
BULLETIN OF THE POLISH ACADEMY OF SCIENCES

TECHNICAL SCIENCES, Vol. 59, No. 1, 2011

DOI: 10.2478/v10175-011-0001-6

Artifficial Intelligence, Informatics and Applied Informatics

Application of genetically evolved neural networks

to dynamic terrain generation

Ł. CHOMĄTEK∗ and M. RUDNICKI

Institute of Information Technology, Technical University of Lodz, 225 Wólczańska St., 90-924 Łódź, Poland

Abstract. Real time terrain generation is a vital part in the development of realistic computer simulations and games. Dynamic terrain

generation influences the realism of simulation, because its participants have to adapt to the current environment conditions. Dynamically

generated primary terrain is transformed in order to reflect natural phenomena, such as thermal and water erosion, avalanches or glaciers. In

this article a possibility of primary terrain transformation with application of artificial neural networks is shown. The networks are trained by

evolutionary algorithms to solve a problem of a water erosion phenomenon. Obtained results show that application of such neural networks

to this problem can significantly reduce the processing time needed to perform the process of modeling the natural phenomena.
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1. Introduction

Real time terrain generation is a vital part in the development

of realistic computer simulations and games. Dynamic terrain

generation influences the realism of simulation, because its

participants have to adapt to the current environment condi-

tions; it is impossible when predefined terrains are used for

the simulation. What is more, simulation of the natural phe-

nomena can be applied to prevent its consequences.

In practice, the terrain generation process is performed in

two phases. At first, the primary terrain is generated, usually

by use of some fractal transformations. Dynamically generat-

ed primary terrain is transformed in order to reflect natural

phenomena, such as thermal and water erosion, avalanches or

glaciers. There is also the possibility to apply the models of

disasters given by some mathematical models [1]. Other fac-

tors applied in such algorithms are utilized to construct the

terrain’s flora.

Solutions of the problem are usually based on the cel-

lular automata [2, 3], where the cells represent the state of

some part of the developed landscape. In [2] authors present

the realistic model of water erosion. The state of each cell

contains information about the terrain altitude, depth of the

water and the amount of the eroded and deposited material.

What is more some other factors like soil receptivity and sed-

iment transport fluxes are held in the cells’ state to improve

the simulation realism. Results obtained in [2] show that such

a model can be successfully applied to predict the results of

water erosion in real world.

The water erosion implementation presented in this arti-

cle was based on works [3, 4]. In the article the base terrain

was described by means of the cellular automaton. Every cell

stores the information not only about the altitude of the ter-

rain in a given point but also about the amount of water and

the sediment in the same point. The algorithm is an iterative

process and each iteration consists of four phases:

– addition of certain amount of water to each cell,

– detachment of the part of the terrain, which is later floating

on water,

– transportation of the sediment,

– evaporation and sedimentation.

For the purpose of this article the water erosion algorithm

was implemented in the Matlab environment. The obtained

results were used as a base for further research.

2. Terrain generation by means

of the neural network

The idea of applying the neural network to process the data

describing a terrain was employed in [5, 6]. In this case the

aim of the neural networks application was not to optimize

the speed of the algorithm operation, but to find the relations

for certain practical issues. The results obtained by the cellu-

lar automata implementation of the water erosion algorithm,

were utilized to prepare a neural network, which can perform

water erosion simulation. Such a network was implemented

in the Matlab environment. The application of this network

has made it possible to conduct any iteration through a single

computation of the new parameters’ values for each cell of

the prepared map.

2.1. The training and testing data. As it was mentioned

above, each cell of the terrain is described by three parame-

ters:

– the altitude of the terrain in the cell,

– the amount of water in the cell,

– the amount of the sediment.

To calculate the new values of those parameters, one need

to know the values for the given cell and the four adjacent

cells. Therefore, to perform the erosion, 15 parameters are

needed. Updated values of the terrain height, the amount
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of water and sediment for each operating cell are the re-

sult of the computations concerning erosion for each cell.

