
BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 58, No. 1, 2010
DOI: 10.2478/v10175-010-0002-x

General specification of multi-robot control

system structures

C. ZIELIŃSKI∗ and T. WINIARSKI

Institute of Control and Computation Engineering, Warsaw University of Technology, 15/17 Nowowiejska St., 00–665 Warsaw, Poland

Abstract. The paper deals with structuring robot control systems. The control system is decomposed into distinct agents. An agent, in general,
is responsible for control of its effector, perception of the environment for the purpose of its effector control, and inter-agent communication.
The behaviour of the agent is governed by its set of transition functions. The control system consists of two tiers – the upper tier is defined
by the flow of information between the agents and the lower tier is defined by formal specification of each agent’s behaviour (influence on
the environment, gathering sensor readings, production and consumption of the information for/from the other agents). The paper presents
one of the examples of utilization of this approach. The example concerns the multi-robot drawing copying system.

Key words: robot control systems, specification of controllers, multi-robot systems.

1. Introduction

Robot control systems are usually very complex, and multi-
robot system controllers are even more so. The discus-
sion of the structures of those controllers and the way
they operate requires an adequate formal language based
on mathematics. There have been some attempts to formal-
ize the subject in general (e.g., [1–3]), however, the ma-
jority of the work has concentrated on software engineer-
ing approaches to robotics [4–6], especially with the fo-
cus on robot programming frameworks [7] (e.g.: RCCL [8],
KALI [9, 10], PASRO [11, 12], RORC [13, 14], MRROC [13,
15], MRROC++ [16, 17], GenoM [18, 19], DCA [20], TCA [21],
TDL [22], Generis [23], OROCOS [24, 25], CoolBOT [3, 26],
ORCA [27, 28], Player [29–31]).

The contemporary robot system controllers are predom-
inantly computer based. Computers are programmed using
programming languages, hence they are treated as automatons
accepting programs coded in those programming languages.
The description of controller structure necessitates the expres-
sion of operations that the controller performs, i.e., requires
the definition of semantics of those operations. For the dis-
cussion to be precise the semantics of those operations must
be stated formally. It should be noted that the majority of con-
trol systems has their structure defined only on the basis of
the designer’s experience. However, rational choice requires
the evaluation of many conflicting criteria. Some of the usual
questions that the designer must answer are:

• Into how many subsystems should the system be decom-
posed? (small number of subsystems makes them complex,
while a large number imposes heavy communication re-
quirements and makes the synchronization of the operation
of subsystems more difficult),

• What should be the individual role of each subsystem?

• What information must be provided for each of the subsys-
tems and thus what information must be exchanged between
those subsystems?

• How to ensure future extensibility of the system?

To answer this type of questions the designer must have at
his or her disposal a tool for formulating and evaluating de-
cisions. Such a tool is a language for formal expression of:
structure of the system, its decomposition into subsystems,
definition of functions of each subsystem, communication be-
tween subsystems, evaluation of latencies introduced by each
component etc. This paper provides a proposal of such a
formal language. In its first part the language is described,
while in its second part this language is utilized to speci-
fy the structure and operation of a drawing reproducing sys-
tem controller. Unfortunately, for the lack of space, the full
discussion of the considered design possibilities cannot be
presented, so only the final outcome of this discussion is re-
vealed.

The problem of describing how software based systems
function is not new. Description of programming language
semantics has its long history [32]. The many specific meth-
ods of defining semantics in principle can be categorized into
three groups: operational semantics, denotational semantics,
axiomatic (logic) semantics.

Operational semantics requires the definition of an ab-
stract machine that accepts the instructions of the considered
language. Usually this machine is capable of executing very
elementary operations, that are well defined mathematically.
Complex operations are defined in terms of elementary ones.
Denotational semantics assigns mathematical objects (denota-
tions) to expressions of the defined language. Those denota-
tions describe what those expressions mean. The expressions
of the original language are translated into the language of

∗e-mail: C.Zielinski@ia.pw.edu.pl

15

C. Zieliński and T. Winiarski

denotations. Axiomatic semantics defines logical expressions
that define the meaning of an expression of the language. One
useful form of this approach defines the initial conditions for
the execution of an instruction. If those conditions are ful-
filled, as the result of the execution of this instruction terminal
conditions are ascertained. The logical formula connects the
initial and terminal conditions.

