
BULLETIN OF THE POLISH ACADEMY OF SCIENCES

TECHNICAL SCIENCES, Vol. 60, No. 2, 2012

DOI: 10.2478/v10175-012-0043-4

DEDICATED PAPERS

GPU-based tuning of quantum-inspired genetic algorithm

for a combinatorial optimization problem

R. NOWOTNIAK∗ and J. KUCHARSKI

Computer Engineering Department, Technical University of Łódź, 18/22 Stefanowskiego St., 90-924 Łódź, Poland

Abstract. This paper concerns efficient parameters tuning (meta-optimization) of a state-of-the-art metaheuristic, Quantum-Inspired Genetic

Algorithm (QIGA), in a GPU-based massively parallel computing environment (NVidia CUDATMtechnology). A novel approach to parallel

implementation of the algorithm has been presented. In a block of threads, each thread transforms a separate quantum individual or different

quantum gene; In each block, a separate experiment with different population is conducted. The computations have been distributed to

eight GPU devices, and over 400× speedup has been gained in comparison to Intel Core i7 2.93GHz CPU. This approach allows efficient

meta-optimization of the algorithm parameters. Two criteria for the meta-optimization of the rotation angles in quantum genes state space

have been considered. Performance comparison has been performed on combinatorial optimization (knapsack problem), and it has been

presented that the tuned algorithm is superior to Simple Genetic Algorithm and to original QIGA algorithm.

Key words: quantum-inspired genetic algorithm, evolutionary computing, meta-optimization, parallel algorithms, GPGPU.

1. Introduction

Quantum-Inspired Genetic Algorithm [1, 2] (QIGA) belongs

to a new class of artificial intelligence techniques, drawing in-

spiration from both evolutionary [3] and quantum [4] comput-

ing. The algorithm is characterized by algorithmic operators

mimicking computationally useful aspects of both the bio-

logical evolution and unitary evolution of quantum systems.

QIGA algorithm is based on quantum mechanics concepts in-

cluding qubits and superposition of states. Evolutionary com-

puting methods can be applied to a broad range of search and

optimization problems [5–7]. QIGA algorithm have demon-

strated its particular efficacy for solving complex optimization

problems. Recent years have witnessed successful applica-

tions of Quantum-Inspired Genetic Algorithms in variety of

fields, including image processing [8–10], flow shop schedul-

ing [11, 12], thermal unit commitment [13, 14], power sys-

tem optimization [15, 16], localization of mobile robots [17]

and many others. For a current and comprehensive survey of

Quantum-Inspired Genetic Algorithms, the reader is referred

to [18].

Modern advanced metaheuristics, such as Quantum-

Inspired Genetic Algorithms, are usually characterized with

numerous real or discrete parameters, e.g. population size, ter-

mination condition, number of generations, probability of mu-

tation. Particularly, additional elements of randomness bring a

“new dimension” into QIGAs. Thus, the algorithms are char-

acterized by additional parameters such as rotation angles in

the state space of genes modelled with qubits. Finding the

right values in this multidimensional parameters space is la-

borious task, and it has a significant impact on the perfor-

mance of the algorithm. Finding the best parameters can be

treated as an optimization problem in itself, and this meta-

optimization [19–21] process requires substantial computing

power. Fortunately, the modern massively parallel comput-

ing environments (NVidia CUDA technology [22–24]) pro-

vide sufficient resources that allows tuning the algorithm with

population-based heuristics automatically.

This paper is structured as follows. In Sec. 1, Quantum-

Inspired Genetic Algorithm has been briefly presented. In

Sec. 2, the proposed approach to parallelization implementa-

tion of the algorithm in NVidia CUDA architecture has been

described. In Sec. 3, the concept of meta-optimization (pa-

rameters tuning) has been presented. In Sec. 4, experimental

results have been provided and evaluated. In Sec. 5, the article

has been briefly summarized, and final conclusions have been

drawn.

2. Quantum-Inspired Genetic Algorithm

In QIGA algorithm[2], a novel representation of solutions,

namely binary quantum coding, is employed. Instead of bits,

quantum genes are modelled upon the concept of qubits, which

brings an additional element of randomness and a “new di-

mension” into the algorithm. Qubit is a basic unit of quantum

information, and it is a normalised vector in a two dimension-

al vector space spanned by the base vectors |0〉 and |1〉, as

given in Eq. (1):

|Ψ〉 = α|0〉+ β|1〉 (1)

where α, β ∈ C – probability amplitudes, |0〉 = [1 0]T ,

|1〉 = [0 1]T and |α|2 + |β|2 = 1. Observation of the quan-

tum gene |Ψ〉 yields value 0 with probability |α|2 and value 1

with probability |β|2.

