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Positive fractional 2D continuous-discrete linear systems
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Abstract. A new class of positive fractional 2D continuous-discrete linear systems is introduced. The solution to the equations describing

by the new class of systems is derived. Necessary and sufficient conditions for the positivity of the fractional 2D continuous-discrete linear

systems are established.
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1. Introduction

Recently a dynamical development of the fractional and spe-

cially positive fractional linear systems theory has been ob-

served. A dynamical system is called positive if and only if its

trajectory starting from any nonnegative initial state remains

forever in the positive orthant for all nonnegative inputs. Va-

riety of models having positive linear behavior can be found

in engineering, management sciences, economics, social sci-

ences, biology and medicine, etc.. An overview of state of the

art in positive and fractional systems theory is given in mono-

graphs [1–5]. New class of 2D continuous-discrete linear sys-

tems has been introduced in [6, 7] and of positive fractional

2D hybrid linear systems in [3, 8]. Stability and robust stabil-

ity of the general 2D model of a class of continuous-discrete

linear systems has been analyzed in [9–11]. Stability, con-

trollability and observability of 2D continuous-discrete linear

systems have been investigated in [2, 6, 12–14]. Solvability

of 2D hybrid linear systems has been addressed in [15, 16].

In this paper a new class of positive fractional 2D

continuous-discrete linear systems is introduced. The solu-

tion to the state equations describing the systems is derived

and the necessary and sufficient conditions for the positivity

of the system is established.

The paper is organized as follows. In Sec. 2 the solution

to the equations describing the new class of fractional 2D

continuous-discrete linear systems is derived. Necessary and

sufficient conditions for the positivity of the fractional system

are established in Sec. 3. Concluding remarks are given in

Sec. 4.

The following notation is used in this paper. The set of

real n×m matrices is denoted by ℜn×m and the set of n×m

real matrices with nonnegative entries will be denoted ℜn×m
+

(ℜn
+ = ℜn×1

+ ). The n × n identity matrix will be denoted by

In.

2. Model and its solution

In this paper the following Caputo definition of the fractional

derivative for 0 < α < 1 is used [3]

0D
α
t f(t) =

dαf(t)

dtα
=

1

Γ(1 − α)

t
∫

0

ḟ(τ)

(t − τ)α
dτ ,

ḟ(τ) =
df(τ)

dτ
,

(1)

where

Γ(x) =

∞
∫

0

e−ttx−1dt, Re(x) > 0 (2)

is the Euler gamma function.

Consider a class of fractional 2D continuous-discrete lin-

ear systems described by the equations

dαx(t, i + 1)

dtα
= A0x(t, i) + A1

dαx(t, i)

dtα
+

+ A2x(t, i + 1) + Bu(t, i), 0 < α < 1,

(3a)

y(t, i) = Cx(t, i) + Du(t, i), t ∈ ℜ,

i ∈ Z+ = {0, 1, ...},
(3b)

where x(t, i) ∈ ℜn, u(t, i) ∈ ℜm, y(t, i) ∈ ℜp are the

state, input and output vectors and Ak ∈ ℜn×n, k = 0, 1, 2;
B ∈ ℜn×m, C ∈ ℜp×n, D ∈ ℜp×m.

Boundary conditions for (3) have the form

x(t, 0) ∈ ℜn, t ∈ ℜ, x(0, i) ∈ ℜn, i ∈ Z+. (4)

It is assumed that the continuous variable t (time) and the

discrete variable i are independent. Using the Laplace trans-

form and z-transform we shall derive the solution x(t, i) ∈ ℜn

of (3) satisfying the boundary conditions (4).

