3/3+
PNK+, 2KN2) flops.

Table 1

Numerical complexity of elementary operations generally used in the ICA

methods. A and B are two matrices of size (N×P ) and (P ×N ),

respectively. I and M stand for the number of executed sweeps and the

number of matrices to be jointly diagonalized, respectively. f2q(N) denotes

the number of free entries in the 2q-th order cumulant array

Numerical complexity (flops)

G = AB N2P

Lin. system solving 4N3/3

SVD of A 2N2P + 4NP 2 + 14P 3/3

EVD of A 4N3/3

JAD [45] (Symmetric case) IN(N − 1)(4NM + 17M + 4N + 75)/2

Estimation of the 2q-th (2q − 1)Kf2q(N)

order cumulants array

EVD – based whitening KN2/2 + 4N3/3 + PNK

SVD – based whitening O[2KN2]

Some ICA algorithms [14, 21, 22, 53] are based on the

joint orthogonal approximate diagonalization of a set {Gm}
of M matrices of size (N×N ). Recall that the joint orthogonal

diagonalization problem is defined as the search for a unitary

linear transformation that jointly diagonalizes the target ma-

trices Gm. A Jacobi-like algorithm such as JAD [45] is com-

monly used for joint orthogonal diagonalization. Its numerical

complexity is equal to IN(N−1)(4NM+17M+4N+75)/2
flops if the M matrices Gm are symmetric where I stands for

the number of executed sweeps.

Finally, regarding cumulant estimation, the computation of

the 2q-th order cumulant of a N -dimensional random process

requires (2q − 1)K flops where K stands for the data length.

Consequently, the number of flops required to compute the

2q-th order cumulant array exploiting all its symmetries is

then given by (2q − 1)Kf2q(N) flops where f2q(N) denotes

the number of its free entries and is given as a function of N ,

for q = 1, 2, 3, by:

f2(N) =
N2 + N

2
= O

[
N2

2

]
,

f4(N) =
1

8
N(N + 1)(N2 + N + 2) = O

[
N4

8

]
,

f6(N) =
N6

72
+

N5

12
+

13N4

72
+

N3

4
+

22N2

72
+

N

6
O

[
N6

72

]
.

Table 1 summarizes the numerical complexity of the elemen-

tary operations considered in this paper.

Based on the complexity of these elementary operations,

the numerical complexity of each of the fifteen ICA methods

we have selected is given in Table 2. Again, we insist that

a whitening procedure has been applied in all methods.

Table 2

Numerical complexity of fifteen ICA algorithms

Computational complexity

N : number of EEG electrodes, P : number of sources, iti, i ∈ {1, · · · , 12}: number of iterations in PICA, InfoMax, FastICAsym ,

FastICAdef , ERICA, SIMBEC, 4-CANDHAPc , Q: required complexity to compute the roots of a real 4-th degree polynomial by

Ferrari’s technique in CoM2, Lw , Nt, Nf , M1 and M2: smoothing window’s length, number of time bins, number of frequency bins,

number of matrices referred to the time-frequency point wherein sources are of significant energy and number of matrices among those

M1 ones with only one active source in the considered time-frequency point, respectively, in TFBSS, δωi
= 1 if i ∈ {2, · · · , 6} and

δωi
= 0 otherwise.

SOBIrob MKN2/2 + 5M2N3 − M3N3/3 + 2MN2P + MP 2N + MP 2 + (MP 2 + 4P 3/3)J1 + MP + MN2 + 2N3/3 + NP +
(3N − P )P 2/3 + IP (P − 1)(17M + 75 + 4P + 4PM)/2

SOBI min{KN2/2 + 4N3/3 + PNK,2KN2} + 4N3/3 + (M − 1)N3/2 + IP (P − 1)(17(M − 1) + 75 + 4P + 4P (M − 1))/2

TFBSS min(KN2/2 + 4N3/3 + PNK+,2KN2) + 2P log2P + P + (K + Lw + log2(Lw))NtNfP (P + 1)/2 + 2M1P 3/3 + 3T2 +
IP (P − 1)(4PM2 + 17M2 + 4P + 75)/2