With some simplification (imaginary element neglected),

a state of binary quantum gene |Ψ〉 can depicted as a unit vec-

tor which has been presented in Fig. 1. Along with increase of

∗e-mail: rnowotniak@kis.p.lodz.pl

323

R. Nowotniak and J. Kucharski

the angle between the vector and the horizontal axis, the prob-

ability of observing value 1 grows, while the more horizontal

direction of the vector, the higher probability of observing

value 0. QIGA algorithm uses binary quantum chromosomes

for representation of solutions, encoded as:

q =

[
α1

β1

∣∣∣∣
α2

β2

∣∣∣∣
. . .

. . .

∣∣∣
αm

βm

]
, (2)

where m denotes the length of the quantum chromosome

q and each column corresponds to binary quantum gene

|Ψ〉1, . . . , |Ψ〉m. Consequently, the state of the whole quantum

population Q = {q1, q2, . . . , qN} can be simply illustrated by

a matrix of vectors[25], which has been presented in Fig. 2.

Each row in the figure corresponds to binary quantum chro-

mosome, as in Eq. (2).

Fig. 1. Illustration of binary quantum gene state

Fig. 2. Illustration of binary quantum population. Each arrow repre-

sent a state of a quantum gene

The full pseudocode of QIGA algorithm has been present-

ed in Listing 1.

Listing 1 Quantum-inspired Genetic Algorithm

procedure QIGA

begin

t← 0

initialize Q(0)

make P (0) by observing Q(0)

evaluate P (0)

store the best solution among P (0) in b

while not termination-criterion do

t← t + 1

make P (t) by observing Q(t− 1) states

evaluate P (t)

update Q(t) using quantum gates U(θt)

store the best solution among P (t) in b

end while

end

In the beginning of the algorithm, the genes of all individ-

uals in the quantum population Q(0) are initialized with linear

superposition of states

(√
2

2
|0〉+

√
2

2
|1〉
)

. During the phe-

notype creation, states of all genes in quantum chromosomes

are observed, i.e. the search space is sampled with respect to

the probability distribution encoded in the quantum chromo-

somes. The evaluation of individuals’ fitness is based on the

observed classical population. The genetic operators applied

in the algorithm are based on unitary quantum rotation gates

U(θt), which rotate state vectors in the quantum gene state

space. Proper rotation direction and angles are highly critical

for efficiency of the algorithm, and their optimum values can

be found either in manual time-consuming experimentation,

or in an automated meta-optimization process [20, 26].

3. Implementation in NVidia

CUDA architecture

In recent years, programmable Graphics Processing Units

have evolved into massively parallel, multithreaded and many-

core environments with tremendous computational power and

high memory bandwidth [24, 27]. One of the leading General-

Purpose Computing on Graphics Processing Units (GPGPU)

nowadays is NVIDIA Compute Unified Device Architecture

[22, 28] (CUDATM) technology. CUDA-enabled GPUs have

hundreds of cores that can concurrently run thousands of com-

puting threads. NVidia CUDATMtechnology has been already

successfully applied in a vast number of different fields; For

example, linear algebra [29, 30], signals processing [31], sci-

entific simulations [32, 33], finance [34, 35] and others [36]. It

is possible by the addition of programmable stages to the ren-

dering pipelines, which allows programmers to use powerful

parallel processing on non-graphics data.

Despite numerous impressive applications of General-

Purpose Computing on Graphics Processing Units presented

in the literature, the speedups reported in many papers should

be taken with caution. In particular, parameters of the comput-

ing environment against which the comparison is made should

be considered carefully. Many modern CPU processors have

4 computational cores and HyperThreading technology. Thus,

if a comparison with single-core CPU is made, a factor of 6x

– 8x should be taken off. Because GPU cards are often bought

specifically on purpose of the research, the CPU can be a few

years older. Therefore, a factor of 2x for each year of differ-

ence between CPU and GPU should be taken off. Also, the

precision of floating point numbers should be taken into ac-

count. On most GPU cards, calculations on double precision

numbers can be a few times slower in comparison to single

precision. Consequently, the speed comparisons reported in

many papers should be reduced by a factor of up to 30x.

