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Abstract. This paper presents accuracy evaluation of the numerical calculations of the fractional differ-integrals. We focus on applying the
Riemann-Liouville formula, on singularity, which appears while using classical form of this formula. To calculate it we use the Newton-Cotes’
Quadrature and additionally two Gaussian rules. Using this different approach to the IMT Transformation, transforming the “core” integrand
of Riemann-Liouville formula, we point the possible way of increasing the accuracy of the calculations. We use our own tools and compare
obtained results with, where possible, exact values, where not – values obtained using an excellent method of integration incorporated in
Mathematica.
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1. Introduction

Fractional calculus has been playing recently a major role in
many scientific areas. The fractional-order derivative (FOD)
and integral (FOI) are natural extension of the well-known
derivative and integral. This extension enables better physical
phenomena identification [1, 2] analysis [3] and control [4–
6]. But there are still problems in numerical evaluation of the
fractional-order derivatives and integrals [7, 8]

In this paper, several numerical methods applied to
FOD/FOI calculation due to its accuracy are compared. Ap-
propriate conclusions and remarks are derived.

The paper is organised as follows: firstly basic definitions
of the Riemann-Liouville and the Grünwald-Letnikov FOD
and FOI and, in next section numerical methods used in cal-
culation of the integrals are given. Then functions subjected
to the fractional differentiation and integration are presented.
After those the main results are gathered. Finally, the conclu-
sions are presented.

2. Mathematical preliminaries

There are several formulas, which can be applied to calcu-
late differ-integrals numerically: the Riemann-Liouville for-
mula and the Grünwald-Letnikov method [9, 10]. The latter
often used, because of its simplicity, in technical applications.
They distinct from each other in one main way: the Grünwald-
Letnikov formula derives from differential quotient and the
Riemann-Liouville from multiple integrals.

In this paper we focus on applying the Riemann-Liouville
formula and on the idea how to increase the accuracy when
calculating it numerically, using some methods of numerical
integration as well.

The Grünwald-Letnikov formula is used for comparing
purposes only. The level of absolute errors obtained in calcu-
lations by this formula is treated as a point of reference in the
context of the accuracy of the calculations.

3. The Riemann-Liouville formula

of the fractional order differ-integral (RL)

The definite RL integral of the real function f (t) of the ν > 0
order is defined as follows:

t0I
ν
t f (t) =

1

Γ (ν)

t∫

t0

(t − τ )
ν−1

f (τ) dτ . (1)

where t0, t denotes integration range, which comply with the
condition −∞ < t0 < t < ∞, Γ (ν) is Euler’s Gamma func-
tion.

Now, we describe natural number n:

n = ⌈ν⌉ + 1. (2)

where n also denotes the order of classical derivative.
The RL derivative of the real function f (t) of the ν > 0

order is defined as follows:

t0D
ν
t f (t) =

n−1∑

i=0

(t − t0)
i−ν

f (i) (t0)

Γ (i + 1 − ν)

+
1

Γ (n − ν)

t∫

t0

(t − τ)
n−ν−1

f (n) (τ) dτ .

(3)
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4. The Grünwald-Letnikov formula

of the fractional order differ-integral (GrLet)

The derivative of a real order ν > 0 (for the integral we use
the order −ν < 0) of a continuous bounded function f (t) is
defined as follows

t0D
ν
t f (t) = lim

h → 0

t − t0 = kh

t−t0

h∑

i=0

a
(ν)
i f (t − hi)

hν
, (4)

where

a
(ν)
i =







1 for i = 0

a
(ν)
i−1

(

1 −
1 + ν

i

)
for i = 1, 2, 3, . . . . (5)

5. Short review of fundamentals of numerical

integration. Tested functions

In the process of calculating the differ-integrals it is neces-
sary to calculate a value of the definite integral over the range
[t0, t]. Usually it is interpolated with the following formula

t∫

t0

f (t) dt =

L∑

k=0

Akf (tk) + R. (6)

The right side of the equation is called quadrature in
which tk denotes quadrature nodes, Ak quadrature coefficients
(weights), L number of intervals in interpolation and R re-
mainder.