PICA min(KN2/2 + 4N3/3 + PNK,2KN2) + (P 3 + (K + 1)P 2 + 3PK)it1

InfoMax min(KN2/2 + 4N3/3 + PNK,2KN2) + (P 2 + P 3 + 4P + 5KP )it2

FastICAdef min(KN2/2 + 4N3/3 + PNK,2KN2) + (2(P − 1)(P + K) + 5KP (P + 1)/2)it3

FastICAsym min(KN2/2 + 4N3/3 + PNK,2KN2) + 2N3/2 + (16P 3/3 + P 2 + 3KP 2)it4

CoM2 min(KN2/2 + 4N3/3 + PNK,2KN2) + IP 2Q/2 + min(12If4(P )P 2 + 2IP 3 + 3Kf4(P ) + KP 2, 13IKP 2/2)

JADE min(KN2/2 + 4N3/3 + PNK,2KN2) + 3Kf4(P ) + KP 2 + min(4P 6/3, 8P 3(P 2 + 3)) + IP (P − 1)(75 + 21P + 4P 2)/2

ERICA min(KN2/2+4N3/3+PNK+,2KN2)+PNT +9PN2+ 11
3

N3+N2+N +it7(PNT +5P 2T +4PT +3P 2+3P 3+P 2N)

SIMBEC min(KN2/2 + 4N3/3 + PNK+,2KN2) + N2T + 5P 2 + 9PN2 + 11
3

N3 + N2 + N + it5(PNT + δω2
(NPT + NP +

P 2N + P 3) + δω3
(2PT + NPT + NP + P 2N + P 3) + δω4

(2PT + 3NPT + 2NP 2 + P 3) + δω5
(5PT + 3NPT + NP 3 +

NP + 2P 2N + P 3) + δω6
(7PT + 5NPT + 4NP 2 + P 2N + P 3) + 12P 2 + 12P 2N + 22

3
P 3 + NP )

FOBIUMJAD min(KN2/2+4N3/3+PNK+, 2KN2)+3MLf4(N)+2N6/3+P 2(3N2−P )/3+(M −1)N6/2+IN2(N2−1){4N2(M−
1) + 17(M − 1) + 4N2 + 75}/2 + 2N3P

ICAR min(KN2/2 + 4N3/3 + PNK+,2KN2) + K(3f4(N) + 2N6/3 + P 2(3N2 − P )/3 + N2P + (8NP 2 + 11N3/3 + N2 +
N)N + N2P 2(N − 1) + IP (P − 1)(75 + 9N(N − 1) + 8PN(N − 1) + 4P ) + IN(N − 1)(4N2 + 21N + 75)/2

FOOBI1 min(KN2/2 + 4N3/3 + PNK+,2KN2) + 3Lf4(N) + 2N6/3 + P 2(3N2 − P )/3 + N2P + N2P 2 + 2P (P + 1)N4 +
min{7M3m2

3 + 11m3
3/3, 3M3m2

3}+ IP (P − 1)[4P 2 + 21P + 75]/2 + N2P (P + 1) + min{6N3P, (2N3/3 + (3N − 1)/3)P}

4-CANDHAPc min(KN2/2 + 4N3/3 + PNK+,2KN2) + 97
72

N6 + N2P 2 + (3N2P 2 + 8
3
PN3 + 10PN + 35

3
P 3 − 2

3
P )it12 + P (IN(N −

1)(8N + 90))/2
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5. Performance analysis on simulated data

Two experiments are considered in this section to evaluate

the fifteen ICA algorithms in the context of epileptic signals

(interictal spikes) corrupted by muscle artifacts. The first one

uses synthetic spike-like epileptic EEG signals generated by

realistic biomathematical models in order to quantify the per-

formance of the methods. In the second experiment, real data

are processed in order to get qualitative results. In the first ex-

periment, the behavior of ICA methods is studied as a function

of the Signal to Noise Ratio (SNR), for a fixed data length

of K = 8192 samples, which corresponds to 32 seconds. All

reported results are obtained by averaging over 50 realizations

the outputs of the performance criterion subsequently defined.