In CUDATM, processing threads are grouped in blocks,

and blocks constitutes a two-dimensional grid, which has been

presented in Fig. 3. To utilize tremendous processing capabil-

ities of modern GPU units, either existing libraries can be

used for common operations of selected algorithms (like ma-

trix multiplication, linear algebra, Fourier transform etc), or

324 Bull. Pol. Ac.: Tech. 60(2) 2012

GPU-based tuning of quantum-inspired genetic algorithm...

one’s own computational kernels can be written. In this paper,

the second approach has been taken, and QIGA algorithm has

been implemented entirely as a computational kernel running

on GPU.

Fig. 3. Example of threads block (3 × 4) in the grid (2 × 3) on

CUDA. Image source: [22]

Fig. 4. Proposed approach to parallelization of the experimentation

procedure

In several recent papers (e.g. [37–40]), successful GPU-

based implementations of various metaheuristics have been

presented. Usually, separate threads have been assigned to

transformation and evaluation of separate individuals. How-

ever, this approach is particularly efficient for big populations

only, i.e. several hounded of individuals, which is suitable only

for specific optimization or search problems. In our approach,

parallelization has been performed on two levels, which has

been presented in Fig. 4. In a block of threads, each thread

transforms a separate quantum individual or different quan-

tum gene; In each block, a separate experiment with different

population is conducted. If evaluation of the fitness function

does not involve processing large amounts of data, essential

data structures can be often stored entirely in the very fast

shared memory (on-chip memory in GPU Streaming Multi-

processors). This makes the whole experimentation procedure

feasible for efficient implementation on CUDATM. Moreover,

due to embarrassingly parallel nature of the procedure, the

speedup scales linearly to the number of multiprocessors and

GPU devices.

4. Meta-optimization (parameters tuning)

Performance of evolutionary computing methods depends

strongly on various parameters, such as mutation range, ge-

netic operators application probabilities, learning factors, mi-

gration rate, selection pressure etc. Usually, the parameters

have great impact on performance and efficacy of the algo-

rithm, and often they are found by manual, time-consuming

experimentation. Parameters values can be evaluated accord-

ing to the performance of the algorithm. Such meta-fitness

of an algorithm is a quantity that describes performance of

the algorithm with given parameters set. For example, the

meta-fitness can be based on the mean fitness value after the

end of evolution, over several dozen runs. When the number

of parameters increases, the time usage for exploring such

parameters space increases exponentially. Moreover, because

of stochastic nature of evolutionary algorithms, the algorithm

meta-fitness needs to be based on an average over at least 50

executions of the algorithm [41]. Consequently, evaluation of

meta-fitness is a very time-consuming and computationally

exhaustive operation. For example, if a population consists of

100 individuals evolving for 1000 generations, one evaluation

of the evolutionary algorithm meta-fitness requires evaluations

of the individuals’ fitness. As it is easy to see, an evaluation of

meta-fitness takes several orders of magnitude longer than an

evaluation of fitness. Therefore, an efficient method is needed

to search the space of parameters.

Fig. 5. Approach to meta-optimization taken in this paper

Meta-optimization is a systematic approach to this prob-

lem and the general idea behind it has been presented in Fig. 5.

The meta-optimization algorithm assesses parameters of the

Bull. Pol. Ac.: Tech. 60(2) 2012 325

R. Nowotniak and J. Kucharski

underlying optimizer according to its meta-fitness measure. In

our research, Quantum-Inspired Genetic Algorithm has been

implemented entirely as a computational kernel running on

GPU, and selected parameters of the algorithm has been tuned

in meta-optimization with real-coded evolutionary algorithm.

5. Experimental results

In this section, details of the performed numerical experiments

have been provided which allows the reader to verify the pre-

sented results. In the experiments, two implementations of

QIGA algorithm have been tested on combinatorial optimiza-

tion (knapsack problem), and their results have been compared

to Simple Genetic Algorithm [42] (SGA). For comprehensive

details of QIGA algorithm application to the knapsack prob-

lem, the reader is referred to [2, 43].

Firstly, QIGA algorithm has been implemented as a typical

sequential program in ANSI C running on CPU for compar-

ison. Secondly, implementation in CUDATMarchitecture has

been created. Execution time of the two implementations has

been compared. Finally, the efficient GPU-based implemen-

tation has been used in a meta-optimization process to tune

selected parameters (rotation angles in quantum genes state

space) of Quantum-Inspired Genetic Algorithm.