The above formula is shared by all quadratures. The dif-
ference lies in the algorithms of calculating their nodes and
coefficients [11–13, 15].

In table 1 specification of applied methods of numerical
integration are collected.

The Special modification of the Gauss Quadrature called
Gauss-Kronrod Quadrature (GaKRO) was used in a form of
tabulated values of the nodes and the weights.

The method is based on Gauss-Legendre Rule. There is
no need to overlap all the details about it. Suffice it to say
that the G7/K15, so called Gauss-Kronrod Pair (we apply it
along with G30/K61 one), includes the nodes of the 7-point
Gauss-Legendre Quadrature + 8 new ones and all 15 new
coefficients [14]

We used the following formulas to calculate differ-
integrals:

• the Riemann-Liouville differ-integral (RL),
• Modified Riemann-Liouville differ-integral via mentioned

at the beginning – the IMT Transformation (mRL).

Additionally we use the Grünwald-Letnikov differ-integral for-
mula (GrLET) for comparing purposes.

Our C++ programs which were developed especially for
the purpose of this experiment used following methods of nu-
merical integration while applying formulas (RL, mRL), are:

• Newton-Cotes Quadrature, Midpoint Rule (NCM),
• Gauss-Legendre Quadrature (GaLEG),
• Gauss-Kronrod Quadrature (GaKRO).

Table 1
Important parameters used in integration rules

Method/
weight

function
h/Ak tk R≤

NCM h =
t−t0

L
tk = t0+

�
k+

1

2

�
h

h3

24

��f2(ζ)
��

GaLEG
p(x)=1

Ak=

2�
1 − t2

k

�
[P ′

n (tk)]2

Abscissas
of the

Legendre
polynomial

Pn(x)
of desired
grade xk .

tk =
t − t0

2
xk

+
t − t0

2

t − t0

2016000

f(2n) (ζ) ,

ζ ∈ [t0, t]

We selected two periodical functions. A graph of the sec-
ond one (8) is presented in Fig. 1.

f (t) = sin (t) , t ∈ (0; 2π) , (7)

f (t) = 1.5 cos (2t) + 2.2 cos (4t) , t ∈ (0; 2π) . (8)

Fig. 1. Graph of the function (8)

For functions (7), (8) we calculate two types of expres-
sions: the fractional derivative t0D

ν
t f(t) and fractional inte-

gral t0I
ν
t f(t).

Our goal was to determine how the methods will perform
when using the smallest, arbitral chosen, number of sample
points – possibly less than 600 (the highest, default value
for GrLET in our practical applications) and which one will
deliver the results burdened with the smallest absolute error.

The amount of sample points should be exactly deter-
minable. That is why there was not any advanced technique
of the integration as for example adaptive strategies applied.

The criterion of the calculation accuracy was the absolute
error. That is why, in our opinion, there is no need to make
such test complicated by incorporating extensive error esti-
mation of every method applied. Additionally, theoretically
estimation error formulas relate to a value of the deriva-
tive of the appropriate orders (for Newton-Cotes’ Midpoint
Rule – 2nd order derivative and Gauss-Legendre Quadrature
– 2nnd order derivative (n-degree of the polynomial used in
approximation)) inside the integration range. Now, the value
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of a derivative (as well as the accuracy of numerical inte-
gration) does depend on the shape of the function! So, it is
always the quest for the optimal shape of the integrand.

For the method GrLET and NCM we used L = 4, 15, 32,
61 and 600 intervals.

For GaLEG method: L = 4, 15 and 32 intervals only.
For GaKRO we used following pairs: G7/K15 which is

the industry standard in numerical integration [14] along with
G30/K61. The pairs correspond to L = 15 and 61 intervals
respectively.