The denotational approach is translation based – its foun-
dation is mathematical transformation. In producing a tool
for the specification of robot control systems one should take
into account the achievements of computer science, never-
theless, the fundamental difference between computers and
robots should be kept in mind. The model of a computer
is well defined and basically deterministic, while robots in-
teract with the environment, which is modeled only approx-
imately and cannot be treated as fully deterministic. More-
over, computers, as their name suggests, are principally used
for computations, while robots are used for transforming the
environment or reacting to events occurring in it. All this
makes the denotational approach less attractive to our pur-
pose. However, both the operational and axiomatic approach
can be utilized to a certain extent. The choice of one of
the two depends on the goal of the specification. If the aim
is the definition of the control system structure and oper-
ation, operational approach is more attractive. If the goal
is the definition of services provided by the control sys-
tem to the user, then axiomatic approach is more relevant,
as it rids itself from unnecessary details. Nevertheless, one
should take into account that the provided services must be
implemented, thus the axiomatic approach still has to be
redefined in terms of operations of the controller, i.e., in
terms of operational semantics. Hence the approach present-
ed in this paper is inspired by operational semantics, which
is more fundamental, although more detailed than the ax-
iomatic approach. Although this paper advocates the oper-
ational approach, because it is more relevant to the pur-
pose of structuring robot control systems (what is at the fo-
cus of this discussion), it does not reject the usefulness of
the axiomatic approach favored by those who are interested
in the services provided by the system (e.g., SOA architec-
tures [33]).

The discussion of the structures of robot control systems
will be based on the concept of agent. The agents having
physical bodies (e.g., robots) will be termed embodied agents.
Both the operation of a single agent and the interactions be-
tween agents is of interest to us. The discussion is based on
the general formalism presented in [34, 35].

Initially the necessary concepts are introduced, and sub-
sequently an example of application of those concepts to the
specification of a two-robot control system is presented.

2. An embodied agent

A multi-robot system composed of na agents aj , j =
0, . . . , na − 1, is considered. The internal structure of each
agent aj is presented in Fig. 1. Four distinct entities are dis-
tinguished:

ej – effector, i.e., a device responsible for influencing
the environment (its state is obtained by reading
proprioceptors), including its control hardware,

Rj – receptors, i.e., devices gathering the information
about the state of the environment (external to the
agent) – subsequently processed to produce virtu-
al sensor readings Vj (usually this information is
gathered by exteroceptors, however in some cas-
es proprioceptors can be used to detect indirectly
the changes occurring in the environment, so both
kinds of receptors can be a source of data for ag-
gregation by the virtual sensors),

Tj – transmission links, which are responsible for di-
rect interchange of data between the considered
agent aj and the other agents,

cj – control subsystem – enforces a certain behaviour
of the agent aj .

In this paper the symbols representing system components and
their state are not differentiated, because they pertain to the
same entity and context makes this differentiation obvious,
whilst significantly reducing the number of symbols used.

Fig. 1. General structure of an embodied agent

The data obtained from the exteroceptors usually cannot
be used directly in motion control, e.g., control of a manipu-
lator requires the goal location and not the bit-map delivered
by a camera. In other cases a simple sensor will not suffice to
control the motion (e.g., a single proximity sensor), but sever-
al such sensors deliver meaningful data about the surrounding
obstacles. The process of extracting meaningful information
for the purpose of motion control is named data aggregation
and is performed by virtual sensors. Thus the kth virtual sen-
sor reading obtained by the agent aj is formed as:

vjk
= fvjk

(cj , vcjk
, Rjk

). (1)

As the exteroceptors may have to be prompted or configured,
cj is one of the arguments of the aggregating function (1).

16 Bull. Pol. Ac.: Tech. 58(1) 2010

General specification of multi-robot control system structures

Moreover, a virtual sensor sometimes has its internal mem-
ory vcjk

– this is equivalent to sensoric memory in animals.
Its contents is formed by an auxiliary function:

vcjk
= fvcjk

(cj , vcjk
, Rjk

). (2)

Obviously the vcjk
being the argument of the function fvcjk

is different from the vcjk
being the computed value of this

function (the one on the left hand side of the equals sign).
The former is the contents of the sensoric memory before
the computation of the value of this function and the latter
after the computations have been completed. Further on in
the paper such distinction will be made obvious by adding
a superscript representing a time stamp.

A bundle of receptors Rjk
, used for the creation of the

kth virtual sensor reading, consists of nr individual receptor
readings:

Rjk
= 〈rj

k1
, . . . , rjknr

〉, (3)

where rj
kl

, l = 1 . . . , nr, are the individual receptors taken

into account in the process of forming the reading of the kth
virtual sensor of the agent aj .

The virtual sensor bundle contains nvj
individual virtual

sensor readings:

Vj = 〈vj1 , . . . , vjnvj
〉. (4)

Each virtual sensor vjk
, k = 1, . . . , nvj

, produces an aggre-
gate reading from one or more receptors, as described by (1)
and (3). Each agent aj forms and uses its own bundle vj of
virtual sensors.