Let X(s) and X(z) be the Laplace transform and z-

transform of x(t) and x(i), respectively defined by

X(s) = L[x(t)] =

∞
∫

0

x(t)e−stdt, (5a)

X(z) = Z[x(i)] =

∞
∑

i=0

x(i)z−i (5b)
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and

X(s, z) = Z [L[x(t, i)]] , U(s, z) = Z [L[u(t, i)]] . (5c)

Applying the Laplace transform and z-transform to the

Eq. (3) and taking into account that [3]

L

[

dαx(t, i)

dtα

]

= sαX(s, i)−sα−1x(0, i), 0 < α < 1, (6)

Z [x(t, i + 1)] = zX(s, i)− zx(t, 0) (7)

we obtain

[Insαz − A0 − A1s
α − A2z]X(s, z) =

= [Insαz − A2z]X(s, 0) + [Insα−1z − A1s
α−1]X(0, z)−

−Insα−1zx(0, 0) + BU(s, z),
(8)

or

[In − A0s
−αz−1 − A1z

−1 − A2s
−α]X(s, z) =

= [In − A2s
−α]X(s, 0)+

+[Ins−1 − A1s
−1z−1]X(0, z)− Ins−1x(0, 0)+

+Bs−αz−1U(s, z).

(9)

From (9) we have

X(s, z) = [In − A0s
−αz−1 − A1z

−1 − A2s
−α]−1·

·{[In − A2s
−α]X(s, 0)+

+[Ins−1 − A1s
−1z−1]X(0, z)−

−Ins−1x(0, 0) + Bs−αz−1U(s, z)}.

(10)

Let
[In − A0s

−αz−1 − A1z
−1 − A2s

−α]−1 =

=

∞
∑

k=0

∞
∑

l=0

Tk,ls
−kαz−l.

(11)

Taking into account that

[In − A0s
−αz−1 − A1z

−1 − A2s
−α]·

·

(

∞
∑

k=0

∞
∑

l=0

Tk,ls
−kαz−l

)

=

(

∞
∑

k=0

∞
∑

l=0

Tk,ls
−kαz−l

)

·

·[In − A0s
−αz−1 − A1z

−1 − A2s
−α] = In

(12)

and comparing the coefficients at the same power of s−α and

z−1 we obtain

Tk,l =







































In (identity matrix) for k = l = 0,

A0Tk−1,l−1 + A1Tk,l−1 + A2Tk−1,l =

= Tk−1,l−1A0 + Tk,l−1A1 + Tk−1,lA2

for k, l ∈ Z+, k + l > 0,

0 (zero matrix) for k < 0 and / or l < 0.

(13)

Substitution of (11) into (10) yields

X(s, z) =

∞
∑

k=0

∞
∑

l=0

Tk,ls
−kαz−l{[In − A2s

−α]X(s, 0)+

+[Ins−1 − A1s
−1z−1]X(0, z)−

−Ins−1x(0, 0) + Bs−αz−1U(s, z)}.

(14)

Applying the inverse Laplace transform L−1, the inverse

z-transform Z−1 and the convolution theorem to (14) we ob-

tain

x(t, i) = Z−1
[

L−1[X(s, z)]
]

=

= T0,ix(t, 0) +

∞
∑

k=1

Tk,i

Γ(kα)

t
∫

0

(t − τ)kα−1x(τ, 0)dτ−

−

∞
∑

k=0

Tk,iA2

Γ[(k + 1)α]

t
∫

0

(t − τ)(k+1)α−1x(τ, 0)dτ+

+

∞
∑

k=0

∞
∑

l=0

Tk,i−lt
kα

Γ(kα + 1)
x(0, l)

−
∞
∑

k=0

∞
∑

l=0

Tk,i−l−1A1t
kα

Γ(kα + 1)
x(0, l)−

−

∞
∑

k=0

Tk,it
kα

Γ(kα + 1)
x(0, 0)+

+

∞
∑

k=0

∞
∑

l=0

Tk,i−l−1B

Γ[(k + 1)α]

t
∫

0

(t − τ)(k+1)α−1u(τ, l)dτ ,

(15a)

or

x(t, i) = Z−1
[

L−1[X(s, z)]
]

=

= T0,ix(t, 0) +

∞
∑

k=1

Tk,i

Γ(kα)

t
∫

0

(t − τ)kα−1x(τ, 0)dτ−

−

∞
∑

k=0

Tk,iA2

Γ[(k + 1)α]

t
∫

0

(t − τ)(k+1)α−1x(τ, 0)dτ+

+

∞
∑

k=0

∞
∑

l=1

Tk,i−lt
kα

Γ(kα + 1)
x(0, l)−

−

∞
∑

k=0

∞
∑

l=0

Tk,i−l−1A1t
kα

Γ(kα + 1)
x(0, l)+

+

∞
∑

k=0

∞
∑

l=0

Tk,i−l−1B

Γ[(k + 1)α]

t
∫

0

(t − τ)(k+1)α−1u(τ, l)dτ,

(15b)

since [8]

L[tα] =
Γ(α + 1)

sα+1
.