The knapsack consisting of m = 250 items has been con-

sidered. Similarly to [2], a strongly correlated set of data has

been generated (i.e. hard version of the problem where pre-

cious items are heavy):
{

wi = uniformly random [1, 10)

pi = wi + 5
(3)

where wi denotes weight of the i-th item, and pi denotes

profit of the item. The profit f(x) of a binary solution x is

evaluated by f(x) =
∑m

i=1
pixi, and this value has been used

in the experiments as a fitness value of the individuals in evo-

lutionary algorithms. The knapsack capacity C has been set

as follows:

C =
1

2

m∑

i=1

wi. (4)

If a binary solution which does not satisfy the constraints

is generated (i.e. the knapsack too heavy), the repair proce-

dure is involved. The repair procedure is the same for SGA

and QIGA algorithm, and it works as follows. If a too heavy

knapsack is generated, the items are consequently removed

until the constraint is satisfied. If a knapsack is too light (un-

derfilled), the repair procedure consequently adds items to the

knapsack, as long as the allowed weight constrain is satisfied.

For the pseudocode of the repair procedure, the reader is re-

ferred to [2].

In QIGA, the population size was set to 10 quantum indi-

viduals, evolving for 500 generations. In SGA, the population

size was set to 100 individuals (binary solutions), evolving for

50 generations. Thus, the total number of fitness evaluations

was equal in both algorithms. In SGA, single point crossover

operator with probability Pc = 0.65 and mutation operator

with probability Pm = 0.05 were used. The selection was

based on the roulette wheel method.

In each generation, the i-th qubit value [αi βi]
T is updat-

ed (update step in Listing 1) with the rotation matrix U(θi)
as follows:
[

α
′

i

β
′

i

]
=U(θi)

[
αi

βi

]
=

[
cos(θi) −sin(θi)

sin(θi) cos(θi)

][
αi

βi

]
. (5)

The rotation angle θi is determined as s(αiβi)∆θi, where

s(αiβi) is a sign (rotation direction), and ∆θi is the rota-

tion angle value. s(αiβi) and ∆θi are given in lookup tables

which have been presented in Table 1 and Table 2, respec-

tively. f(x) denotes fitness of the binary chromosome x, and

f(b) denotes fitness of the best individual b ever found during

the evolution. The lookup tables and other parameters values

have been taken from [2] directly.

Table 1

Lookup table of the rotation angle

xi bi f(x) ≥ f(b) ∆θi

0 0 False 0

0 0 True 0

0 1 False 0

0 1 True 0.05π

1 0 False 0.01π Subject to

1 0 True 0.025π meta-optimization

1 1 False 0.005π

1 1 True 0.025π

The values of ∆θi in the three first rows in Table 1 are

0. Because the corresponding rotation directions s(αiβi) are

0 (the first three rows in Table 2), the first three rotation an-

gles do not matter. We will consider the rotation angles in the

last five rows in Table 1 as a subject to the meta-optimization

process in the final part of the experiment.

Table 2

Lookup table of the rotation direction

xi bi f(x) ≥ f(b)
s(αiβi)

αiβi > 0 αiβi < 0 αi = 0 βi = 0

0 0 False 0 0 0 0

0 0 True 0 0 0 0

0 1 False 0 0 0 0

0 1 True −1 +1 ±1 0

1 0 False −1 +1 ±1 0

1 0 True +1 −1 0 ±1

1 1 False +1 −1 0 ±1

1 1 True +1 −1 0 ±1

326 Bull. Pol. Ac.: Tech. 60(2) 2012

GPU-based tuning of quantum-inspired genetic algorithm...

In Han’s implementation[2] (Visual C++ 6.0, Pentium-III

500 MHz), about 0.724 evolutions per second is performed

(cf. Table 2 in [2]). In our CPU implementation (ANSI C,

Intel Core i7, 2.93 GHz), about 7.324 evolutions per second

is performed. In the GPU implementation (nVidia CUDA C,

GTX-295 dual-GPU graphic card), evolving independent pop-

ulations in the grid of size 50x20, about 882.7 evolutions per

second is performed. Thus, the speedup gained on GTX-295

is about 120x in comparison to the sequential implementa-

tion. Execution time comparison for this configuration has

been presented in Fig. 6. Also, speedup gained for different

grid sizes (different numbers of independent populations evo-

lutions) has been presented in Fig. 7. As can be seen from the

graph, an average speedup gained is over 120x. Irregularities

in the graph are due to the number of multiprocessors that are

available on GTX 295 card (30 multiprocessors for one GPU

core). Slightly better speedups are obtained for the numbers of

experiments that are a multiple of available multiprocessors.

Along with increase of the number of parallel populations and

higher multiprocessors occupancy, such correlation (irregular-

ities) disappears. For more than 8000 independent populations

(the grid consisting of 8000 populations blocks), the speedup

is stable and over 125x.