Artificial neural network presented has 15 inputs and three

outputs.

The training data was prepared through the notation of

the parameters’ values of the terrain for the randomly select-

ed cells and their neighboring cells. For the primary terrain

500 patterns were prepared, then ten iterations of procedural

erosion algorithm were arranged, during which appropriate

amount of expected output data and 300 new input data from

randomly chosen cells were added. As the initial amount of

water in all cells did not equal zero and the network should

learn this state as well, one decided to include data from dif-

ferent iterations.

The network was tested on a newly generated terrain, con-

ducting several dozen iterations. The input in each iteration

was the terrain generated by the neural network during pre-

ceding iteration.

2.2. The architecture and learning of the neural network.

The neutral network chosen for this research was the multi-

layer perceptron [7]. Because of the fact that generally the

unlimited values could appear as the outputs, the output layer

is a linear layer. The neurons in other layers have sigmoid ac-

tivation function. The calibration of the input data is realized

through appropriate weights choice.

2.3. Obtained results. Exemplary results of the erosion com-

putations are presented on the illustrations (Fig. 1). Like in

the case of the procedural approach, it was noticed that a big

amount of material was put aside at the foot of the hills lo-

cated on the map. Unfortunately, sometimes various artifacts

appeared on a map (for example sediment on the top of the

mountain).

Fig. 1. Neural and procedural erosion

Remarkable shortening of the algorithm operation time

is worth mentioning when talking about the attempt to en-

gage artificial neural network against the prepared proce-

dural implementation. Exemplary results are shown in the

Table 1.

Table 1

Results for different SGA parameters (direct encoding)

SGA

Parameters

Results

[Threshold 0.05]

Results

[Threshold 0.10]

Mutation

probability

Crossover

probability

Number

of weights
Iteration

Number

of weights
Iteration

0.05 0.6 176 1290 76 1396

0.1 0.6 180 2890 74 1825

0.05 0.7 181 2970 70 857

0.1 0.7 175 1030 72 657

0.05 0.8 170 1540 71 1853

0.05 0.9 177 1540 83 1906

0.05 0.5 178 1220 75 1510

0.05 0.4 181 1725 77 1441

0.05 0.1 182 2400 71 1608

3. The optimization of the network architecture

with the use of a genetic algorithm.

Empirical choice of the optimal amount of neurons in the

hidden layers of the neural network is a time-consuming

process. There are many ways for the automatic optimization

of the architecture of the neural network by using the genetic

algorithms.

3.1. Earlier attempts. One of the simplest ways is binary en-

coding of the information about the links between the neurons

[8] Such network can be trained with any known method and

this causes a remarkable computing addition. Another attempt

to encode the architecture of the network in the chromosome

was presented in the work referred to in [9]. A binary en-

coding with variable number of weighed bits was used which

allowed the shortening of the chromosome at the small weigh

value. The authors of [10] [11] proposed an innovative method

which would create networks that were not multilayer percep-

trons as generally acknowledged. The information about the

connections between a given neuron and other neurons was

encoded in the chromosome. Storing the weights in the chro-

mosome was also possible. Networks prepared in such a way

were taught by a small number of epochs by means of the

reverse backpropagation algorithm in order to check if they

have a chance to learn how to solve the problem. In [12],

the network was encoded as the set of paths where the input

neuron is the first element of each path and the output neu-

ron is its’ last element. Between the beginning and the end

of a given path any hidden neurons can be found (cyclical

connections are exceptionally permitted). Suggested mutation

operators were related to the change of the existing paths.

Crossover was based on the change of the fragments of the

existing paths. In [13] it was suggested to encode the neural

network in the form of a tree. In the beginning of the al-

gorithm the network has one hidden neuron (the structure of

this network develops during the algorithm operation). Subse-

quently new neurons or layers are added. The author suggested
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many additional operators which are able to enlarge the gen-

erated model of network, for example, adding the recurrent

connections.

