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Abstract. This paper presents a new Young modulus updating procedure as an extension to the SIMP method used for topology optimization.

In essence, the modified Young modulus updating procedure consists in taking into account in a given optimization step not only the material

density from the preceding step, but also the increment in density in the two preceding steps. Thanks to this, it is possible to obtain a solution

in cases in which the classic SIMP method failed. The variational approach was adopted and the structure’s strain energy was minimized

under constraints imposed on body mass. FEM was used to solve numerical examples. The numerical analysis confirmed the effectiveness

of the proposed method, particularly for structures with relatively long spans.
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1. Introduction

Generally, the aim of topology optimization is to find an op-

timum distribution of the material from which a given struc-

ture is to be made, in a certain defined area, called a design

area, under the prescribed boundary conditions and load. The

aim of optimization here is to maximize stiffness, which cor-

responds to minimizing compliance (ΠE). Since there is a

mutual correspondence between a structure’s compliance and

the strain energy accumulated in it (ΠE = 2ΠI), the strain

energy minimization problem:

ΠI =
1

2

∫

V

εT
C ε dV (1)

is considered under the constraints imposed on body mass, i.e.

the quantity of available mass does not change in the course

of optimization and in each successive step the same amount

of mass is distributed within the design area:

mj = m0, (2)

where

m0 = α m, 0 < α < 1 and m = V ρ0, (3)

j stands for the number of a consecutive optimization step

and mj is the body mass in the optimization step, m0 – the

quantity of available mass, α – a mass reduction coefficient

defining what proportion of the mass located in the design

area is used in the optimization process, ρ0 – the density of

the material from which the structure is to be built and V –

the volume of the design area.

In this paper the well-known SIMP method [1–3] has been

modified by changing the way of updating the Young modu-

lus, as described below.

In the classic SIMP method, the Young modulus in a con-

sidered point (finite element) of the body depends on the ma-

terial density in this point in the preceding optimization step

(bearing the number j-1):

Ej = E0

(

ρj−1

ρ0

)p

, (4)

where Ej is the Young modulus in the current step (j), E0 is

the Young modulus of the material from which the structure

is to be built and ρj−1 is the preceding step material densi-

ty relative to that of current step j. In the proposed method,

the Young modulus in a considered finite element in the j-th

optimization step depends on the element’s material density

in the preceding step and also on the increment in this ele-

ment’s density between steps j-1 and j-2. The increment is

additionally scaled through parameter a. The so formulated

increment is defined as δ

δ =
ρj−1 − ρj−2

a
(5)

and it is added or subtracted from the preceding step material

density:

Ej = E0

(

ρj−1 + δ

ρ0

)p

, (6)

Ej = E0

(

ρj−1 − δ

ρ0

)p

. (7)

The algorithm with updating according to Eq. (6) is further

referred to as Alg+ while the one with updating according to

Eq. (7) is referred as Alg−. Since the proposed algorithm uses

densities from the step whose number is lower by 2 than the

number of the considered step, it can be introduced starting

with the step whose number is (j ≥ 2) according this scheme:
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Step 0

Ej=0 = E0,

Step 1

Ej=1 = E0

(

ρj=0

ρ0

)p

,

Step 2

Ej=2 = E0

(

ρj=1 ± δ

ρ0

)p

,

Step 3 (. . . )

Ej=3 = E0

(

ρj=2 ± δ

ρ0

)p

, (. . .).

(8)

As it is apparent, the proper updating relation is the same

for steps no. 2, 3, etc., which is denoted by (. . . ).

This paper concentrates on an analysis of selected numeri-

cal results. Since both the topology and the strain energy value

characterizing it are critical for the analysis, figures showing

topologies with strain energy values should be presented to

show how the topologies change depending on the control

parameters. However, this would require much space and so

only selected results are presented here. The topologies have

the form of: a material/void distribution (a) or a distribution

where besides the material/void there is also material whose

density is slightly varied and slightly lower than that of the

material from which the structure is made (b). Graphically,

case (a) is represented as black and white distribution and

case (b) as a black and white distribution with shades of grey.

2. Numerical examples

A program based on the above algorithm was written in Mat-

lab. Then its effectiveness was checked: by adjusting (increas-

ing) parameter a, solutions identical with the classic SIMP

solution would be obtained and by reducing this parameter,

solutions in the cases in which the classic SIMP method yield-

ed no solution were obtained.

The solutions obtained using the proposed incremental

method are compared below with the ones yielded by the

classic SIMP method. The latter solutions were obtained us-

ing a program called Alg 1 (differing in only the updating

procedure from Alg− and Alg+) developed by the authors.

Consequently, the comparative analysis is even more reliable

and its conclusions can be useful in the further search for

more effective topology optimization algorithms.

The Alg 1 algorithm used in the numerical program had

been previously tested Ref. [4]. In part it is based on Ref. [5]

where among other things threshold functions were used to

speed up the process of obtaining optimal solution. Threshold

functions define the level of the relatively small strain in the

structure’s particular areas. On this basis, material is redistrib-

uted from the relatively little strained areas to the relatively

more strained ones. The idea of introducing threshold func-

tions was derived from the threshold values used in, e.g., [6].

