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GROWTH OF SOLIDS AND EVOLUTION OF MICROSTRUCTURES

A structural optimisation viewpoint on growth phenomena
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Abstract. Evolutionary solid bodies undergoing changes of mass, of properties, and of shapes are considered in models of growth and

adaptation and similarily in structural optimisation. A fundamental separation of different growth phenomena and a subsequent parametrisation

using independent design variables for the amount of substance as well as for molar mass and molar volume facilitates an efficient formulation

of the design space. Thus, the effects of design variations, i.e. change of amount of substance, on the variations of the structural response,

i.e. the deformation in physical space, can be clearly described. Overall, a novel treatment of growth processes based on an evolution

of the amount of substance is outlined. The parallelism of variations in physical and design space are highlighted and compared with

the multiplicative decomposition of the deformation gradient into a growth and an elastic part incorporating an incompatible intermediate

configuration. This drawback is overcome by a compatible manifold based on material points modelling the amount of substance outside of

any geometrical space.
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1. Introduction

Models of growth and adaptation are similar to models of

structural optimisation because design variables, say s, in ad-

dition to the mechanical and thermomechanical state variables

parameterised by time t are involved. The difference of growth

compared with structural optimisation is the fact that growth

is a physical phenomenon and interacts with the deformation

of the body. In case of growth, design variables are treated

by evolution laws s = s(t) as sketched in Fig. 1.

Fig. 1. Interaction of design and deformation

The solid lines represent the structural analysis paths for

fixed designs s0 and s1. The dotted line describes struc-

tural optimisation as a time independent process being able

to jump from one design s0 to an improved design s1 out-

side of physics. The dashed curve highlights the interaction of

a design modification (growth) and the physical deformation

process. An illustrative example linking structural optimisa-

tion and growth is given in Sec. 2.

Growth theories have been developed from different scien-

tific points of view with increasing complexity and for various

biomechanical applications over the last decades, see e.g. [1]

for an overview, appreciation and further literature. A few

aspects are highlighted in more detail.

The multiplicative decomposition of the deformation gra-

dient F = FeFg into an elastic and a growth part, introduced

in [2], allows a general treatment of growth processes. An

incompatible intermediate configuration is introduced, see [3]

for a comparison with similar theories.

A geometric approach for material inhomogeneities and

their evolution has been formulated in [4]. The incompat-

ible intermediate configuration can be considered as a non-

Euclidean material manifold, see [5]. A domain variation tech-

nique, similarly used in structural optimisation, see [6,7] for

details, has been applied to volumetric and surface growth in

[8,9]. The term material space is used in Eshelbian mechanics

for what is called design space in structural optimisation. The

notion design is used highlighting the structural optimisation

viewpoint.

A structural optimisation viewpoint on evolution can be

determined using optimality principles instead of evolution

laws, see [10]. Thus, design space models and variational de-

sign sensitivity analysis based on an improved formulation of

continuum mechanics contribute significantly to an enhanced

formulation, see [11,12].

The proposed novel concept consists of a separation of all

fundamental quantities, a reformulation of continuum mechan-

ics as well as a framework for growth theories generated from

the first two steps. These items are outlined here. The missing

information, i.e. the constitutive laws, the consistent linearisa-

tion technique and the computational scheme, are postponed

to a forthcoming paper.
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2. An illustrative example

The author’s structural optimisation viewpoint on growth phe-

nomena sketched in Fig. 1 is outlined based on the evolution

of a cantilever beam from an initial design with height s◦ to

an optimised layout with height s1, see Fig. 3.

Fig. 2. Initial and optimal cantilever beam

2.1. The structural optimisation viewpoint. In structural

optimisation, an initial design s◦ within a design space is gen-

erated and a gradient based nonlinear programming approach,

e.g. the sequential quadratic programming (SQP) method, is

applied to update these design variables s iteratively. An ob-

jective function f , say the structural compliance, and con-

straint functions g, say limits on displacements, stresses and

on the amount of mass, must be considered. Overall, a station-

ary point of the Lagrangian function L = f−µ g is computed.

All design modifications are modelled outside of physics, i.e.

no growth theory is encountered to step from some design

s◦ to another design s1, see the dotted line in Fig. 1. The

responses are always computed from scratch for all modified

designs, see the solid lines in Fig. 1, and sensitivity analysis

yield the desired gradients. Overall, the design variables s are

not linked with physical time t.

2.2. The growth viewpoint. Alternatively, growth theories

consider balance laws for mass within thermodynamics to end

up with evolution laws for different physical properties. Well-

known ideas from structural optimisation such as design space

with design variables and design velocitiy fields, are missing.