The first three of the four entities listed above as compo-
nents of an agent aj (i.e., ej , Vj , Tj) are represented in its
control subsystem as images. Those images (data structures)
contain parameters of the models of those components. The
programmer perceives those components through those da-
ta structures, thus their names – images. The input images
contain the information produced by the component for the
control subsystem (denoted by a leading subscript x) and the
output images contain the information produced by the con-
troller for the component to utilise (subscript y). Diverse im-
ages (views, models) of the physical devices can be envisaged,
thus creating different ontologies (An ontology in computer
science is a formal representation a domain of concepts and
the relationships between them – the images represent those
concepts.). The control subsystem cj of the agent aj besides
the above mentioned three entities contains its own internal
data structures, thus the following components exist within it:

xcej
– input image of the effector (a set of data con-

forming to the assumed input model of the ef-
fector in the control subsystem – it is produced
by processing the input signals transmitted from
the effector proprioceptors to the control sub-
system, e.g., motor shaft positions, joint angles,
end-effector location – they form diverse ontolo-
gies),

xcVj
– input images of the virtual sensors (current vir-

tual sensor readings – control subsystem’s per-
ception of the sensors and through them of the
environment),

xcTj
– input of the inter-agent transmission (informa-

tion obtained from other agents),

ycej
– output image of the effector (a set of data con-

forming to the assumed output model of the ef-
fector in the control subsystem – e.g., PWM ra-
tios supplied to the motor drivers; thus the input
and output models of the effector need not be
the same – and usually are not),

ycVj
– output images of the virtual sensors (current

configuration and commands controlling the vir-
tual sensors),

ycTj
– output of the inter-agent transmission (informa-

tion transmitted to the other agents),

ccj
– all of the other relevant variables taking part in

data processing within the agent’s control sub-
system.

3. General structure of images

The state of the internal data structures ccj
is represented by

a structure containing nccj variables:

ccj
= 〈ccj[1]

, . . . , ccj[nccj]
〉. (5)

Analogically input effector image xcej
consists of nexj vari-

ables:
xcej

= 〈xcej[1]
, . . . , xcej[nexj]

〉. (6)

The input virtual sensor image xcVj
contains nV xj individual

sensor readings:

xcVj
= 〈xcVj1

, . . . , xcVjnV xj
〉, (7)

where each of those readings has the following structure:

xcVjk
= 〈xcVjk [1]

, . . . , xcVjk [nV xjk]
〉. (8)

Each input transmission buffer xcTjj′
consists of nTxjj′

variables:

xcTjj′
= 〈xcTjj′ [1]

, . . . , xcTjj′ [n
T xjj′

]
〉. (9)

The transmitters cTj
of agent aj have received a more detailed

description denoting both the owner of the transmission buffer
(the first right subscript after T – this is the original subscript
used by the one subscript version) and the source/destination
of the information (the trailing right subscript), e.g. cTjj′

is
composed of the transmission buffer of agent aj receiving
information from agent aj′ : xcTjj′

, or sending information
to aj′ : ycTjj′

. The agent aj contains as many such input
transmission buffers as there are direct connections with other
agents aj′ .

Generally each input transmission image of agent aj cor-
responds to the output transmission image of agent aj′ and
vice versa:

xcTjj′
− ycTj′j

, ycTjj′
− xcTj′j

. (10)

Bull. Pol. Ac.: Tech. 58(1) 2010 17

C. Zieliński and T. Winiarski

The output effector image ycej
consists of neyj variables:

ycej
= 〈ycej[1]

, . . . , ycej[neyj]
〉. (11)

The output virtual sensor image ycVj
contains nV yj individual

sensor commands:

ycVj
= 〈ycVj1

, . . . , ycVjnV yj
〉, (12)

where each of those commands has the following structure:

ycVjk
= 〈ycVjk [1]

, . . . , ycVjk[nV yjk]
〉. (13)

Output transmission buffer ycTjj′
consists of nT yjj′ variables:

ycTjj′
= 〈ycTjj′ [1]

, . . . , ycTjj′ [n
Tyjj′

]
〉. (14)

Each input transmission image of agent aj corresponds to the
output transmission image of agent aj′ and vice versa. Some
types of agents do not have all of the images enumerated
by (5)–(14). In general the lack of an image is equivalent to
the respective number n being equal to 0.

4. Transition functions

The operation of the control system of an agent can be ex-
pressed by specifying the relationship between the input and
output images. This relationship is defined in terms of transi-
tion functions. From the point of view of the system designer
the state of the control subsystem changes at a servo sampling
rate or a low multiple of that. If i denotes the current instant,
the next considered instant is denoted by i + 1. This will be
called a motion macrostep. The control subsystem uses:

xci
j = 〈ci

cj
, xci

ej
, xci

Vj
, xci

Tj
〉, (15)

to produce:

yci+1
j = 〈ci+1

cj
, yci+1

ej
, yci+1

Vj
, yc

i+1
Tj

〉. (16)