By relating a threshold function to an optimization step num-

ber, material can be redistributed gently and smoothly. Thanks

to the use of threshold functions one can obtain solutions of

the material-void type for low values of exponent p.

The numerical examples provided are typical literature

benchmarks, i.e. a freely supported beam and a cantilever.

The aim of this approach was to ensure high comparability

with the results reported in the literature. A freely supported

beam fixed in two ways is considered (Fig. 1). In scheme 1

(Sch. 1), two constrains on the left support and one constraint

on the right support have been removed. In scheme 2 (Sch. 2),

two constraints have been removed on each of the supports.

The beams are loaded with force P at midspan on the upper

edge. The third scheme (Sch. 3) represents a cantilever with

its left edge fixed, loaded with force P in the middle of its

height.

Fig. 1. Static schemes of considered cases: freely supported beam

(Sch. 1 a, Sch. 2 b), and cantilever c)

The analyzed quantities are expressed as dimensionless.

A 144 × 24 FE mesh was adopted for Sch. 1 and Sch. 2 and

a 20 × 20 mesh was used for Sch. 3.

Figures 2, 3 and 4 were plotted in such a way that in each

of them drawing a) was made on the basis of the results yield-

ed by program Alg 1, while drawing b) contains many results

for different parameters, yielded by program Alg+ (Figs. 2

and 3) or Alg− (Fig. 4).

A comparison of strain energy for the cases shown in

Fig. 2a and Fig. 2b shows that the Alg+ algorithm yielded

strain energy values lower at decreasing parameter a than the

ones yielded by Alg 1. The further reduction of parameter

a did not lead to a more satisfactory solution. The value of

exponent p (Eq. (6) and Eq. (7)), the value of the mass re-

duction coefficient α are given at the top of the figure. The

value of parameter a, the number of the step in which the

topology was obtained and the strain energy value (en) are

shown above each topology.
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Fig. 2. Topologies obtained for Sch 1 and p = 2, using algorithm

Alg 1 (a) and Alg+ (b)

Figure 3 shows (in the same way as Fig. 2) computation

results for Sch. 3. Similar trends are observed. Since no solu-

tion is obtained when a too low (below 13) value of parameter

a is used, empty space is left in the left column in Fig. 3.

Exemplary topologies yielded by Alg– are shown below

the ones yielded by Alg+. The observed trends concerning

topologies and their energies are similar in the two cases.

Fig. 3. Topologies obtained for Sch. 3 and p = 2 and p = 3, using

algorithm Alg 1 (a) and Alg+ (b)
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Fig. 4. Topologies obtained for Sch. 1 and p = 2, using algorithm

Alg 1 (a) and Alg− (b)

2.1. Results for different exponent values – p. In this sub-

section, exemplary topologies obtained for different values of

exponent p in Eqs. (6), (7) are analyzed. First of all, solu-

tions with higher exponent values are subjected to scrutiny

since exponents with a value higher than 3 are seldom used

in the literature. Higher exponent values result in the relative-

ly quicker removal of material from the relatively less strained

areas in which relatively lower strain energy has accumulat-

ed. When the incremental method is used, material is removed

from the less strained areas not so quickly and precisely as in

the case of the classic SIMP method. As an illustration, Fig. 5

shows the solutions obtained for exponent p = 4 and mass re-

duction coefficient α = 0.5. Figure 5c shows the topology

obtained in step 47 by means of program Alg−. No accept-

able topology was obtained for exponent p = 4, using either

Alg 1 (Fig. 5a) or Alg+ (Fig. 5b). It appears that increment

addition or subtraction is of considerable significance since

it favourably affects the rate and way of material removal

from the less strained elements in the design area. In the cas-

es shown in Fig. 5a and 5b, the topologies were obtained in

step 11. No changes were observed in the next steps.

Similar results were obtained for p = 5 (Fig. 6). Also here

the Alg+ algorithm yielded no solution.

Fig. 5. Topologies obtained for p = 4 and α = 0.5, using Alg 1 a),

Alg+ b) and Alg− c)

Fig. 6. Topologies obtained for p = 5 and α = 0.45, using Alg 1 a)

and Alg− (step 47) b)

Similar analyses as for the freely supported beam were car-

ried out for cantilever Sch 3. The results obtained by means of

Alg 1and Alg+, and Alg 1 and Alg− are compared in respec-

tively Fig. 7 and Fig. 8. The more refined topology charac-

terized by lower strain energy, shown in Fig. 7, was obtained

using Alg+ and the one in Fig. 8 by means of Alg−.

Fig. 7. Topologies obtained for p = 3 and α = 0.4, using Alg 1 a)

and Alg+ b)

Fig. 8. Topologies obtained for p = 5 and α = 0.4, using Alg 1 a)

and Alg− b)

2.2. Results for different FE mesh densities. In order to

further check the effectiveness of the incremental algorithms,

the latter were tested for different FE mesh densities and the

results were compared with the ones obtained using Alg 1.