Moreover, an evolution of the material body is not directly

available in classical theories. This is not astonishing due to

the fact that continuum mechanics, see [13], has been outlined

for a unique material body.

2.3. The benefits of joining both viewpoints. Thus, struc-

tural optimisation and growth theory, i.e. the parameterised

design space as well as evolution laws for mass, should be

linked. Unfortunately, the standard layout of structural optimi-

sation using discrete design variables is not fully appropriate

to be applied to growth. Alternatively, a more rigorous field

description for an evolution of material bodies using tensor

notation and manifolds (usually not used in structural optimi-

sation textbooks) should be applied, see [11,12]. The author’s

approach to link design modifications and growing mass is

outlined in detail in the sequal. As a consequence, the classi-

cal assumption of a fixed material body is no longer valid.

3. Observations from biological growth

The classical continuum mechanical theory assumes a fixed

material body B with a given reference placement K ≡ ΩR

and a constant mass m, see [13]. These assumptions are no

longer valid for evolutionary solid bodies considered in struc-

tural optimisation and growth problems.

3.1. Basics on the amount of substance. The basics from

natural sciences defined in the International System of Units

(SI) are summarised as follows.

• The amount of substance n of a sample or system is a

physical quantity which is proportional to the number of

elementary entities present. The SI unit of amount of sub-

stance is a mole with unit symbol mol.

• Elementary entities may be atoms, molecules, ions, elec-

trons, or particles, the choice of which is dependent upon

context and must be stated.

• The amount of substance n is related to the number of

elementary entities N = NA · n with Avogadro constant

NA = 6.022045 · 1023 1/mol .

The basic variable is the number of elementary entities N ∈ N

or equivalently the amount of substance n ∈ N. Thus, growth

is the evolution of these integer variables.

3.2. Basics on molar mass and molar volume Additionally,

the two fundamental material properties of any existing and

fixed amount of substance may change as well. These are the

mass and the volume per amount of substance, i.e. the molar

mass Mm, measured in [kg/mol ], and the molar volume Vm,

measured in
[

m3/mol
]

. The material property mass density

̺ is a derived quantity of molar mass and molar volume, i.e.

̺ =
mass

volume
=

mass
amount of substance

volume
amount of substance

=
molar mass

molar volume
=

Mm

Vm

.

3.3. Growth phenomena in nature. The separation into

three basic ingredients (amount of substance, molar mass,

molar volume) allows a refined description of the growth phe-

nomena compared to the traditional viewpoint of a mass den-

sity ̺ of material points s of a material body B.

• The amount of biological material is changed during

growth, i.e. cells occur or vanish. An initial open gap is

filled with new cells without changing the existing cells.

The design dependent amount of substance n = n(s) en-

ables an evolution of amount of substance ∂n/∂s, i.e. ele-

mentary entities are created or destroyed. This is achieved

using internal source and external flux terms.

• Independently, the amount of mass can be modified. For

example, an existing cell has the ability to absorb or to seg-

regate mass into its microstructure. The molar mass Mm(s)
yields the evolution ∂Mm/∂s caused by internal source or

external flux terms.

• Similarly, the microstructure of any existing material may

have the ability to rearrange its internal structure such that

the occupied volume in space is modified. Thus, the design

dependent molar volume Vm = Vm(s) yields an evolution

of the material constant ∂Vm/∂s.

To conclude, any existing material with given and fixed

amount of substance, say cells for example, may change its
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mass and volume. Additionally, the amount of substance of the

material body may change. Furthermore, the overall constitu-

tive behaviour of the material body can be designed. Overall,

the described phenomena lead to design variables s, which

parameterise the design space and can be interpreted as an

evolution time or a material deformation process time in con-

text of Eshelbian mechanics. This viewpoint enhances the phe-

nomena in the physical space parametrised by physical time t.

4. Preliminaries on continuum mechanics

All physical and biological phenomena are discrete. There

are finite numbers of atoms, molecules and cells involved in

the observed structure. Alternatively, the mathematical theory

smears the particles over a finite volume. Thus, only densities

can be described in continuum mechanics. Thus, the concepts

of manifolds and of homogenisation must be utilised for the

detailed description.

4.1. The role of manifolds and charts. The manifold idea

has been introduced to continuum mechanics at its early days,

see [13,15]. Roughly speaking, differentiable manifolds are

those sets which can be covered by an atlas using a finite

number of charts. Each chart (Us,Ψϑ) describes the materi-

al manifold B in a local environment Us of a chosen material

point s using coordinates. In detail, the ball Dϑ ⊂ B at point

ϑ ∈ B yields the coordinate representation of the material

body, see Fig. 3.