3.2. Suggested solution. Genetic algorithms used to prepare

the neural network for the purpose of this work, were based

on encoding the weights of the neurons in the chromosomes.

Therefore, the algorithm operation enabled both to find the

desired architecture of the network and its automatic learning.

In order to solve the problem the HFC genetic algorithm

was used. The parameters for such algorithm are: the number

of the islands, the number of the individuals on each island,

migration frequency, the number of the migrating individuals.

In the stage of migration the relocation of the individuals to

another islands comes as follows:

– on the island I (potentially least developed) the best-fit in-

dividuals are relocated to island II, the least-fit individuals

are substituted with the new ones with the random gene

values,

– on the intermediate islands the best-fit individuals are re-

located to higher islands, the least-fit ones are substituted

with the individuals from the lower island,

– on the last island the least-fit individuals are substituted

with the ones from the penultimate island.

It was decided to encode the weights of the evolving neural

network in the chromosome. The attempt mentioned earlier al-

lowed to omit the learning process of the network through a

different method as well as enabled to change its architecture

dynamically. The computation of the fitness function values

for each individual was based on checking the output errors

for randomly chosen data from the training set. The individ-

uals representing the network amounting smaller error had

higher value of the fitness function.

Two types of genes were checked in this issue:

– direct weights encoding – the genes are the floating-point

numbers,

– direct encoding with the fitness index – the gene is a pair

of floating-point numbers consisting of the weight value

and the fitness index.

During the HFC operation, iterations of a simple genetic

algorithm with the mutation and crossover operators appropri-

ate for the encoding were realized on each island. The methods

of encoding as well as the genetic operators are described in

detail in further subsections.

At some point in the initiation of the chromosome the net-

works are created, where each neuron from every layer apart

from the output layer is connected to every neuron from the

deeper layer. The chromosomes are initiated by the random

values according to the acknowledged encoding.

3.3. Direct encoding. The encoding of the network weights

as the floating-point numbers is more natural than binary en-

coding because of the possibility of a direct mapping the gene

to the weight value. A simple genetic algorithm using this en-

coding utilizes the single or multiplepoint crossover, whereas

the mutation takes place through adding a random number to

the gene value. The mutation happens with a certain proba-

bility for each gene, like in a simple genetic algorithm. The

tests were performed for two mutation methods: mutation us-

ing uniform distribution (in the range −1 . . . 1) and normal

distribution (expected value 0, standard deviation 1).

The genes are initiated with the values from −1 . . .1

range.

3.4. Direct encoding with the fitness function. In this en-

coding method the fitness index which changes the mutation

size in relation to the maximum size from the previous encod-

ing was utilized. Each gene stores the information about the

current weight value (real number) as well as about the fit-

ness function value (a number form the 0.05 . . .5 range). The

operation of the mutation operator in this method is based on

conducting the mutation for the randomly chosen genes with

certain probability, according to the formula:

g
t+1

i = gt
i + randcgt

, (1)

where g
t+1

i – the value of the subsequent chromosome gene

in the iteration t + 1, gt
i – the current value of the subse-

quent chromosome gene, rand – a random number generated

through the uniform distribution from the range of −1 . . .1,

or through the normal distribution, cgt
– fitness index of the

subsequent gene in the current iteration.

After the mutation is conducted, new fitness function val-

ue for the chromosome is computed. If it is better than before,

the mutation range for the mutated genes is increased. Other-

wise, the range of those genes is reduced. In order to prevent

too big an increase or reduction of the mutation indexes, they

were limited to the values from the range 0.05 . . .5.

The crossover operator was created on the basis of stan-

dard single or multiplepoint crossover, however, in the case of

this encoding, if the genes are exchanged between the chro-

mosomes, their fitness index values are set as 1. If the genes

are not exchanged, their fitness index values remain the same.