Figure 9 shows the topologies yielded by the Alg 1 algorithm

for Sch. 1 under the same control parameters, three different

FE mesh densities (72×12, 144×24, 288×48) and a constant

144 × 24 [m] design area.
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Fig. 9. Topologies obtained using Alg− and Sch. 1

Fig. 10. Topologies obtained using Alg+ and Sch. 1

Similar results obtained by means of Alg+ are shown

in Fig. 10. Obviously, the results obtained for the densest

mesh have the smoothest shapes. It sometimes happens that

the strain energy for the densest mesh solution is somewhat

greater than for a less dense mesh. This is due to, among other

things, the fact that although the topology obtained in such a

case is smooth, it is at the same time more compliant. This

can be sometimes directly seen when one examines the par-

ticular structural components (e.g. in the fixing region, where

too much material was removed in the course of optimization,

whereby the structure is more compliant).

Analyzing the results for all the three schemes one finds

that better solution convergence at different mesh densities

was achieved when algorithms Alg+ and Alg− were used.

Although, as shown above, in one case Alg+ yielded bet-

ter results while in another case Alg− performed better. This

depends on the particular case and the assumed design para-

meters. In some cases, the initial algorithm yields a slightly

better result. Thanks to the increment based on parameter a it

is possible to search for better solution than the one yielded by

the initial algorithm (Alg 1) while preserving better stability

of shape similarity when FE mesh density is changed.

2.3. Results for different ratios of design area sides. An-

other subject of the analysis were solutions for large spans

of beams: Sch. 1, Sch. 2 and Sch. 3. First a 240 × 24 [m]

(a 10:1 side ratio) Sch. 1 beam was analyzed (Fig. 11). The

computations were performed for a quite low (for this scheme)

value of mass reduction coefficient α = 0.35. In the case of

the incremental method, controlling parameter a = 7000 was

used. As it is shown below, the topology yielded by Alg 1 is

characterized by the highest strain energy value (due to the

unoptimal shape). Algorithm Alg+ yielded a topology with

a better arrangement of the branches and a considerably low-

er strain energy value. The qualitatively best result (with the

most well-defined shape and the lowest strain energy value)

was yielded by Alg−.

Then a 480×24 (20:1) Sch. 2 beam was analyzed (Fig. 12).

The topologies yielded by respectively Alg 1 and the incre-

mental method for two different control parameter values:

a = 1000 and a = 500 are compared below. In the case

of Alg 1, the topology has a poorly refined and unoptimal

shape and a very high strain energy value. When Alg+ was

used, two better (more openwork) topologies with a lower

strain energy value than in the case of Alg 1 were obtained.

The topologies yielded by Alg− also show lower strain ener-

gy values than the ones yielded by Alg 1. All the topologies

are qualitatively good and contain a small number of elements

in shades of grey. One should also note how the structure is

shaped in the support region, i.e. in the bottom corners of the

design area. As the span was increased, a certain amount of

material accumulated in the support region.

Fig. 11. Topologies obtained using Alg 1 a), Alg+ b) and Alg− c)
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Fig. 12. Topologies obtained using Alg 1 a), and Alg+ b) and Alg− c) (a = 1000, a = 500)

Fig. 13. Topologies for p = 1, a = 1000 and α = 0.5, obtained using Alg 1 a) and Alg− b)

Finally, the cantilever scheme was analyzed. The design

area was 120×20 [m], i.e. it had a side ratio of 6:1. Figure 13

shows one of the two considered cases. As one can see, an

interesting, original shape of the structure has been obtained

and the strain energy value is lower in the case of Alg−-.

To sum up, thanks to the application of the incremental

method to design areas in which one of the dimensions is

much larger than the other one (e.g. the spans of long bridges

of low height or long-reach cantilevers), qualitatively better

topologies were obtained. Sometimes the incremental method

yielded a topology when the initial algorithm (Alg 1) failed

to yield one. It should be noted that the Alg− algorithm is

much more computationally effective.

3. Conclusions

The incremental method, which in the Young modulus up-

dating algorithm takes into account a change in mass density

in the particular finite elements in the last two steps of the

optimization process, represents a significant extension to the

SIMP algorithm (Alg 1). The change, i.e. an increment in

density, can be taken into account by adding (Alg+) or sub-

tracting (Alg−) the increment value.

The analyses concerning the strain energy level of the ob-

tained topologies, the use of different FE mesh densities and

the application of the incremental method to design areas with

a large difference in the length of their sides have shown that

the use of the incremental method helps to obtain energywise

desirable refined shapes. It has also been demonstrated that

the use of increments (particularly in the case of Alg−) has

a positive effect on computations involving high powers, by

improving optimization process convergence. The algorithms

(Alg+, Alg−) improved in this way enable the search for

qualitatively and energywise better topologies in cases when

the initial algorithm fails or yields unoptimal solutions.

To sum up, the proposed incremental method of updating

Young’s modulus yields better results than the classic SIMP

method: the topologies obtained in this way are character-

ized by a lower strain energy level and are more refined. In

particular, better results are obtained for:

1. higher values of the exponent in Eqs. (6) and (7),

2. high ratios of design area sides.
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