Fig. 3. Manifolds and coordinate systems

The properties of the manifold are not effected by the

choice of coordinate system and the change of coordinate sys-

tem is sufficiently smooth. The abstract manifold perspective

is more general and rigorous. The computational formulations

always rely on the special choice of the coordinate system and

are more intuitive.

The points and manifolds are denoted by Fraktur letters.

The corresponding points and charts with respect to coordi-

nate systems are written using Calligraphic letters. The map-

pings between manifolds and corresponding charts are denot-

ed by Ψ. Details are given in the figures.

4.2. Homogenisation of the discrete amount of substance.

There are discrete particles in nature but only continuous val-

ues in continuum mechanics. The discrete values must be

smeared over some set of points, i.e. the reference volume

element (rve), in the so-called homogenisation process. Thus,

only real valued densities ν of the amount of substance with

respect to the different coordinate systems are considered for

each point instead of integer values of the amount of sub-

stance n ∈ N or the number of elementary entities N ∈ N.

Therefore, the fundamental variable is either the density of

substance or the corresponding density of basic entities de-

fined on the considered set.

The densities ν are related to coordinate volume measures

which are in general no physical volume because the mani-

folds may have a geometry-free meaning.

The different pictures of the material body under consid-

eration must be separated in order to describe and highlight

the different effects most clearly. This must be done in line

with the field character of continuum mechanics. Growth, de-

scribed here as a modification of the amount of substance

within the material (design) space, must be separated from

the placement into the Euclidean space and the physical mo-

tion in Euclidan space.

5. Elements of an enhanced framework

The proposed continuum mechanical setting for different but

fixed bodies is visualised in Fig. 4 using coordinates.

Fig. 4. Continuum mechanics applied to two different bodies

5.1. The reference and current placements. The reference

placement K with Lagrangian coordinates X relative to ob-

server ΣX is mapped by ϕ to the current placement M with

Eulerian coordinates x relative to observer Σx. Furthermore,

the displacement vector u = x−X within the Euclidean space

is utilised. This picture is widely used for theoretical and com-

putational investigations.

Both placements K and M describe the embedding of

the material body A with set A of intrinsic coordinates into

the Euclidean space given by mappings κΘ and µΘ. They can

also be described using κ and µ defined on R.
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5.2. The initial material body with intrinsic coordinates

The material body A consists of the initial set of material

points S. The intrinsic coordinates Θ, also termed convected

coordinates, are inscribed to the body leading to a one-to-one

mapping ΨΘ : A → A between the material points S ∈ A

and their (intrinsic) names Θ ∈ A. Thus, the material body

represents the homogenised material in mathematical terms

with constant substance density, say νΘ ≡ 1. Every materi-

al point represents the same amount of substance and Θ is

the name of this (small) portion of homogenised material, i.e.

dn ≡ dVΘ. The body grows with constant substance density,

i.e. more names are needed in case of more material points,

as outlined in Sec. 6.

5.3. The material reservoir with local coordinates The

missing link in continuum mechanics is a technique to define

the material body itself. The role of manifold and atlases, see

Subsec. 4.1, can be converted, i.e. the material body is (lo-

cally) defined by the charts of an atlas, see [11]. This idea

results in the concept of a material reservoir R consisting of

generator points z defining material points and material bod-

ies A. The choice of the coordinates is arbitrary and does not

effect the properties. Thus, a second local coordinate system

with fixed set R independent of the choice of A is intro-

duced. Consequently, the substance density νζ (reservoir) is

no longer constant while the density νΘ (material body) is

fixed, say νΘ = 1.

5.4. Gradient operators and tangent mappings. The do-

mains are equipped with operators to be distinguished by

subscripts indicating the coordinates. The mappings between

the tangent spaces are derived from the point mappings using

the introduced gradient operators. Pull-back and push-forward

transformations for operators as well as for line, area and vol-

ume elements on different coordinate domains are available,

see Fig. 5 for an overview.

Fig. 5. Summary of properties of different domains

5.5. Amount of substance, mass and volume. There are

four functions measuring the density of amount of sub-

stance ν, the mass density µ and the volume density ω with

respect to the volume of the coordinates systems, where addi-

tional indices indicate the different domains. These densities

are related by

µ = Mm ν, ω = Vm ν and ̺ = µ/ω = Mm/Vm (1)

with constants Mm, Vm, i.e. molar mass and volume.

5.6. Summary of properties. The term manifold indicates

that the topology of the structure, i.e. the neighbourhood of

material points, has been introduced. The evolution process

with added substance is considered in Sec. 6.