Therefore, the following theorem has been proved.

Theorem 1. The solution of the Eq. (3a) with boundary con-

ditions (4) has the form (2.15), where the matrices Tk,l are

defined by (13).

Example 1. Compute the solution x(t, i) of the Eq. (3a) for

α = 0.5 with the matrices

A0 =

[

0 0

0 0

]

, A1 =

[

0 1

0 0

]

,

A2 =

[

0 0

1 0

]

, B =

[

1

1

] (16)
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the input

u(t, i) = 1 for t ≥ 0, i ∈ Z+ (17)

and the boundary conditions

x(t, 0) =

[

et

0

]

, x(0, i) =

[

0

1

]

, i ∈ Z+. (18)

Using (16) and (13) we obtain

Tk,l =























































































[

0 0

1 0

]

for k = 1, l = 0 and k = l + 1, l = 1, 2, ...
[

0 1

0 0

]

for k = 0, l = 1 and l = k + 1, k = 1, 2, ...
[

1 0

0 1

]

for k = l = 0, 1, 2, ...

[

0 0

0 0

]

otherswise

(19)

a)

b)

Fig. 1. State variables of the system from Example 1

Substituting (19), (17) and (18) into (15) we obtain desired

solution x(t, i)

x(t, i) =

[

x1(t, i)

x2(t, i)

]

=

=

(

1 −
tiα

Γ(iα + 1)
+

i−1
∑

l=0

t(i−l+1)α

Γ[(i − l + 1)α + 1]

)[

0

1

]

+

(

i−2
∑

l=0

t(i−l−1)α

Γ[(i − l − 1)α + 1]
−

t(i−1)α

Γ[(i − 1)α + 1]
+

)[

1

0

]

+

i−1
∑

l=0

t(i−l)α

Γ[(i − l)α + 1]

[

1

1

]

.

(20)

The plots of the state variables (20) are shown in Fig. 1.

3. Positivity of the model

Let Cnd(t) be the set of non-decreasing continuous function

f(t) satisfying the condition

f(t) ∈ Cnd(t) if and only if

f(t1) ≥ f(t2) for all

t1 ≥ t2, t1, t2 ∈ ℜ+

(21)

Lemma 1. Let f(t) ∈ Cnd(t) and there exist
dαx(t, i)

dtα
for

0 < α < 1. Then

dαx(t, i)

dtα
≥ 0 for t ≥ 0. (22)

Proof. It is well-known that the convolution
t
∫

0

f1(t − τ)f2(τ)dτ

of two nonnegative continuous function f1(t), f2(τ) is also

nonnegative continuous function. Taking into account this and

using (1) we obtain

dαf(t)

dtα
=

1

Γ(1 − α)

t
∫

0

(t − τ)−αḟ(τ)dτ ≥ 0

for t ≥ 0

(23)

since Γ(1−α) > 0, (t− τ)−α ≥ 0 for 0 < α < 1, 0 ≤ τ ≤ 1
and ḟ(t) ≥ 0 for f(t) ∈ Cnd(t). �

It is assumed that x(t, 0) in (4) is non-decreasing function

of t, i.e.

x(t, 0) ∈ Cn
nd(t) for t ≥ 0. (24)

Definition 1. The system (3) is called (internally) positive if

for any boundary conditions

x(t, 0) ∈ ℜn
+, x(t, 0) ∈ Cn

nd(t)

and x(0, i) ∈ ℜn
+, i ∈ Z+

(25)

and all inputs vectors u(t, i) ∈ Rm
+ , t ≥ 0, i ∈ Z+ the state

and output vectors satisfy the condition

x(t, i) ∈ ℜn
+, y(t, i) ∈ ℜp

+

for t ≥ 0, i ∈ Z+.
(26)
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A matrix A ∈ ℜn×n is called a Metzler matrix if all its

off-diagonal entries are nonnegative.