5.1. Data generation. The main purpose of this subsection

is to explain how we obtain synthetic but realistic data for

quantifying the performance of the methods. The simulated

32-channels EEG data (one observation is displayed in Fig. 1)

are generated with a spatio-temporal model developed by our

team [33–35]. In this model, EEG sources were represented

as a dipole layer distributed over the cortical surface. The

geometrical description of the cortical surface was achieved

by using a mesh made of 19626 triangles (mean surface of

4.8 mm2) obtained from the segmentation of the gray-white

matter interface from a patient 3D T1-weighted MRI. Each

triangle of the mesh was associated to an elementary current

dipole. The dipole was placed at the barycenter of the tri-

angle and oriented perpendicular to its surface. The moment

of each dipole was weighted by a coefficient proportional to

the area of the corresponding triangle. In addition, each di-

pole was assumed to correspond to a distinct cortical neuronal

population. Its time course, which represents the time-varying

dynamics of the associated population, was provided by the

output of a neuronal population model [54], in which parame-

ters can be adjusted to generate either background-like activity

or interictal-spikes. In this model the source of these epilep-

tic activities was manually delineated on the mesh as a set of

contiguous triangles. Dipoles associated with triangles with-

in the patch were assigned highly correlated interictal spike

activities (i.e. transient interictal spikes) using an appropriate

setting of coupling parameters between populations. All oth-

er dipoles of the cortical mesh were assigned a null activity.

From this setup, we built a spatio-temporal source matrix S(e)

containing the time-varying activities of all cortical epileptic

dipoles. The p-th line of this matrix contains the time-course

of the p-th dipole within the patch. According to Sec. 2, ma-

trix S(e) also represents one realization of the vector random

process {s(e)[k]} (1).

Fig. 1. Example of denoising obtained in the case of simulated data: i) noise free simulated EEG (column 1), ii) noisy EEG after adding

real muscle activity with SNR = -25 dB (column 2), iii) EEG denoised by Infomax (column 3), iv) EEG denoised by CoM2 (column 4),

and v) EEG denoised by TFBSS (column 5)
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Scalp EEG data were then generated using a realistic head

model representing the brain, the skull and the scalp [55].

From this head model, the forward problem was then numeri-

cally solved for each triangle within the patch using a bound-

ary element method (ASA, ANT, Enschede, Netherlands) to

obtain the leadfield matrix A(e) of equation (1). This mixing

matrix gives the contribution of each dipole of the patch at

the level of 32 scalp electrode positions (19-20 standard 10-

20 electrodes plus additional electrodes at FC1, FC2, FC5,

FC6, CP1, CP2, CP5, FT9, FT10, P9, P10 and POZ). The

(N × K) matrix X(e) of scalp epileptic data is thus given by

X(e) = A(e) S(e). In this paper we considered a single patch,

made of 100 contiguous triangles (5 cm2) located in the left

superior temporal gyrus, where the activities of dipoles with-

in the patch were highly correlated. In addition, for each ex-

periment and each trial, EEG muscle activity was extracted

from real 32-channel EEG data in order to generate the matrix

X(b,m) = A(b) S(b)+A(m) S(m)+N of noisy scalp background

and muscular activities, given in (1). More precisely, each tri-

al of EEG muscle activity was normalized with respect to the

channel showing the maximal power. Then, different levels of

amplitude of noisy background and muscular activities were

added to the simulated spike activities to get noisy simulated

signals with different SNR values.