For that purpose it uses transition functions:






























ci+1
cj

= fccj
(ci

cj
, xci

ej
, xci

Vj
, xci

Tj
)

yci+1
ej

= fcej
(ci

cj
, xci

ej
, xci

Vj
, xci

Tj
)

yci+1
Vj

= fcVj
(ci

cj
, xci

ej
, xci

Vj
, xci

Tj
)

yci+1
Tj

= fcTj
(ci

cj
, xci

ej
, xci

Vj
, xci

Tj
)

. (17)

This can be written down more compactly as:

yci+1
j = fcj

(xci
j). (18)

Formula (18) is a prescription for evolving the state of the sys-
tem, thus it has to be treated as a program of the agent’s behav-
iour. For any agent exhibiting useful behaviours this function
would be very complex, because it describes the actions of the
system throughout its existence. The complexity of this func-
tion renders impractical the representation of the program of
agent’s actions as a single function. Function (18) has to be
decomposed to make the specification of the agent’s program
of actions comprehensible and uncomplicated. However, this
implies that there will be many partial functions that need
to be selected and composed to produce the program of the

agent’s actions. Both selection and composition must be de-
fined formally. Usually selection is based on predicates and
composition is based on concatenation or superposition [34].
Hence, instead of a single transition function fcj

, nf partial
transition functions are defined:

yci+1
j = mfcj

(xci
j), m = 1, . . . , nf . (19)

Variability of agents is due to the diversity of those partial
transition functions and their different compositions. An in-
depth discussion of the possible decompositions is presented
in [34].

Each such function governs the operation of the agent for
some time. Usually this time is not defined explicitly. There
are some external to the agent factors that necessitate the
switch of the partial transition function. Such events are de-
tected by a Boolean valued function (a predicate) called the
terminal condition. Thus each partial transition function mfcj

is decomposed into two sub-functions: mfτj
and mf ′

cj
. The

former expresses the terminal condition – its fulfilment stops
the repetition of computations of the latter function, i.e., the
function responsible for the behaviour of the system within
each period i → i + 1. This is the foundation of the general
motion instruction, which governs the activities of an agent
for the duration of the validity of transition function mf ′

cj
.

5. Motion instruction

A motion instruction of each embodied agent aj requires the
input of all arguments xci

j , testing of the terminal condition
mfτj

, and if it is not true, the computation of the next de-
sired values yci+1

j , which in turn have to be dispatched to the
appropriate components of the system. Its general form is as
follows:

loop

// Check the terminal condition

if mfτj
(xci

j) = false then

// Compute the next control subsystem state

yci+1
j := mf ′

cj
(xci

j);

// Transmit the results

yci+1
ej

֌ ej; yci+1
Vj

֌ Vj ; yci+1
Tjj′

֌x cTj′j
;

// Wait for the next iteration

i := i + 1;

// Determine the current state of the agent

ej ֌ xci
ej

; Vj ֌ xci
Vj

; ycTj′j
֌ xci

Tjj′
;

endif

endloop

(20)

where ֌ represents transfer of data. The motion instruction
starts with the test of the terminal condition, so it is assumed
that prior to the initiation of the current motion instruction all
the necessary data has been read-in by the control susbsystem.
Hence the motion instruction terminates with this data being
read-in. At system initiation this data is also input.

18 Bull. Pol. Ac.: Tech. 58(1) 2010

General specification of multi-robot control system structures

6. Elementary behaviours

Code (20) defines the agent’s partial behaviour. Due to enor-
mous multiplicity of possible transition functions (18) (i.e.,
mf ′

cej
, mfτj

pairs) there is no limit to the definition of those
behaviours. Thus the programmer has to be supported with
some guidance to facilitate the creation of useful systems. The
main purpose of functions mf ′

cj
is to induce motion of the

effectors. The state of the effectors is measured by propri-
oceptors. Thus elementary behaviours used for the creation
of partial behaviours (20) are based on propropceptive input
(e.g., in the case of a manipulator its position and the gen-
eralized force it exerts on the environment). Fortunately all
elementary behaviours of a manipulator fall into three general
categories. Those categories have been singled out by inspect-
ing possible behaviours of the effector in very diverse tasks.
The experience gained trough the creation of both industrial
and service robot controllers executing considerably differing
tasks implemented by using the MRROC++ robot programming
framework [36], which was specified in terms of the concepts
introduced in this paper, showed that the following general
behaviours are necessary:

• unconstrained motion with the assumption that no contact
with obstacles will be encountered – here pure position
control suffices,

• contact with the environment – here pure force control is
used,

• intermediate or transitional behaviour – here initially un-
constrained motion is expected to result in eventual con-
tact, or vice versa – for this purpose some form of parallel
position–force control has to be utilized (e.g., stiffness [37],
damping [38] or impedance control [39]).

It should be noted that sometimes simultaneously one
form of those behaviours is expected to occur in one spatial
direction, whereas another form has to be realized in another.