The genes are initiated with the values from −1 . . .1

range, fitness index of each gene is set as 1.

4. Obtained results

In the table below the results gathered during the genetic algo-

rithm action with binary encoding for fixed parameters HFC

and floating parameters SGA are presented. In SGA a three-

point crossover, tournament selection and uniform distribution

at mutation were used. The research was conducted to test the

optimal parameters of a simple genetic algorithm. Obtained

results are gathered in Table 1.

From the analysis of the gathered data it is recognized

that the application of the small probability of mutation is

the most useful. Optimal value for the crossover probability

comprises in the range of 0.5 . . .0.8. During the genetic algo-

rithm operation initially temporary decrease of the weights in

comparison with the amounts of weights from the table was

observed. It is probably caused by the application of small

weights during initiation, which can be easily reset.
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Table 2

Results for different HFC Parameters (direct encoding)

HFC

Parameters

Results

[Threshold 0.05]

Results

[Threshold 0.10]

Number

of Islands
Population

Migration

rate

Migration

frequency

Number

of weights
Iteration

Number

of weights
Iteration

2 100 5 10 172 600 81 654

2 150 5 10 173 620 83 815

2 100 10 10 169 760 93 633

2 100 15 10 175 870 91 568

2 100 15 8 172 840 89 669

2 100 15 6 175 820 72 650

3 100 15 2 174 1120 110 335

4 100 15 2 173 1240 85 519

After finding the optimal values for a simple genetic al-

gorithm which works on every island, the parameters con-

cerning the amount of islands and migrations were tested.

A simple genetic algorithm with the crossover probability of

0.5 and mutation probability of 0.05 was used during exper-

iments. The mutation was realized with uniform distribution,

the single-point crossover and the tournament selection were

used. Results are shown in Table 2.

It turned out that the optimal number of the individu-

als on an island for the given parameters of the algorithm

is about 50–100. The increase of the number of individ-

uals did not bring about results in the form of the de-

crease of iterations needed to proper network preparation.

The number of the individuals cannot be too small either,

because the number of iterations needed to achieve a good

result grows rapidly, whereas the number of individuals falls

down.

The examination of the optimal number of the migrat-

ing individuals and migration frequency was also tested. It

turned out that the algorithm achieves the best result when

the number of the migrating individuals is not higher than

10% of all the individuals on the island. It was not possible

to find out the relation between the result and the migration

frequency, however, the similar good results were achieved

for very small (two iterations) and relatively high (ten it-

erations) frequency. The increase of the number of islands

did not significantly affect how quickly a solution was found,

nor its quality. The research proved that with bigger num-

ber of the islands, higher migration frequency should be as-

sumed.

4.1. A floating-point encoding with fitness function – re-

sults. The conducted research was based on finding optimal

parameters of the SGA algorithm for set parameters of the

HFC algorithm. The following parameters of the HFC algo-

rithm were chosen:

– number of islands: 2,

– number of individuals on an island: 50,

– migration frequency: 10,

– migration rate: 5.

Obtained results are gathered in Table 3.

Table 3

Results for different SGA parameters (encoding with fitness index)

SGA

Parameters

Results

[Threshold 0.05]

Results

[Threshold 0.10]

Mutation

probability

Crossover

probability

Number

of weights
Iteration

Number

of weights
Iteration

0.15 0.4 178 1960 75 1682

0.05 0.5 184 1950 117 1068

0.05 0.6 188 1170 83 2382

0.05 0.7 177 1810 104 1946

0.15 0.7 186 6300 74 3084

0.1 0.8 182 2070 79 1492

0.05 0.9 184 2160 95 1439

0.1 0.9 186 2510 77 1370

The results show that with low weight reset threshold for

optimal mutation values (0.1) the method with the fitness of

weight change index finds a solution faster than the method

without fitness. The solution is characterized by better quality

for higher crossover index values than it was in the case of

the method without fitness.