5.2. Performance criterion. The performance of the fifteen

ICA methods has been evaluated by computing the following

Normalized Mean-Squared Error (NMSE):

NMSE =
N∑

n=1





∑L

ℓ=1

∑K

k=1

(
x

(e)
n [k] − x̂

(e,ℓ)
n [k]

)2

L
∑K

k=1 x
(e)
n [k]

2



 , (6)

where {x
(e)
n [k]} is the n-th row of the X(e) matrix defined in

Subsec. 5.1, {x̂
(e,ℓ)
n [k]} is the reconstructed surface EEG after

denoising from the ℓ-th run, L is the number of Monte Carlo

runs, K is the data length and N is the number of electrodes.

More particularly, the independent components extracted by

each method from the ℓ-th run are classified in a descending

order according to their respective autocorrelation values. As

the autocorrelation of muscle artifacts is relatively low with

respect to that of epileptic spikes, the independent compo-

nents representing muscle artifacts are expected to be among

the last components. In turn, components of interest are classi-

fied among the first components, which facilitates their visual

selection. Then, the signal vector {x̂
(e,ℓ)[k]} is reconstructed

by keeping only the components accounting for the sources

of interest (epileptic spikes).

5.3. Effect of SNR. The objective of this experiment is to

i) evaluate the impact of SNR on the quality of source ex-

traction and ii) to compare the numerical complexity of the

fifteen algorithms. The data length, K , is fixed to 8192 sam-

ples, the SNR values are equal to −30, −25, −20, −15, −10
and −5 dB, and the number P of sources varies, in the range

P ∈ {2, 3, 4, 5, 6, 7, 8, 12, 16, 20, 24, 28, 32}. For conciseness,

we display in Fig. 1 an example of EEG signals denoised by

only three methods, namely TFBSS, CoM2 and InfoMax. In

the original un-noisy EEG (Fig. 2, left), the spike-like activity

was clearly visible at electrode T3 (facing the patch), whereas

it is entirely buried in noisy data (Fig. 2, column 2). The spike

activity at electrode T3 was well reconstructed with TFBSS,

InfoMax and CoM2. However, for InfoMax and CoM2, the

diffusion of this activity on other channels was slightly differ-

ent than in original data. This difference is more visible when

the TFBSS method is considered.

Fig. 2. NMSE as a function of SNR for K = 8192 data samples taking the number P of independent components such that each method
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gives the best NMSE

Fig. 3. Numerical complexity as a function of SNR for K = 8192 data samples taking the number P of independent components such that

each method gives the best NMSE

Figures 2 and 3 show the variations of NMSE and the

numerical complexity of the fifteen methods as a function of

SNR, respectively. Note that, in the following, the NMSE and

the numerical complexity are only illustrated by choosing the

value of P yielding the best NMSE. In addition, the methods

are classified into two main categories: i) methods with clas-

sical standardization, namely JADE, CoM2, SOBI, SOBIrob,

PICA, FastICAsym, FastICAdef and TFBSS, and ii) methods

using a standardization without any reduction of dimension,

namely FOBIUMJAD, FOOBI1, ICAR3, 4-CANDHAPc, In-

foMax, ERICA and SIMBEC.

From Fig. 2, we can observe that JADE, CoM2, SOBI,

SOBIrob, PICA, FastICAsym and FastICAdef have a quasi-

similar behaviour, whatever the SNR value. FOOBI1, ICAR3

and 4-CANDHAPc are slightly less effective than the seven

previous methods, especially in the case of high SNR values

(−10 and −5 dB). Regarding the FOBIUMJAD and TFBSS

algorithms they clearly show a poorer performance than that

of the other algorithms. The SIMBEC method performs simi-

larly to InfoMax for SNR values equal or higher than −20 dB

and presents the best performance for an SNR lower than

−20 dB. The ERICA method exhibits a performance similar

to that of most of other algorithms for an SNR ranging from

−30 dB to −25 dB, but becomes less efficient as the SNR of

simulated data increases. Results obtained on methods of sec-

ond category tend to demonstrate that using a standardization

without any reduction of dimension as a preprocessing step

forces the estimated mixing matrix to be well-conditionned.