Fig. 6. Execution time comparison (Intel i7 CPU vs GPU GTX 295)

Fig. 7. Speedup on GPU GTX 295 for different grid sizes

Also, an experiment has been conducted with distributed

calculations on eight GPU devices (4 x Tesla T10 GPU, GTX

285, dual-GPU GTX 295 and Tesla C2070 GPU). On this

configuration, the speedup gained was over 400x (evolution

of over 2941 independent populations per second). Therefore,

the speedup gained is unarguably significant and superior to

a cluster of several latest multi-core CPUs.

Finally, our GPU-based implementation of QIGA algo-

rithm has been used for the meta-optimization process. In this

part of the experiment, the search space of a single rotation

angle ∆θi has been set in the interval [0◦, 20◦] ([0, 0.349] in

radians). Let us denote the meta-fitness value f̃ of the QIGA

algorithm as:

f̃(∆θ) : [0◦, 20◦]5 7→ R
+ (6)

Two possible definitions of the QIGA algorithm meta-

fitness f̃ have been considered (two meta-optimization crite-

ria):

1. the fitness value after 5000 fitness evaluations (500 gener-

ations for populations consisting of 10 quantum individu-

als), average over 50 evolutions – objective of the meta-

optimization was to maximize this criterion

2. the number of fitness evaluations, after which a certain fit-

ness value has been reached, average over 50 evolutions. In

the experiment, this level has been set arbitrarily to 1450

– objective of the meta-optimization was to minimize this

criterion

In meta-optimization, the QIGA algorithm has been tuned

with respect to the first criterion, and then, with respect to

the second. The objective of the first stage was to find rota-

tion angles that result in the best final fitness values, and the

objective of the second stage was to ensure a good conver-

gence in the beginning of the evolution.

As an overlaid meta-optimizer, real-coded evolutionary al-

gorithm from Python PyEvolve [44] library has been used

as presented in Fig. 5. As a crossover operator, single point

crossover with probability Pc = 0.9 has been used. Also,

Gaussian mutation with standard deviation σ = 5◦ has been

applied with probability Pm = 0.066. Maximum generations

number was 50 generations, population size (consisting of the

parameters sets ∆θ) was 10.

On one GTX-295 graphic card, a single run of the meta-

optimization process was approximately 70 seconds long.

The meta-optimization process has been started 20 times. In

Fig. 8, performance comparison (average over 50 runs) of

the four algorithms has been presented: Simple Genetic Al-

gorithm, original Quantum-Inspired Genetic Algorithm (para-

meters from [2]) and two tuned Quantum-Inspired Genetic Al-

gorithm (with respect to the criterion 1) and 2), respectively).

In the end of the evolution, tuned QIGA clearly outperforms

SGA and original QIGA algorithm.

In Table 3, original rotation angles have been given in ra-

dians and degrees, and the corresponding final knapsack profit

(average over 50 runs) in original QIGA algorithm. In Table 4,

20 sets of the rotation angles found in meta-optimization have

Bull. Pol. Ac.: Tech. 60(2) 2012 327

R. Nowotniak and J. Kucharski

been provided and corresponding average final knapsack prof-

its. Table 5 provides statistics of the values presented in Ta-

ble 4.

Fig. 8. Performance comparison of the algorithms

Table 3

Original QIGA rotation angles (in radians and degrees, respectively), drawn

from [2]