The three enumerated elementary behaviours are used as
building blocks for constructing more elaborate functions f ′

cj
,

which take into account the data obtained from virtual sen-
sors and other agents, as presented by (20). The functions
mf ′

cj
produce values that are the arguments of elementary

behaviours executed in the process of transmitting the results
(execution of the ֌ operator in code (20)).

7. Effector driver

The output effector image stores the data necessary for the
computation of the control law governing the behaviour of the
effector, i.e., the manipulator in this specific case. The agent’s
control system forms commands for the Effector Driver. Each
transmission of the output image to its respective component
of the agent defines the behaviour of that component during
the next macrostep, so it also defines the behaviour of the
manipulator by delivering the parameters to the control law
implemented in the effector driver. Each macrostep is divided
into steps internally by the effector driver. The operation of
this driver within each step ι → ι + 1 is described by the
following control law, which is formulated for each direction

of motion separately, analogically to the Task Frame Formal-
ism [40] or Operational Space concept [41]:

E ι

ṙ ι+1
(A)c[l] =

(

B[l]

(

E ι

F i+1
d[l] −E ι

F ι
a[l]

)

+ E ι

E ṙi+1
(A)d[l]

)

∆t

∆t + B[l] I[l]
+

+
B[l] I[l]

E ι

ṙ ι
(A)c[l]

∆t + B[l] I[l]
,

(21)
where E – the frame affixed to the end-effector (tool), Eι – the
superscript denotes the fact that a certain value is expressed
with respect to a frame with an orientation of the frame E at
instant ι, (A) – the subscript indicates that a certain quanti-
ty is expressed in XY Z Cartesian coordinates supplemented
by an angle and axis representation of orientation, Eι

ṙ ι+1
(A)c –

the computed generalized velocity of the end-effector in re-
lation to the world coordinate frame for the next step (ι + 1)
expressed with respect to E ι, E ι

E ṙi+1
(A)d – the desired gener-

alized velocity of the end-effector (set for the whole of the
macrostep) in relation to the world coordinate frame for the
next step (ι + 1) expressed with respect to E ι, E ι

F i+1
d –

desired general force for time instant ι+ 1 expressed with re-
spect to E ι, E ι

F ι
a – measured general force at time instant ι

expressed with respect to E ι, B – desired value of reciprocal
of damping, I – desired value of inertia, ∆t – duration of
a single step (ι → ι + 1), l – right subscript part in square
brackets denotes a coordinate of a vector. The vector compo-
nents are referred to by x, y, z (linear coordinates) and ax,
ay , az (angular coordinates).

Each of the three elementary behaviours is obtained by
assigning specific values to the parameters of the control law
(21), i.e.:

• UNGUARDED – B[l] is set to zero (damping becomes infinite
for the force portion of the control law, i.e. force does not
cause any displacement),

• CONTACT – the desired velocity E ι

E ṙi+1
(A)d[l] becomes zero,

• GUARDED – the desired force E ι

F i+1
d[l] is set to zero.

The computed velocity E ι

ṙ ι+1
(A)c is transformed into the

desired step increment E ι

E ι+1r(A)c:

E ι

E ι+1r(A)c = E ι

ṙ ι+1
(A)c∆t. (22)

This is executed by the position axis-controller after trans-
formation by the inverse kinematics procedure. A detailed
presentation of the driver is contained in [42].

8. Example: copying drawings

by a multi–robot system

The utilization of the above mentioned formal considerations
will be presented here on an example of the specification
of a controller for a robot system reproducing the taught–in
drawings. Both the teach–in phase and the reproduction phase
will be specified.

Bull. Pol. Ac.: Tech. 58(1) 2010 19

C. Zieliński and T. Winiarski

Fig. 2. Experimental setup

The experimental setup (Fig. 2) consists of two modified
IRb-6 manipulators with additional active degree of freedom
located in the wrist [43] and force/torque sensors, conveyor,
PC computers connected by an Ethernet network supervised
by the QNX Neutrino real-time operating system.

Reproducing a drawing by a robot has attracted the atten-
tion of other researchers [39]. In our investigations [44–48]
the force sensor is used to manually guide the robot holding
a pen through the motions producing a drawing and then to re-
produce it either by the same robot (Fig. 7) or simultaneously
by two robots. Only the latter is specified here.

The teach-in process is conducted by an operator leading
the robot arm and thus producing the original drawing. The
reproduction phase is done automatically by two robots.

The force sensors play a dual role. On the one hand, they
are involved in continuous limb control, thus they are treated
as a proprioceptors, and, on the other hand, they detect events
occurring in the environment, thus they behave as an exte-
roceptor. The latter behavior requires the creation of virtual
sensors.