On the other hand, no geometrical attributes have been

introduced so far. The placements of the initial and grown

bodies in Euclidean space and therefore the shapes of the

initial and evolved structures are discussed in Sec. 7.

The physical and design spaces are parametrised by phys-

ical time t and design (evolution) s, respectively, and are cou-

pled in Sec. 8. The derivatives are denoted by a superposed

dot and a superscript prime, respectively.

6. Growth of material bodies

The considerations are restricted to a modification of the

amount of substance ν keeping other properties fixed.

6.1. Initial and grown material bodies. All points and bod-

ies are continuously generated by mappings on the reser-

voir R. The growth process starts from the initial material

body A to yield the grown material body B(s). All abstracts

quantities can be represented using their intrinsic and local

coordinates. Furthermore, the mapping

γ :

{

A → B

Θ 7→ ϑ := (β ◦ α−1)(Θ)
(2)

models the growth process with intrinsic coordinates ϑ(s),
see Subsec. 4.1 and Fig. 6.

Fig. 6. Growth of material body

6.2. Kinematics of evolving bodies. The evolution of map-

ping β : R → B and of its tangent B = gradβ yields

ϑ
′ = β

′(ζ) and B
′ = [gradβ]′ = gradβ

′,
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i.e. gradient and derivative can be interchanged on the fixed

reservoir. Thus, the growth mapping γ : A → B with

ϑ = γ(Θ) = (β ◦ γ−1)(Θ) evolves as well, i.e.

ϑ
′ = γ′(Θ) = (β′

◦ α)(Θ) and Γ
′ = B

′
A

−1.

The growth velocity gradient is given by

gradϑγ′ = Γ
′
Γ
−1 = B

′
A

−1
A B

−1 = B
′
B

−1

and corresponds to the evolution of intrinsic coordinates.

6.3. Balance of amount of substance and evolution laws.

The substance densities with νϑ ≡ 1 are coupled with the

transformation between local and intrinsic coordinates

νζ = νϑ det [gradβ] = νϑ detB = νϑ JB. (3)

The substance density νζ(ζ, s) undergoes an evolution

ν′

ζ = νζ divϑβ
′ = νζ (1 : gradϑβ

′), (4)

which relates to the evolution of generator mapping β. Thus,

this type of growth yields compatible sets B.

The evolution of νζ is derived from a local version of

the amount of substance balance equation which is related to

the mass balance equation available in all other growth theo-

ries, see e.g. [8,9]. Furthermore, the type of evolution can be

specified in the evolution law, e.g. volumetric growth based

on Ḟg pointing to an incompatible intermediate configuration,

see Sec. 8 for an alternative.

7. Placements of growing bodies in space

The geometrical viewpoint is formulated by embedding the

material body into the Euclidean space whereby the set of

material points obtains its geometrical shape. This extension

is possible because the material points are equipped with the

molar volume Vm. Additionally, the motion of the material

body in space can be described.

7.1. Placement and deformation of two different bodies

The placement of one or two fixed material bodies in the

Euclidean space is sketched in Fig. 5. A general frame-free

viewpoint on continuum mechanics is given in [15,16].

The modifications between both bodies are introduced out-

side of any physical process. Thus, the complete continuum

mechanical mechanism is applied twice on different bodies.

The viewpoint of structural optimization is that the shape of

the body, i.e. the reference placement of the material body, is

the design function, see [11,12] using a presentation based on

local coordinates on a fixed domain. Every new domain Ks

is immediately filled with the neccessary material in its un-

stressed form. Overall, the material body has no importance

in this viewpoint, i.e. the overall story can be told by just

using the reference and current placements. But, opposite to

structural analysis, the reference and current placements are

now dependent on a scalar valued design parameter s. This

viewpoints can also be applied to configurational mechanics,

see [14].

7.2. Properties of placement mappings in case of growth

The outlined approach to growth phenomena benefits from

the strict separation of growth of amount of substance and

placements in Euclidean space. The placement mapping must

fulfill the constraint that the occupied volume of the material

body is consistent with the material properties, namely the

molar volume. Thus, any physical volume element dV of the

reference placement K yields

dV = ωX dVX = ωζ dVζ = Vm νζ dVζ = Vm dVΘ (5)

linking the mapping κΘ to the material property Vm via

JKΘ
= detKΘ ≡ Vm. Unfortunately, growth of the spatial

volume element dv = ωx dVx due to modification of molar

volume V ′

m or growth of the substance density ν′

ζ cannot be

separated from physical deformation µϑ.