Final
∆θ knapsack

profit

0.05π 0.01π 0.025π 0.005π 0.025π

0.157 0.031 0.079 0.016 0.079 1408.25

9◦ 1.8◦ 4.5◦ 0.9◦ 4.5◦

Table 4

The best sets of rotation angles ∆θ for Quantum-Inspired Genetic

Algorithm found in the meta-optimization process

Final
∆θ knapsack

profit

0.000 0.044 0.223 0.254 0.151 1462.65

0.128 0.042 0.262 0.262 0.200 1462.45

0.159 0.043 0.246 0.262 0.251 1462.28

0.056 0.040 0.235 0.262 0.244 1462.04

0.037 0.042 0.012 0.262 0.262 1461.55

0.193 0.049 0.256 0.262 0.181 1461.14

0.248 0.039 0.080 0.262 0.140 1460.18

0.067 0.041 0.247 0.262 0.063 1459.92

0.113 0.038 0.128 0.262 0.205 1459.48

0.000 0.038 0.349 0.334 0.349 1458.86

0.117 0.036 0.349 0.349 0.000 1458.79

0.022 0.054 0.076 0.262 0.132 1458.46

0.125 0.048 0.060 0.212 0.023 1458.40

0.063 0.038 0.239 0.326 0.320 1458.14

0.157 0.034 0.256 0.349 0.081 1456.82

0.065 0.051 0.035 0.242 0.135 1456.53

0.146 0.053 0.246 0.202 0.154 1456.44

0.037 0.034 0.141 0.262 0.000 1456.31

0.281 0.032 0.206 0.348 0.137 1456.09

0.156 0.055 0.232 0.231 0.178 1455.35

Table 5

Statistics of the results from Table 4

∆θ

0.108 0.042 0.193 0.273 0.160 Average

0.115 0.041 0.233 0.262 0.152 Median

0.075 0.006 0.096 0.042 0.094 Std dev.

In Table 4 and 5, it is easy to see which rotation angles

are significant and which are not for the performance of the

algorithm. For example, standard deviation is smallest in the

second column (0.006) in Table 5, which means that in each

run of the meta-optimization, approximately the same value

of the second rotation angle has been found (circa 0.042, orig-

inal value was 0.031). Standard deviations in the first, third

and fifth columns are at least ten times bigger. Therefore, we

conclude that these rotation angles are less significant for the

performance of the algorithm. The fourth rotation angle has

medium significance (standard deviation 0.042), and its av-

erage value is 0.273, which is much bigger than the original

value of this parameter (0.016, fourth column in Table 3).

Eventually, SGA, original QIGA and the tuned QIGA al-

gorithm with the best parameters have been run 30000 times,

and the results distributions have been presented as histograms

in Fig. 9. In the histograms, periodical peaks are visible. The

visible pattern is related directly to the discrete nature of the

knapsack problem [43]. It is beyond the scope of this paper,

but it needs some explanation. The peak is visible every 5

values on the horizontal axis. The step length is a result of

the data generation procedure in Eq. (3), and the peaks are

due to composition of the repair procedure with the evolu-

tion process. According to central limit theorem [45], distri-

bution of the sum or the average of a large number of ran-

dom variables is approximately normally distributed. Thus,

if some radical simplification had been made (i.e. no repair

procedure), the histogram would have been similar to normal

distribution.

Fig. 9. Results distribution comparison on histograms

6. Conclusions

In this article, meta-optimization (parameters tuning) of

Quantum-Inspired Genetic Algorithm in GPU-based massive-

328 Bull. Pol. Ac.: Tech. 60(2) 2012

GPU-based tuning of quantum-inspired genetic algorithm...

ly parallel environment (CUDATMtechnology) has been per-

formed. The proposed approach to parallelization is twofold:

In a block of threads, each thread transforms a separate

individual or different gene; In each block, evolution of

a separate population with same or different parameters is

conducted. As a result, on eight GPU devices, over 400x

speedup has been gained. The speedup gained allowed ef-

ficient meta-optimization of Quantum-Inspired Genetic Algo-

rithm for a combinatorial optimization problem. Two criteria

for the meta-optimization of the rotation angles in quantum

genes state space have been considered. The tuned QIGA al-

gorithm performs much better than the original algorithm.

Modern massively parallel computing environments pro-

vide resources for successful application of contemporary

population-based heuristics for meta-optimization of state-of-

the-art evolutionary algorithms. The presented approach to

parallelization of the experimentation procedure can be ap-

plied to a broad class of metaheuristics. Also, it can be im-

plemented in similar and competitive to CUDA technologies,

e.g. OpenCL [46, 47], BrookGPU [48].

Acknowledgements. Robert Nowotniak, a co-author of the

present paper, is a scholarship holder of project entitled “In-

novative education” supported by European Social Fund. This

research was supported in part by PL-Grid Infrastructure.

REFERENCES

[1] A. Narayanan and M. Moore, “Quantum-inspired genetic al-

gorithms”, Proc. IEEE Evolutionary Computation 1, 61–66

(1996).

[2] K.H. Han and J.H. Kim, “Genetic quantum algorithm and

its application to combinatorial optimization problem”, Proc.

Congress on Evolutionary Computation 1, 1354–1360 (2000).

[3] Z. Michalewicz, Genetic Algorithms + Data Structures = Evo-

lution Programs, Springer, Berlin, 1996.

[4] M. Nielsen and I. Chuang, Quantum Computation and Quan-

tum Information, Cambridge University Press, Cambridge,

2000.