Each virtual sensor monitors the state of the drawing
process. To do so it contains a finite state automaton (Fig. 3)
that monitors the current state of the pen. The force and po-
sition measurements are the input obtained directly from the
Effector Driver. The current state is memorized in the inter-
nal virtual sensor memory vcjk

. Drawing starts in the Above

paper state. Arc A is activated when a downward jerk is de-
tected. The automaton state changes to Lowering. The B arc
is activated when the impact is detected, leading to the Paper

surface state. The C arc is associated with an upward jerk and
the automaton changes its state to Lift-off . Then in the teach-
in phase the system switches immediately to the Above paper

state (arc D). Thus by traversing the states of this automaton
the virtual sensor is able to notify the agent whether the pen
tip is currently on the paper surface or above it, and so how
should it behave during the drawing reproduction phase. The
v i

jk
∈ {Above paper , Lowering , Paper surface, Lift−off }

informs in which state is the automaton, what reflects the
current state of drawing.

The experimental system [44] consists of two robots. Both
manipulators reproduce drawings, while only one of the ma-
nipulators is used to teach them. We started with single robot

tasks and gradually shifted out attention to more complex
multi-robot tasks. The structure of a multi-robot drawing sys-
tem is very similar to the structure of the Rubik’s cube puzzle
solving system [36] (however the former does not require vi-
sion, whereas the latter does).

Fig. 3. Graph of the finite state automatons governing the actions of
the agent as well as the virtual sensor

The system consists of three agents: two embodied agents
a1, a2 (j = 1, 2) each controlling one robot arm (treated as an
effector) and the system coordinator a0 (j = 0). This structure
was chosen, because for this task the manipulators have to be
continuously coordinated. Thus all decision have to be made
in one location and that can be done by a singled out system
coordinator a0. In this case the embodied agents are transpar-
ent and simply copy the input data from effector xcej

and an
associated virtual sensor xcVj

to the transmission image ycTj0

sent to the coordinator and use the data from the transmission
image xcTj0 from the coordinator as the command (inserted
into the output image ycej

) for the effector. The trajectory that
is to be reproduced is stored in the memory of the coordinator,
thus the coordinator is responsible for enforcing its execution
by the two effectors. The coordinator treats the effectors as its
slaves. Obviously other structures could be considered, e.g.,
a two agent structure, where the agent executing the drawing
teach-in phase assumes the responsibilities of the coordinator
in the drawing reproduction phase, hence producing an asym-
metrical system structure. By using the proposed specification
tool many such structures can be discussed and evaluated prior
to the start of their implementation. This produces:

• considerable save of time as backtracking is tedious when
a large portion of software has already been written,

• reduces the complexity of the resulting software as any
changes when already some software has been created re-
sult in baroque additions,

• facilitates the distribution of work among the implemen-
tation team as right form the onset of the implementation
effort each agent (implemented by a subteam) is well de-
fined.

The two robot drawing reproduction system with a coor-
dinator governing the actions of two agents is presented in the

20 Bull. Pol. Ac.: Tech. 58(1) 2010

General specification of multi-robot control system structures

following. First the data structures on which each agent oper-
ates are presented and then the transition functions defining
the behaviour of each agent.

8.1. Structure of the images. In the following the variables,
described in general by (5)–(14), are presented for all of the
mentioned agents.

Images of the coordinator – agent a0. The input transmis-
sion image xcT01 from agent a1 consists of three variables.
Thus nTx01 = 3. The input transmission image xcT02 from
agent a2 consists of a single variable (nTx02 = 1). The values
of those images are defined within agents a1 and a2.

The input transmission image xcT0h
originates with the

operator interface (nTx0h = 1):

xci
T0h[1]

= o i
h, (23)

where o i
h ∈ {continue, trigger} is the signal sent by an op-

erator. Here the operator is treated as the fourth agent ah, its
internal structure is not elaborated (for obvious reasons).

The input image of the virtual sensor xcV0 is not used
(nV x0 = 0), thus

xcV0 = 〈•〉. (24)

The output image of transmission image ycT0h
and the out-

put images of the virtual sensor ycV0 are not used (nTy0h = 0,
nV y0 = 0), thus

ycT0h
= 〈•〉,

ycV0 = 〈•〉.
(25)

Thus there is no need to define mfcT0h
and mfcV0

.
All of the data that must be memorized is extract-

ed from input images xc0 and is stored in cc0 , where
ncc0 = 6. An agent stores the trajectory which is memo-
rized during teach–in process of a single manipulator and
then reproduced during reproduction phase in two manip-
ulator system. The description of the trajectory consists of
the components of the first four variables presented below:
cc0[1][p]

– the list of the manipulator end–effector veloc-
ities p = 1, . . . , n,

cc0[2][p]
– the list of the states of drawing as defined by

the graph in Fig. 3,

cc0[3]
– the number (label) of the current node of the

trajectory (p),

cc0[4]
– total number of trajectory nodes (n),

cc0[5]
– the current end–effector pose obtained from

xcT01[1]
,

cc0[6]
– a certain time instant obtained from xcT01[2]

.
The current index p used to index cc0[1][p]

and cc0[2][p]

lists indicates the currently processed node of the trajectory,
while cc0[4]

is the total number of trajectory nodes and cc0[3]

is the number of the currently memorized or reproduced node
(Fig. 4).