8. A novel framework for growth theories

The kinematics of growth is formulated in literature as a mul-

tiplicative split of the deformation gradient in form of

F = Fe Fg. (6)

Here, Fg is the growth part from the known reference place-

ment K into an unknown and incompatible intermediate con-

figuration. This means that the gradient mapping is not in-

tegrable into a real placement, i.e. there is no displacement

field available. Afterwards, the intermediate configuration is

mapped into the current deformed configuration M via Fe,

see Fig. 6. A short formulation of an established theory is giv-

en by [3]. The spatial velocity gradient L = Ḟ F
−1 = gradxẋ

can be split up into growth and elastic parts, i.e.

L = Ḟe F
−1

e + Fe

[

Ḟg F
−1

g

]

F
−1

e . (7)

The elastic material behaviour and the growth law are depen-

dent on Fe and Ḟg, see e.g. [9] for details.

8.1. Reformulation based on compatible mappings. The

starting point for the rearrangement is the decomposition

ϕ = µ ◦ κ−1 = µϑ ◦ γ ◦ κ−1

Θ
= µϑ ◦ β ◦ α−1

◦ κ−1

Θ
. (8)

Consequently, the deformation gradient takes the form

F = M K
−1 = Mϑ Γ K

−1

Θ
= Mϑ B A

−1
K

−1

Θ
. (9)

Here, the tensors Fe and Fg can be recovered by inserting

Z
−1

ϑ Zϑ in the above representation, i.e.

F =
[

Mϑ Z
−1

ϑ

] [

Zϑ Γ K
−1

Θ

]

=
[

Mϑ Z
−1

ϑ

] [

Zϑ B A
−1

K
−1

Θ

]

,

and comparing with F = Fe Fg to yield

Fe = Mϑ Z
−1

ϑ (10)

and

Fg = Zϑ Γ K
−1

Θ
= Zϑ B A

−1
K

−1

Θ
, (11)

see Fig. 6 for an overview.
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8.2. Time derivatives. Next, it is shown that ZΘ and Zϑ can-

cel out in all relevant evolution equations. The design variable

is linked to time, i.e. s = t, and the derivative (·)′ is replaced

by the usual time derivative.

The time derivative of Fe yields with fixed A and KΘ

Ḟe = Ṁϑ Z
−1

ϑ − Mϑ Z
−1

ϑ Żϑ Z
−1

ϑ (12)

and thus

Ḟe F
−1

e = Ṁϑ M
−1

ϑ − Mϑ Z
−1

ϑ Żϑ M
−1

ϑ . (13)

Similarly, the time derivative of Fg gives

Ḟg = Żϑ Γ K
−1

Θ
+ Zϑ Ḃ A

−1
K

−1

Θ
(14)

and thus

Ḟg F
−1

g = Żϑ Z
−1

ϑ + Zϑ Γ̇ Γ
−1

Z
−1

ϑ . (15)

Overall, the spatial velocity gradient is given in (7) and we

observe that the term Mϑ Z
−1

ϑ Żϑ M
−1

ϑ cancels out. Thus, the

resulting spatial velocity gradient, see also (7), decomposes

additively to elastic and growth parts

L = Ṁϑ M
−1

ϑ + Mϑ

[

Ḃ B
−1

]

M
−1

ϑ , (16)

which is verified by direct computation using F = MK
−1

and M = Mϑ B. All tangent mappings are computed as gra-

dients of the underlying point mappings, i.e. only compatible

mappings are involved.

9. Conclusions

The proposed enhanced theory offers a deeper interpretation

of the combined growth-deformation-process. A well-known

concept from structural optimisation, i.e. a design space para-

meterisation using design variables, is applied to the general

continuum mechanical framework. Thus, the classical concept

of a unique and fixed material body is modified to allow an

evolution of solid bodies.

In detail, a previously introduced concept for variational

design sensitivity analysis in structural optimisation is en-

hanced to separate topology and geometry. Here, evolving

sets of names, i.e. intrinsic coordinates belonging to differ-

ent material bodies, are introduced and compared via local

coordinates on a material reservoir. Is is crucial to observe

that there is no geometry available in the space of intrinsic

coordinates.

This novel viewpoint is compared with the classical

growth theory using a multiplicative decomposition of the

deformation gradient yielding an incompatible intermediate

configuration. This approach can be considered as the pull-

back of an intermediate configuration to the name space of

intrinsic coordinates. Thus, there is no need to discuss about

incompatibility because the sets of names are always com-

patible. Overall, a rigorous analysis of the design space sep-

arating geometrical and topological entities enables a theory

using only compatible mappings.
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