It is widely known, that number of L greater than 38–46
for the Gauss methods often causes the error rises rapidly.
Sometimes 100% and more! That’s why you will encounter
empty fields in all tables with results for these methods.

6. The IMT Transformation (mRL) explained

The integral of RL differ-integral formulas (1), (3) is not only
fast-changing but also includes improper integral which has
singularity at end of the integration range (Fig. 2).

Fig. 2. Graphs of the original and modified integrand of the RL
formula via (9) of the function f (t) = sin t

This means, knowing the weaknesses of applied methods
of numerical integration, that our goals were to transform the
integrand of the RL formulas to remove the singularity and
make it “smoother”.

The IMT Transformation is a way of independent variable
transformation proposed by three Japanese mathematicians:
Iri, Moriguti and Takasawa in 1970 [16].

This transformation uses the basic idea standing behind
the expression substituting used in analytic integration. But
this time it lets to obtain a desired shape of the integrand
instead of the simplest analytical formula of it.

The transformation can be applied to each function under
the condition of transforming the calculated expression and
possibly range of the integration via the substituting expres-
sion.

Below, there is presented the worked example of the above
described technique for f(t) = 1, and t0 = 0, t = 1, frac-
tional integral of the order ν = 0.5.

The variable change 1−x → e1−1/u (9) removes the sin-
gularity from the integrand. It also makes it “smoother”. The
transformation is visualized in Figs. 3–5.

Fig. 3. Graph of the original integrand g(x)

Fig. 4. Graph of the transformed variable x into u
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Fig. 5. Graph of the transformed integrand G(u)

The integration range has to be transformed using formula
(11) as well.

1∫

0

(1 − x)−0.5

︸ ︷︷ ︸

g(x)

dx =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 − x = e1− 1

u

−dx = e1− 1

u ·
1

u2
du

dx =
(

−e1− 1

u

)

·
1

u2
du

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= . . .

. . . =

1∫

0

(

e1− 1

u

)0.5

·
1

u2
︸ ︷︷ ︸

G(u)

du,

(9)

x = 1 − e1− 1

u , (10)

u =
1

1 − ln (1 − x)
. (11)

Above technique is visualized in Figs. 3–5.
The original IMT Transformation goal was to transform

the independent variable to make all derivatives of the new
integrand vanish at the end of the integration range. Then, usu-
ally trapezoidal rule was applied. We use different approach –
we apply Newton-Cotes’ Midpoint Rule and Gauss formulas.

Because in the original IMT Transformation an upper in-
tegration range may not exceed, in our case, the value of π−e,
we had to modify the substitution accordingly. It was done in
the arbitrary way.

7. The test results

First t0I
ν
t f (t) for f (t) = sin (t), t ∈ (0; 2π), the order

ν = 0.2, 0.5, 0.8 using modified RL formula (1) via mRL
was evaluated. The results are presented in Tables 2a–2c.