Fig. 4. Data structures used for memorizing the trajectory during the
teach–in process

Output transmission buffers ycT0j
to agents a1 and a2

consists of ten elements each, thus nT y0j = 10, j = 1, 2 as
defined by (33).

Images of agents a1 and a2. The input virtual sensor images
xcVj

acquire the drawing state that is produced by the vir-
tual sensor and is defined by the graph presented in Fig. 3
(nV xj = 1) (j = 1, 2)

xci
Vj[1]

= v i
j1

. (26)

In this case the virtual sensor vj1 aggregates information from
the proprioceptors. Technically this information is delivered
by the Effector Driver.

The general formula (1) assumes the following form (j =
1, 2):

vi
j1

= fvj1
(vi−1

cj1
, Ri

j) =

= fvj1
(vi−1

cj1
, 0

E iTmj
, E i

F i
aj

),
(27)

where 0
ETmj

– the current manipulator tool E with respect
to the base frame 0 obtained by agent aj , v i

j1
– the state of

the pen attached to the effector of agent aj produced by the
virtual sensor of this agent and (2) assumes the form:

vi
cj1

= fvcj1
(vi−1

cj1
, R i

j) = fvcj1
(vi−1

cj1
, 0

E iTmj
, E i

F i
aj

),
(28)

where vj1 , vcj1
∈ {Above paper, Lowering, Paper surface,

Lift-off }. The embodied agents a1 and a2 do not send any
commands to their virtual sensors, hence the output images
of virtual sensors are not used (nV yj = 0) (j = 1, 2)

ycVj
= 〈•〉. (29)

Thus there is no need to define mfcVj
(j = 1, 2).

The input effector image xce1 contains nex1 = 2 data
items:

xc i
e1[1]

= 0
E iTm1

xc i
e1[2]

= i.
(30)

The first is the record of the current end–effector location
and the second of the current time. The input effector image
xce2 is not used (i.e., nex2 = 0):

xc i
e2

= 〈•〉. (31)

Bull. Pol. Ac.: Tech. 58(1) 2010 21

C. Zieliński and T. Winiarski

Input transmission buffers xcTj0 of agents a1 and a2 con-
sist of ten elements (nTxj0 = nT y0j = 10, j = 1, 2), the
variables holding the effector command sent by the coordina-
tor a0.

The output effector images ycej
contain neyj = nT xj0 =

nTy0j = 10, j = 1, 2, components of the command sent to
the effector, initially prepared by the coordinator.

The agent a1 sends both the input effector image and the
input virtual sensor image to the coordinator. This is done
through the output transmission images: ycT10 consisting of 3
variables (nTy10 = nex1 + nvx1 = nTx01 = 3).

The agent a2 sends its input virtual sensor image to the
coordinator. This is done through the output transmission im-
ages: ycT20 consisting of a single variable (nTy20 = nvx2 =
nTx02 = 1).

yc i
T20[1]

= v i
21

. (32)

8.2. Transition functions and terminal conditions. In the
following the transition functions essential for teach–in and
reproduction subtasks are presented. Those functions take as
arguments the variables defined in Subsec. 8.1 and produce
values that are inserted into output data structures. Each sub-
task needs several functions mfcj

(Figs. 5, 6), hence the left
superscript m is:

• m = 1, 2 – drawing teach–in,
• m = 3, 4, 5, 6, 7 – drawing reproduction.

Fig. 5. Single block of the automaton presented in Fig. 6

a) b)

Fig. 6. The correspondence between the state of the automaton pre-
sented in Fig. 3 and the transition functions and terminal conditions
responsible for the execution of the drawing task. (a) Drawing teach-

in phase, (b) Drawing reproduction phase

The coordinator a0 produces the contents of both out-
put transmission images ycT0j

by using mf ′

cT0j
(j = 1, 2),

(m = 1, . . . , 7):

mf ′

cT0j
(xci

0) ,















































































































yci+1
T0j[1]

= mb1

yci+1
T0j[2]

= mFd1

yci+1
T0j[3]

= mṙ i+1
(A)d1

yci+1
T0j[4]

= mI1

yci+1
T0j[5]

= m
B1

yci+1
T0j[6]

= ns1 = const

yci+1
T0j[7]

= nQ1 = ns1 − 1 = const

yci+1
T0j[8]

= µ1 = TCIM-velocity= const

yci+1
T0j[9]

= ggd1 = const

yci+1
T0j[10]

= W
E T i+1

d1
= const

,

(33)

where W – frame affixed to the manipulator wrist, b – type of
elementary behaviour, ns – the number of steps that the Effec-
tor Driver divides the macrostep into, nQ – the step number
in which the Effector Driver communicates with the control
subsystem, µ1 = TCIM-velocity – the choice of task coor-
dinates interpolated motion specified in terms of velocity, g
– the distance between the gripper jaws (in this example it is
disregarded), W

E Td1 – the manipulator tool E with respect to
the wrist frame W .