[5] P. Jantos, D. Grzechca, and J. Rutkowski, “Evolutionary algo-

rithms for global parametric fault diagnosis in analogue inte-

grated circuits”, Bull. Pol. Ac.: Tech. 60 (1), 133–142 (2012).

[6] A. Slowik, “Application of evolutionary algorithm to design

minimal phase digital filters with non–standard amplitude char-

acteristics and finite bit word length”, Bull. Pol. Ac.: Tech. 59

(2), 125–135 (2011).

[7] L. Chomatek and M. Rudnicki, “Application of genetically

evolved neural networks to dynamic terrain generation”, Bull.

Pol. Ac.: Tech. 59 (1), 3–8 (2011).

[8] Ł. Jopek, R. Nowotniak, M. Postolski, L. Babout, and

M. Janaszewski, “Application of Quantum Genetic Algorithms

in Feature Selection Problem”, Scientific Bull. Ac. Sci. and

Technology, Automatics 13 (3), 1219–1231 (2009).

[9] H. Talbi, M. Batouche, and A. Draa, “A quantum-inspired ge-

netic algorithm for multi-source affine image registration”, in:

Image Analysis and Recognition, pp. 147–154, Springer, Berlin,

2004.

[10] H. Talbi, M. Batouche, and A. Draa, “A quantum-inspired evo-

lutionary algorithm for multiobjective image segmentation”,

Int. J. Mathematical, Physical and Engineering Sciences 1,

109–114 (2007).

[11] L. Wang, H. Wu, F. Tang, and D.Z. Zheng, “A hybrid quantum-

inspired genetic algorithm for flow shop scheduling”, in: Ad-

vances in Intelligent Computing, pp. 636–644, Springer, Berlin,

2005.

[12] B.B. Li and L. Wang, “A hybrid quantum-inspired genetic al-

gorithm for multiobjective flow shop scheduling”, IEEE Trans.

Systems, Man, and Cybernetics, Cybernetics B 37, 576–591

(2007).

[13] Y.W. Jeong, J.B. Park, J.R. Shin, and K.Y. Lee, “A thermal

unit commitment approach using an improved quantum evolu-

tionary algorithm”, Electric Power Components and Systems

37, 770–786 (2009).

[14] T. Lau, C. Chung, K. Wong, T. Chung, and S. Ho, “Quantum-

inspired evolutionary algorithm approach for unit commit-

ment”, IEEE Trans. Power Systems 24, 1503–1512 (2009).

[15] L. Su-Hua, W. Yao-Wu, P. Lei, and X. Xin-Yin, “Application

of quantum-inspired evolutionary algorithm in reactive power

optimization”, Relay 33, 30–35 (2005).

[16] J.G. Vlachogiannis and K.Y. Lee, “Quantum-inspired evolu-

tionary algorithm for real and reactive power dispatch”, IEEE

Trans. Power Systems 23, 1627–1636 (2003).

[17] S. Jeżewski, M. Łaski, and R. Nowotniak, “Comparison of al-

gorithms for simultaneous localization and mapping problem

for mobile robot”, Sci. Bull. Ac. Sci. and Technology, Automat-

ics 14, 439–452 (2010).

[18] G. Zhang, “Quantum-inspired evolutionary algorithms: a sur-

vey and empirical study”, J. Heuristics 17, 1–49 (2010).

[19] J.J. Grefenstette, “Optimization of control parameters for ge-

netic algorithms”, IEEE Trans. Systems, Man and Cybernetics

16, 122–128 (1986).

[20] R. Nowotniak and J. Kucharski, “Meta-optimization of

quantum-inspired evolutionary algorithm”, Proc. XVII Int.

Conf. on Information Technology Systems 1, CD-ROM (2011).

[21] M.E.H. Pedersen, Tuning & Simplifying Heuristical Optimiza-

tion, University of Southampton, Southampton, 2010.

[22] NVidia Corporation, Compute Unified Device Architecture

Programming Guide, NVIDIA, Santa Clara, 2007.

[23] J. Owens, “GPU architecture overview”, ACM SIGGRAPH 1,

5–9 (2007).

[24] J.D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger,

A.E. Lefohn, and T.J. Purcell, “A survey of general-purpose

computation on graphics hardware”, Computer Graphics Fo-

rum 26, 80–113 (2007).

[25] R. Nowotniak and J. Kucharski, “Building blocks propagation

in quantum-inspired genetic algorithm”, Sci. Bull. Ac. Sci. and

Technology, Automatics 14, 795–810 (2010).