Table 2a
Obtained values of absolute error for ν = 0.2

L GrLET RL NCM RL GaLEG RL GaKRO

4 1.379e-01 1.207e-02 4.748e-03 –

15 3.873e-02 3.111e-03 2.333e-04 1.352e-02

32 1.836e-02 1.318e-03 3.943e-05 –

61 9.682e-03 6.225e-04 – 4.599e-06

600 9.823e-04 4.126e-05 – –

4 1.116e-01 9.330e-02 –

15 8.037e-03 2.751e-09 1.638e-08

32 1.626e-03 1.283e-11 –

61 4.401e-04 – 2.776e-16

600 4.521e-06 – –

L GrLET mRL NCM mRL GaLEG mRL GaKRO

Table 2b
Obtained values of absolute error for ν = 0.5

L GrLET RL NCM RL GaLEG RL GaKRO

4 2.507e-01 4.620e-02 1.077e-02 –

15 7.047e-02 7.691e-03 2.462e-04 1.196e-04

32 3.347e-02 2.627e-03 2.264e-05 –

61 1.776e-02 1.036e-03 – 1.741e-06

600 1.806e-03 3.578e-05 – –

4 3.157e-01 5.448e-01 –

15 3.610e-02 1.029e-08 2.165e-07

32 7.308e-03 5.551e-12 –

61 1.987e-03 – 4.996e-16

600 2.032e-05 – –

L GrLET mRL NCM mRL GaLEG mRL GaKRO

Table 2c
Obtained values of absolute error for ν = 0.8

L GrLET RL NCM RL GaLEG RL GaKRO

4 1.758e-01 4.137e-02 6.113e-03 –

15 4.799e-02 4.984e-03 6.108e-05 2.410e-05

32 2.268e-02 1.427e-03 4.221e-06 –

61 1.194e-02 4.827e-04 – 1.495e-07

600 1.219e-03 9.455e-06 – –

4 4.370e-01 1.512e+00 –

15 9.517e-02 7.148e-08 8.654e-07

32 1.930e-02 2.099e-11 –

61 5.227e-03 – 1.221e-15

600 5.370e-05 – –

L GrLET mRL NCM mRL GaLEG mRL GaKRO

Each table is arranged as follows: L denotes number of
nodes used in approximation by every method; the upper part
of the table contains the absolute errors values for all methods
applied to unmodified integrands; the bottom part contains the
absolute errors values for all methods applied to transformed
integrands; the bolded values represent the best results (lowest
values of the absolute errors) achieved by each method.
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For each tested function we present three tables. Each
contains the values of the absolute error for different order of
expression calculated.

0I
ν
2πf (t) =

1

Γ (ν)

2π∫

0

(

e2π− 2π

t

)ν 2π

t2
sin

(

2π − e2π− 2π

t

)

dt.

(12)
In case of the function (7), as it is easy to notice, the only

methods which benefit from the integrand transformation are
Gaussian methods. The accuracy increased 2-3 times.

Next the same integrals are obtained for the function
f (t) = 1.5 cos (2t) + 2.2 cos (4t), t ∈ (0; 2π) , ν =
0.2, 0.5, 0.8.

Modified RL formula (1) via mRL assumes the following
form

0I
ν
2πf (t) =

1

Γ (ν)

2π∫

0

(

e2π− 2π

t

)ν 2π

t2

×1.5 cos
(

2
(

2π − e2π− 2π

t

))

+2.2 cos
(

4
(

2π − e2π− 2π

t

))

dt.

(13)

The results are presented as plots in Tables 3a–3c.