For higher values of the weight reset index, the encoding

method with fitness index gives results faster than for lower

values of weight reset index. It is worth mentioning that for

higher values of weight reset index a higher mutation proba-

bility (0.1 or 0.15) can be assumed, which will result in better

quality of the solution.

Further research was based on finding optimal parameters

of the HFC algorithm. The following parameters of the SGA

algorithm were tested:

– crossover probability: 0.8,

– mutation probability: 0.05.

Obtained results are shown in Table 4.
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Table 4

Results for different HFC parameters (encoding with fitness index)

HFC

Parameters

Results

[Threshold 0.05]

Results

[Threshold 0.10]

Number

of Islands

Population

size

Migration

rate

Migration

frequency

Number

of weights
Iteration

Number

of weights
Iteration

2 50 5 10 176 1250 100 753

2 100 5 10 179 650 115 850

2 150 5 10 180 300 125 638

2 200 5 10 180 820 119 317

2 150 10 10 179 550 117 720

2 150 15 10 184 790 119 784

2 150 5 2 177 310 121 574

2 150 10 2 188 1890 124 457

2 150 10 4 182 770 114 645

2 150 10 6 182 910 110 688

2 150 5 8 184 820 111 384

3 150 5 2 183 449 118 517

4 150 5 2 181 610 105 783

5 150 5 2 185 470 116 550

The quality and speed of the HFC algorithm operation for

various number of the individuals on an island were tested.

For optimal value (150 individuals) the migration rate, then

migration frequency and optimal number of islands were ex-

amined. It turned out that in case of small a value of the weight

reset index the migration rate does not have the instance of an

algorithm with the fitness of weight change index as well as

it does not have significant influence on how fast the solution

is found. When the migration happens more often it is rec-

ommended to limit the number of the migrating individuals.

The increase of the number of islands does not significantly

affect how fast the solution is found nor its quality. With high-

er values of the reset index, the weight reduction is bigger. It

was not possible to find out the regularities connected to the

result quality.

Comparing the efficiency of the HFC algorithm in both

methods of encoding it is evident that the speed of finding

a solution is higher in the case of the method with fitness.

When it comes to the quality of the solution, both methods

do not differ much.

The results achieved for the mediate encoding are much

worse than presented here. The roulettewheel selection

method, as well as the one-point crossover operator cause

the decrease of the speed of the algorithm convergence.

4.2. Results according to the weight reset parameter. The

research concerning the weight reset index for direct encoding

with fitness for parameters recognized as optimal on the basis

of earlier research was conducted:

– two islands,150 individuals on an island,

– migration frequency: 2,

– migration rate: 5,

– crossover probability: 0.8,

– mutation probability: 0.05.

Analogical research was also conducted for the encoding

without fitness (Table 5). The reduction was evident even if

the reset index was 0.1, however for higher values of this in-

dex the weights disappeared too fast and the algorithm could

not find a solution

Table 5

Results for different values of weight reset index

Reset index Number of weights Iteration

0.06 177 750

0.08 163 853

0.09 155 741

0.10 126 1029

0.16 111 1015

0.17 112 549

0.19 99 1775

0.22 97 1427

0.23 87 1376

5. Conclusions

– For a given problem, thanks to the weights reduction, the

speed of the neural network operation improved even up to

64%.

– The fitness of the weight change index during mutation re-

sults in the decrease of the number of iterations needed to

finish the HFC algorithm operation.

– It is recommended to limit the number of islands to mini-

mum in the HFC algorithm, because the bigger amount of

the islands significantly affects the time devoted to single

iteration.

– The application of the multiple-point crossover and tour-

nament selection instead of singlepoint crossover and

roulette-wheel selection method is more profitable.

– The distribution of the random numbers for the mutation

operator does not significantly influence the found solution.
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– It is essential to set a proper value of the weight reset index

because, depending on the selected encoding, the algorithm

might have problems with finding the solution or it will not

work in an optimal way.
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