[26] A.R. Khorsand and T.M.R Akbarzadeh, “Quantum gate opti-

mization in a meta-level genetic quantum algorithm”, IEEE

Int. Conf. Systems, Man and Cybernetics 4, 3055–3062

(2005).

[27] R. Fernando, GPU Gems: Programming Techniques, Tips and

Tricks for Real-Time Graphics, Addison-Wesley Professional,

London, 2004.

[28] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable

parallel programming with CUDA”, ACM Queue 6, 40–53

(2008).

[29] J. Krüger and R. Westermann, “Linear algebra operators for

GPU implementation of numerical algorithms”, ACM SIG-

GRAPH 2005 Courses 1, 908–916 (2005).

[30] S. Tomov, J. Dongarra, and M. Baboulin, “Towards dense lin-

ear algebra for hybrid GPU accelerated manycore systems”,

Parallel Computing 36, 232–240 (2010).

Bull. Pol. Ac.: Tech. 60(2) 2012 329

R. Nowotniak and J. Kucharski

[31] O. Fialka and M. Cadik, “FFT and convolution performance

in image filtering on GPU”, 10th Int. Conf. on Information

Visualization 1, 609–614 (2006).

[32] M.J. Harris, “Fast fluid dynamics simulation on the GPU”,

GPU Gems 1, 637–665 (2004).

[33] T. Preis, P. Virnau, W. Paul, and J.J. Schneider, “GPU acceler-

ated Monte Carlo simulation of the 2D and 3D Ising model”,

J. Computational Physics 228, 4468–4477 (2009).

[34] M. Lee, J. Jeon, J. Bae, and H.S. Jang, “Parallel implemen-

tation of a financial application on a GPU”, Proc. 2nd Int.

Conf. Interaction Sciences: Information Technology, Culture

and Human 1, 1136–1141 (2009).

[35] T. Preis, P. Virnau, W. Paul, and J.J. Schneider, “Accelerat-

ed fluctuation analysis by graphic cards and complex pattern

formation in financial markets”, New J. Physics 11, 93–124

(2009).

[36] K. Moreland and E. Angel, “The FFT on a GPU”, Proc.

ACM SIGGRAPH/EUROGRAPHICS Conf. Graphics hardware

1, 112–119 (2003).

[37] W. Banzhaf and S. Harding, “Accelerating evolutionary com-

putation with graphics processing units”, Proc. 11th An-

nual Conf. Companion on Genetic and Evolutionary Compu-

tation Conference: Late Breaking Papers 1, 3237–3286

(2009).

[38] F. Krüger, O. Maitre, S. Jiménez, L. Baumes, and P. Collet,

“Speedups between 70x and 120x for a generic local search

(memetic) algorithm on a single GPGPU chip”, Applications

of Evolutionary Computation 1, 501–511 (2010).

[39] K.L. Fok, T.T. Wong, and M.L. Wong, “Evolutionary comput-

ing on consumer graphics hardware”, IEEE Intelligent Systems

22, 69–78 (2007).

[40] M.L. Wong, “Parallel multi-objective evolutionary algorithms

on graphics processing units”, Proc. 11th Annual Conf. Com-

panion on Genetic and Evolutionary Computation Conference:

Late Breaking Papers 1, 2515–2522 (2009).

[41] S. Luke, Essentials of metaheuristics lulu.com, 2009.

[42] D.E. Goldberg, Genetic Algorithms in Search, Optimization,

and Machine Learning, Addison-Wesley Professional, London,

1989.

[43] K.H. Han and J.H. Kim, “Quantum-inspired evolutionary algo-

rithm for a class of combinatorial optimization”, IEEE Trans.

Evolutionary Computation 6, 580–593 (2002).

[44] C.S. Perone, “PyEvolve: a Python open–source framework for

genetic algorithms”, ACM SIGEVOlution 4, 12–20 (2009).

[45] R. Durrett, Probability: Theory and Examples, International

Thomson Publishing Company, New York, 1996.

[46] J.E. Stone, D. Gohara, and G. Shi, “OpenCL: A parallel pro-

gramming standard for heterogeneous computing systems”,

Computing in Science and Engineering 12, 66–73 (2010).

[47] R. Tsuchiyama, T. Nakamura, T. Iizuka, A. Asahara, and S. Mi-

ki, The OpenCL Programming Book, Fixstars Corporation,

London, 2009.

[48] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian,

M. Houston, and P. Hanrahan, “Brook for GPUs: stream com-

puting on graphics hardware”, ACM Trans. on Graphics 23,

777–786 (2004).

330 Bull. Pol. Ac.: Tech. 60(2) 2012