Table 3a
Obtained values of absolute error for ν = 0.2

L GrLET RL NCM RL GaLEG RL GaKRO

4 1.932e+00 4.556e+00 3.201e+00 –

15 1.017e-01 2.245e+00 1.495e+00 1.379e+00

32 4.224e-02 1.915e+00 1.112e+00 –

61 2.110e-02 1.683e+00 – 7.860e-01

600 2.045e-03 1.065e+00 – –

4 9.428e-01 1.444e+00 –

15 4.369e-01 1.663e-01 1.642e-01

32 6.424e-04 3.120e-10 –

61 6.138e-05 – 6.750e-14

600 6.636e-07 – –

L GrLET mRL NCM mRL GaLEG mRL GaKRO

Table 3b
Obtained values of absolute error for ν = 0.5

L GrLET RL NCM RL GaLEG RL GaKRO

4 5.570e+00 6.804e+00 3.204e+00 –

15 2.915e-01 8.369e-01 2.939e-01 2.390e-01

32 1.397e-01 5.627e-01 1.402e-01 –

61 7.439e-02 4.059e-01 – 5.854e-02

600 7.700e-03 1.292e-01 – –

4 4.602e+00 3.418e+00 –

15 1.800e+00 6.337e-01 7.296e-01

32 5.812e-03 2.999e-08 –

61 2.428e-04 – 5.843e-08

600 5.562e-07 – –

L GrLET mRL NCM mRL GaLEG mRL GaKRO

Table 3c

Obtained values of absolute error for ν = 0.8

L GrLET RL NCM RL GaLEG RL GaKRO

4 1.013e+00 1.047e+00 4.396e+00 –

15 2.488e-01 1.811e-01 3.184e-02 2.262e-02

32 1.225e-01 9.520e-02 9.745e-03 –

61 6.594e-02 5.642e-02 – 2.380e-03

600 1.267e-01 9.039e-03 – –

4 1.034e+00 3.845e+00 –

15 4.361e-01 1.376e+00 1.806e+00

32 2.307e-02 2.444e-07 –

61 1.775e-03 – 2.665e-15

600 1.113e-05 – –

L GrLET mRL NCM mRL GaLEG mRL GaKRO

In case of the function (8), all of three methods benefited
from the transformed integrand, although in a different way.
There is 2–5 times accuracy increase to notice.

Now a problem of the fractional derivative t0D
ν
t f(t) of

the function f(t) = sin(t), t ∈ (0; 2π), ν = 0.2, 0.5, 0.8 is
considered. We calculate

n = ⌈ν⌉ + 1. (14)

The modified RL formula (3) via mRL assumes the form

0D
ν
2πf (t) =

(2π)−ν sin (0)

Γ (1 − ν)

× +
1

Γ (n − ν)

2π∫

0

(

e2π− 2π

t

)n−ν

·
2π

t2
cos

(

2π − e2π− 2π

t

)

dt.

(15)

The obtained results are presented in Tables 4a – 4c.

Table 4a

Obtained values of absolute error for ν = 0.2

L GrLET RL NCM RL GaLEG RL GaKRO

4 1.522e-01 1.408e-01 5.803e-02 –

15 4.035e-02 4.679e-02 8.614e-03 6.114e-03

32 1883e-02 2.548e-02 2.634e-03 –

61 9.855e-03 1.521e-02 – 6.431e-04

600 9.995e-04 2.443e-03 – –

4 2.278e+00 8.263e-01 –

15 9.612e-03 1.848e-07 5.664e-07

32 1.242e-03 3.223e-07 –

61 3.033e-04 – 3.501e-16

600 2.994e-04 – –

L GrLET mRL NCM mRL GaLEG mRL GaKRO
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Table 4b

Obtained values of absolute error for ν = 0.5

L GrLET RL NCM RL GaLEG RL GaKRO

4 3.414e-01 4.406e-01 2.745e-01 –

15 8.021e-02 2.213e-01 7.944e-02 4.640e-02

32 3.621e-02 1.513e-01 3.798e-02 –

61 1.867e-02 1.095e-01 – 1.582e-02

600 3.492e-03 3.578e-05 – –

4 9.224e-01 4.658e-01 –

15 1.535e-03 4.475e-07 1.173e-06

32 1.054e-04 1.985e-08 –

61 1.916e-05 – 1.823e-08

600 1.441e-07 – -

L GrLET mRL NCM mRL GaLEG mRL GaKRO

Table 4c

Obtained values of absolute error for ν = 0.8

L GrLET RL NCM RL GaLEG RL GaKRO

4 4.101e-01 7.928e-01 6.619e-01 –

15 7.020e-02 6.024e-01 4.040e-01 3.780e-01

32 2.846e-02 5.174e-01 3.005e-01 –

61 1.382e-02 4.547e-01 – 2.124e-01

600 1.312e-03 2.878e-01 – –

4 2.553e-01 1.907e-01 –

15 2.762e-05 2.003e-05 3.204e-07

32 5.749e-05 1.612e-07 –

61 1.714e-05 – 1.374e-07

600 3.172e-07 – –

L GrLET mRL NCM mRL GaLEG mRL GaKRO

In case of the function (7) and calculated fractional deriv-
ative, all of three methods benefited in similar way from the
integrand transformation. There is maximum 7-times accura-
cy increase to notice.