The computational complexity (Fig. 3) is calculated by

fixing the intrinsic parameters of each method according to

those chosen to compute the NMSE criterion. In general, we

can observe that, for each method, the numerical complexity

is roughly stable, whatever the SNR values. More precise-

ly, FOBIUMJAD, TFBSS and SIMBEC methods require the

largest number of calculations. These three methods are fol-

lowed by PICA, ERICA, SOBI, SOBIrob, JADE, FastICAsym

and FOOBI1. Regarding the remaining algorithms (CoM2,

FastICAdef , ICAR3, 4-CANDHAPc and InfoMax), and more

particularly CoM2, ICAR3, and InfoMax, they require a small-

er amount of calculations. These results can partially be ex-

plained by the number of independent components P need-

ed by each method to reach the best NMSE. Figure 4 indi-

cates for each trial and for three SNR values (−30, −15 and

−5 dB) the number P required by each method to obtain the

best performance. We observe that all methods of the first

category (JADE, CoM2, SOBI, SOBIrob, PICA, FastICAsym,

FastICAdef and TFBSS), ERICA, SIMBEC and InfoMax gen-

erally require the extraction of P = 32 independent com-

ponents to obtain the best performance, whereas most of

methods of second category, namely FOBIUMJAD, FOOBI1,

ICAR3 and 4-CANDHAPc need a smaller number of inde-

pendent components to reach an equivalent performance.

The NMSE and the numerical complexity calculations

of the fifteen methods indicate, in the simulated context of

epileptic signals (interictal spikes) corrupted by muscle ar-

tifacts, that: i) InfoMax generally presents the best perfor-

mance in the sense of NMSE criterion, ii) CoM2 offers the

best NMSE versus numerical complexity compromise, and

iii) FOBIUMJAD and TFBSS provide the worse results in

terms of performance and computational complexity.
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Fig. 4. Histogram of the number P of independent components required by each method to obtain the best NMSE: i) SNR equal to −30

dB (blue bar), ii) SNR equal to −15 dB (green bar), and iii) SNR equal to −5 dB (grey bar)

6. Application to real data

In this section we propose to test the feasibility of ICA al-

gorithms on real data. For conciseness, only results given by

TFBSS, CoM2 and InfoMax are shown. It is worth noting that

these three methods were marked out by their results on simu-

lated EEG data in terms of NMSE and numerical complexity

in the previous section. The three methods were applied to the

denoising of interictal spikes in a patient suffering from drug-

resistant partial epilepsy. As part of his presurgical evaluation,

this patient underwent two sessions of video-EEG monitoring,

brain Magnetic Resonance Imaging (MRI), as well as interic-

tal and ictal Single-Photon Emission Computed Tomography

(SPECT) acquisition. During video-EEG monitoring, scalp-

EEG data were acquired from 32 electrodes (19-20 standard

10-20 electrodes plus additional electrodes at FC1, FC2, FC5,

FC6, CP1, CP2, CP5, FT9, FT10, P9, P10 and POZ) at a sam-

pling frequency of 256 Hz.

These data were reviewed in order to isolate three epochs:

i) two epochs containing a clean spike (figure 5, first and sec-

ond column), and ii) one epoch including spikes hidden in

muscle activity with very high level of noise (Fig. 5, third

column). The same procedure as for simulated data was ap-

plied to reconstruct the denoised EEG signals. In addition, to

evaluate the qualitative performance of the three methods, a

source localization was performed on the two original cleaned

signals (considered as a reference), on the noisy data, as well

as on the latter data denoised by TFBSS, CoM2 and InfoMax,

respectively. The recent 4-ExSo-MUSIC algorithm [56] was

used to achieve the source localization. Figure 5 illustrates

that interictal spikes were visible at electrodes F8, T4, FC5,

and FT10 of the two epochs of clean data (columns 1 and 2),

whereas they were hidden in the noisy data (column 3). Clear-

ly, the three ICA-methods enhance the interictal spikes at F8,

T4, FC5, and FT10 electrodes and do not increase the diffu-

sion of spikes on the remaining electrodes. We also calculated

the numerical complexity of TFBSS, CoM2 and showed (in

agreement to the simulated results) that CoM2 required the

smallest amount of calculations (about 8.107 flops), InfoMax

used about 4.109 flops and TFBSS needed a larger amount of

calculations (about 2.1012 flops).