Theorem 2. The system (3) is positive if and only if:

i) A0, A1 ∈ ℜn×n
+ , A = A0 + A1A2 ∈ ℜn×n

+ , B ∈ ℜn×m
+ ,

C ∈ ℜp×n
+ , D ∈ ℜp×m

+ ,

ii) A2 is a Metzler matrix.

Proof. The proof will be accomplished by induction. The

equation (3a) may be written in the form

dαx(t, i + 1)

dtα
= A2x(t, i + 1) + F (t, i),

t ≥ 0, i ∈ Z+,

(27)

where

F (t, i) = A0x(t, i) + A1
dαx(t, i)

dtα
+ Bu(t, i). (28)

From (27) and (28) for i = 0 we have

dαx(t, 1)

dtα
= A2x(t, 1) + F (t, 0), (29)

where

F (t, 0) = A0x(t, 0) + A1
dαx(t, 0)

dtα
+ Bu(t, 0) (30)

is known for given boundary conditions (25).

From (30) it follows that F (t, 0) ∈ ℜn
+ if (25) and

A0, A1 ∈ ℜn×n
+ , B ∈ ℜn×m

+ holds. The solution of (29)

is given by [3]

x(t, 1) = Φ0(t)x(0, 1) +

t
∫

0

Φ(t − τ)F (τ, 0)dτ (31)

where

Φ0(t) =

∞
∑

k=0

Ak
2tkα

Γ[kα + 1]
,

Φ(t) =
∞
∑

k=0

Ak
2t(k+1)α−1

Γ[(k + 1)α]
.

(32)

It is well-known [8] that

Φ0(t), Φ(t) ∈ ℜn×n
+ for t ≥ 0 (33)

if and only if A2 is a Metzler matrix, i.e. the condition ii)

is met. From (3b) for i = 1 we have y(t, 1) = Cx(t, 1) +
Du(t, 1) for t ≥ 0 if and only if C ∈ ℜp×n

+ , D ∈ ℜp×m
+ and

u(t, 1) ∈ Rm
+ , t ≥ 0. Using (28) for i = 1 and (29) we obtain

F (t, 1) = A0x(t, 1) + A1
dαx(t, 1)

dtα
+ Bu(t, 1) =

= (A0 + A1A2)x(t, 1) + A1F (t, 0) + Bu(t, 1) =

= Ax(t, 1) + A1F (t, 0) + Bu(t, 1) ∈ ℜn×n
+ ,

t ≥ 0

(34)

since A ∈ ℜn×n
+ , A1F (t, 0) ∈ ℜn

+ and Bu(t, 1) ∈ ℜn
+, t ≥ 0.

In a similar way as in [3] by induction it can be shown that

x(t, i) ∈ ℜn
+, F (t, i − 1) ∈ ℜn

+ for t ≥ 0 and i ≥ 1 if and

only if the condition i) and ii) are satisfied. �

Remark 1. The considerations can be easily extended to

positive fractional 2D continuous-discrete linear systems de-

scribed by the equations

dαx(t, i + 1)

dtα
= A0x(t, i) + A1

dαx(t, i)

dtα
+

+A2x(t, i + 1) + B0u(t, i)+

+B1
dβu(t, i)

dtβ
+ B2u(t, i + 1),

0 < α < 1, 0 < β < 1,

(35a)

y(t, i) = Cx(t, i) + Du(t, i), t ∈ ℜ,

i ∈ Z+ = {0, 1, ...}.
(35b)

In is easy to show that the fractional system is posi-

tive if and only if the conditions of Theorem 2 are met and

Bk ∈ ℜn×m
+ , k = 1, 2.

4. Concluding remarks

A new class of positive fractional 2D continuous-discrete lin-

ear systems described by Eqs. (3) has been introduced. Using

the Laplace transform and z-transform the solution (15) to

Eq. (3a) with the boundary conditions (4) has been derived

(Theorem 1). Computation of the solution has been illustrated

by a numerical example. Necessary and sufficient conditions

for the positivity of the fractional 2D continuous-discrete lin-

ear systems have been established (Theorem 2). The consider-

ations can be extended to positive fractional 2D continuous-

discrete linear systems where the fractional difference with

respect to discrete variable will be also used.
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