Finally we calculate t0D
ν
t f(t), of the function f(t) =

1.5 cos(2t)+2.2 cos(4t), t ∈ (0; 2π), ν = 0.2, 0.5, 0.8. Under
the condition (14) modified RL formula (3) via mRL assumes
the form

0D
ν
2πf (t) = +

1

Γ (n − ν)

2π∫

0

(

e2π− 2π

t

)n−ν

·
2π

t2

×
(

−3 sin
(

2
(

2π − e2π− 2π

t

))

−8.8 sin
(

4
(

2π − e2π− 2π

t

)))

dt.

(16)

Obtained results are presented in Tables 5a–5c.
In case of the function (8), and fractional derivative, using

the method GaKRO applied to transformed integrand allowed
3-5 accuracy increase. The other methods increased the accu-
racy in a minimal way.

Table 5a
Obtained values of absolute error for ν = 0.2

L GrLET RL NCM RL GaLEG RL GaKRO

4 1.450e+01 1.162e+00 3.809e+00 –

15 8.693e-02 2.161e-01 2.506e-03 2.262e-02

32 7.197e-02 5.947e-02 1.740e-04 –

61 4.432e-02 1.995e-02 – 2.380e-03

600 5.166e-03 3.895e-04 – –

4 3.482e+01 1.376e+00 –

15 2.624e+00 1.950e+00 3.512e+00

32 1.128e+00 1.366e-05 –

61 2.344e-01 – 3.533e-15

600 2.214e-03 – –

L GrLET mRL NCM mRL GaLEG mRL GaKRO

Table 5b
Obtained values of absolute error for ν = 0.5

L GrLET RL NCM RL GaLEG RL GaKRO

4 2.344e+00 2.305e+00 4.958e+00 –

15 1.025e+00 3.301e-01 1.012e-02 4.931e-03

32 6.415e-01 1.093-01 1.098e-03 –

61 3.686e-02 4.281e-02 – 7.164e-05

600 4.046e-02 1.474e-03 – –

4 1.851e-01 4.834e-01 –

15 7.531e-01 4.154e-01 2.052e+00

32 4.276e-01 5.597e-06 –

61 8.873e-02 – 1.945e-13

600 8.381e-04 – –

L GrLET mRL NCM mRL GaLEG mRL GaKRO

Table 5c
Obtained values of absolute error for ν = 0.8

L GrLET RL NCM RL GaLEG RL GaKRO

4 9.027e+00 1.874e+00 2.334e+00 –

15 3.727e+00 1.320e-01 9.600e-03 5.570e-03

32 2.154e+00 5.486e-02 1.624e-03 –

61 1.197e+00 2.570e-02 – 1.894e-04

600 1.267e-01 1.700e-03 – –

4 6.027e+00 2.323e-01 –

15 9.484e-02 1.587e-02 6.566e-01

32 9.527e-02 1.343e-06 –

61 1.974e-02 – 1.243e-14

600 1.864e-04 – –

L GrLET mRL NCM mRL GaLEG mRL GaKRO

8. Final conclusions

1. The point of reference in this experiment was the method
GrLET (4) and the value 10−4, which is possible to achieve
using 600 of coefficients (5) (equivalent to sample points).
In our previous paper [17] we discovered that the shape
of the integrand does not influence accuracy of the cal-
culations applying GrLET method to non-periodic func-
tions. The most influential in this context were: number
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of coefficients applied and accuracy of their calculation.
As stated above, applying maximum number of 600 of co-
efficients (such amount is often used in practical, technical
applications) we were able to obtain values with maximum
the accuracy 10−4. The accuracy of the calculations in-
creased linearly. In case of the periodic functions presented
in this paper, the level of accuracy increased proportional-
ly as well. However, it was much lower. Satisfactory level
of accuracy 10−4 cannot be reach applying GrLET with
less than 600 of the coefficients (see the column GrLET in
Tables 2a–5c).