Regarding the source localization results (bottom of each

column of Fig. 5), the spikes were localized in the right anteri-

or temporal region for the first epoch of clean data (column 1)

and both in the right temporal neocortex and in the right in-

sula for the second epoch of clean data (column 2). Even if

these localizations were slightly different, they were in gen-
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Fig. 5. Denoising of real interictal spikes data: i) two noise-free interictal spikes (columns 1 and 2), ii) epoch including spikes hidden

in muscle activity with very high level of noise (column 2), iii) EEG denoised by Infomax, CoM2 and TFBSS (columns 3, 4 and 5,

respectively). The source localization results at the output of 4-ExSo-MUSIC are depicted at the bottom of each column

eral consistent with the visual interpretation of T1-weighted

MRI data and also corroborated by interictal SPECT data. For

the noisy epoch (column 3), the spike source was incorrect-

ly localized in the left temporal region. Spike data denoised

by CoM2 were localized both in the right temporal neocortex

and in the right insula in agreement with the source local-

ization obtained from the second epoch of clean data. The

localization results at the output of InfoMax and TFBSS were

quasi-similar with those obtained from the second epoch of

clean data.

The results obtained on real interictal epileptic spikes sug-

gest that choosing the appropriate ICA method for processing

actual data in the context of interictal epileptic spikes is not an

easy task. Indeed, it is not obvious to know the true epileptic

area with a perfect accuracy, since two clean epochs recorded

in the same patient can lead to slightly different source loca-

tions. Consequently, it is clearly not possible to say which ICA

method denoises better the epileptic spikes on real data, since

the source localization after each ICA-based denoising is con-

sistent with that obtained from one of both epochs of clean

data. In terms of performance, we can just say that each of our

tested ICA methods is doing its work properly, i.e. it removes

successfully the muscle artifacts without altering the interictal

epileptic spikes, and it significantly improves the quality of

the source localization. As far as the numerical complexity is

considered, CoM2 would be the most appropriate choice.

7. Conclusions

Advanced epilepsy research and diagnosis require precise in-

formation, which can be extracted from non-invasive EEG

data. However, EEG signals may be unfortunately contami-

nated by instrumental noise and various electrophysiological

artifacts, such as power line noise, broken wire contacts, oc-

ular movements and muscular activity. These types of noise

and artifacts hide physiological activities of interest. Among

all these artifacts, the muscular activity is particularly difficult

to remove. Previous investigations in the biomedical engineer-

ing context showed that ICA is an efficient approach for the

blind extraction of components of interest from a noisy mix-

ture of sources. Nevertheless, the application of ICA to the

extraction of epileptic signals in the presence of muscular

activities is still challenging; it is indeed difficult to access

a ground truth for epileptic sources in order to evaluate the

accuracy of ICA. In addition, most of the studies that have

used ICA to analyze and to process epileptic signals have

only explored a limited number of ICA algorithms, namely

InfoMax, FastICA and SOBI. These issues are addressed in
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this paper through the comparison of fifteen ICA algorithms,

both in terms of performance and numerical complexity. The

comparative analysis is first performed on simulated EEG da-

ta, reproducing realistic epileptic EEG signals contaminated

by muscle artifacts, in order to quantify the accuracy of the

ICA methods. CoM2 then appears as the ICA method offer-

ing the best compromise between performance and numerical

complexity, while TFBSS and FOBIUMJAD offer the worse.

The good behavior of CoM2 is next confirmed on one set of

real data. Forthcoming work will aim first at comparing even

more ICA methods, for instance by including improved ver-

sions of the techniques analyzed in [57, 58]. Second, we will

acquire dense EEG data (> 128 channels) in order to analyze

the performance of ICA methods as a function of the number

of electrodes.
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