2. The shape of integrand influences the accuracy of the cal-
culations when applying methods of numerical integration
using RL and mRL formulas (see the columns RL and mRL
for all methods in tables 2a-05c). The relationship between
the shape of the integrand and the order of the derivative
calculated applying RL formula (3) is presented in Fig. 6.

Fig. 6. Graphs of the modified integrand (12) of the RL formula
(3 in relation to ν(mRL)

3. The values of the integrand obtained using unmodified RL
formula are burdened with great absolute error (see column
RL for all methods in tables 2a0-5c). This makes the for-
mula often unsuitable in practical, technical applications.

4. The level of errors appeared because of the fact that the
“core” integrand of the formula has “fast-changing” char-
acter and also has singularity at the end point of the inte-
gration range (see Fig. 2).

5. Applying the IMT Transformation with special substitute
expression to the non-periodic integrands to “remove” the
singularity and “smooth” it allowed not only to obtain way
better results, especially with Gauss methods, than GrLET,
but often using radical reduced number of sampling points
(see columns mRL for all methods in Tables 2a–5c). This
lowers the level of calculation complexity in context of de-

creasing amount of sample points. In case of periodic func-
tions the IMT Transformation allowed not only to remove
the singularity from the integrands but also caused them to
become highly oscillated. This made the test difficult for
applied methods of numerical integration. Especially for
Newton Cotes’ Midpoint Rule. It was possible to obtain
way better results but often with maximum sample points
anticipated for the test only (see Table 3c, 5a).

6. The values of absolute errors decreased proportionally to
the order of differ-integrals (the values of ν), when frac-
tional integrals calculated and increased when fractional
derivatives calculated. It is because the shape of the inte-
grand in mRL formula becomes “unfriendly” for numerical
integration while type and order of differ-integral calculat-
ed changes (notice Fig. 6).

7. The NCM is an universal tool. It does not depend so strong-
ly as the GaLEG, on a shape and monotonicity of the in-
tegrand. Therefore it can be applied to any kind of inte-
grands, also to these which have singularities [17]. In case
of periodic functions, because of the oscillatory charac-
ter of their mRL formula, in some cases accuracy of the
calculations were only slightly better than unmodified RL
formula (Table 4a, 4b)

8. Using GaLEG, when applied to the IMT transformed in-
tegrand, seems to be the only way, not only because of
the low values of absolute error, but also because of the
fact, that these low values are obtained with only 5–10%
sample points used by GrLET method and NCM. This can
dramatically reduce the complexity of the calculations and
their speed.

9. The variant of the IMT Transformation which was intro-
duced in this paper can be applied to each function un-
der the condition of transforming the calculated expression
and possibly the range of the integration accordingly (10–
11). This makes the transformation complicated for func-
tion with other integration limits than (0,1).

10. The IMT Transformation is an excellent choice for non-
periodic functions. This was proved in [17]. Applying this
transformation to integrands with periodic character did al-
low to obtain better results (1-15x, see Tables 2a–5c) but
with maximum sample points planned in the test only.

11. The IMT Transformation in connection with Gauss meth-
ods make one excellent tool to solve problems of the ac-
curacy of the differ-integrals of non-integer orders calcula-
tions for wide range type of functions.

12. The logic of our tools needed only the grade of the desired
polynomial as an input data. The rest of data were cal-
culated “on the fly” (the polynomial itself, its derivative,
the abscissas and the weights). In practical applications
we can and should use tabulated values (of abscissas and
weights) which were the subject of standardization all over
the world. This can yet reduce the complexity of calcu-
lations which then can make the method become perfect
suitable in practical applications.

13. Above there are presented graphs of the calculated
FOI/FOD (Figs. 7 and 8) of the function (7) and of the
function (8) (Figs. 9 and 10).
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Fig. 7. Graph of the calculated FOI of the function (7) Fig. 8. Graph of the calculated FOD of the function (7)

Fig. 9. Graph of the calculated FOI of the function (8) Fig. 10. Graph of the calculated FOD of the function (8)
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