The symbol , should be read as: “is defined as”. In the
case of the drawing reproduction phase the parameters sent
to both embodied agents are exactly the same in each interval
(macrostep).

Embodied agent a1 employs the functions mf ′

cT10
(m =

1, . . . , 7) to transfer data to the coordinator.

mf ′

cT10
(xci

1) ,



















yci+1
T10[1]

= xc i
e1[1]

yci+1
T10[2]

= xc i
e1[2]

yci+1
T10[3]

= xc i
V1[1]

. (34)

Similarly embodied agent a2 employs the functions
mf ′

cT20
(m = 1, . . . , 7) to transfer data to the coordinator.

This function simply copyies the input virtual sensor image
xcV2 to the output transmission image ycT20 :

mf ′

cT20
(xci

2) ,

{

yci+1
T20

= xc i
V2

. (35)

Analogically, for both embodied agents a1 and a2, the
function mf ′

cej
(m = 1, . . . , 7) produces the Effector Driver

command ycej
by copying the input transmission image xcTj0

containing the command that had been previously prepared by
the system coordinator a0:

mf ′

cej
(xci

j) ,

{

yci+1
ej

= xci
Tj0

for j = 1, 2 . (36)

where j = 1, 2.
In the following the transition functions essential for

teach–in and reproduction subtasks are presented.

22 Bull. Pol. Ac.: Tech. 58(1) 2010

General specification of multi-robot control system structures

Drawing teach-in phase. As it was previously mentioned, the
teach–in process for multiple robots utilizes a single manip-
ulator. The manipulator commanded by agent a2 stands still
(Table 1). The manipulator used in the teach–in process (a1)
is compliant in linear directions, but its orientation is fixed
(Table 2). It should be reminded here that the primary job of
transition functions is to produce the parameters of the con-
trol law for each of the Effector Drivers and for both phases.
In every case the parameters that have to be produced will
be presented in tabular form. By dispatching the values of
those parameters each embodied agent (a1 and a2) forces its
effector to behave as required. Transition functions obvious-
ly produce other values, governing inter–agent transmissions,
management of internal data structures etc.

Table 1
Manipulator controlled by the agent a2 is blocked (m = 1, 2)

c mb2
mFd2

mṙi+1
(A)d2

mI2
mB2

x u – 0 – –

y u – 0 – –

z u – 0 – –

ax u – 0 – –

ay u – 0 – –

az u – 0 – –

Table 2
Effector Driver command parameters for compliant motion in linear

directions (m = 1, 2, 3)

c mb1
mFd1

mṙ
i+1
(A)d1

mI1
mB1

x c 0 – 20 0.005

y c 0 – 20 0.005

z c 0 – 20 0.005

ax u – 0 – –

ay u – 0 – –

az u – 0 – –

The function 1f ′

cc0
initiates the internal variables:

1f ′

cc0
(xci

0) ,



















ci+1
c0[3]

= 1

ci+1
c0[4]

= 0

ci+1
c0[5]

= xci
T01[1]

. (37)

The current node of the trajectory is set to 1. This phase
finishes when the pen touches the paper:

1fτ0(xci
0) ,







0 for xci
T01[3]

6= Paper surface

1 otherwise
. (38)

The next phase is the teach-in process itself (recording of
the drawing). Now the manipulator is moved in the same way,
but the motion trajectory is recorded by memorizing the ve-
locity of the pen tip ṙi

(A)r1
on the surface of the paper (x− y

coordinates), at constant intervals of time (ns1 = 20 ms).

The function 2f ′

cc0
is defined as:

2f ′

cc0
(xci

0) ,



































































ci+1
c1[1][p]

=







ci
c0[1][p]

for p=1, . . . , ci
c0[3]

−1

ṙi
(A)r0

for p=ci
c0[3]

ci+1
c0[2][p]

=







ci
c0[2][p]

for p=1, . . . , ci
c0[3]

−1

xci
T01[3]

for p=ci
c0[3]

ci+1
c0[3]

= ci
c0[3]

+ 1

ci+1
c0[4]

= ci
c0[4]

+ 1

ci+1
c0[5]

= xci
T01[1]

.

(39)

It, among others, adds a new node to the cc0[1][p]
and

cc0[2][p]
lists, where:

ṙi
(A)r0

=
Ei−1

Ei r(A)m1

∆t ns1

=
A−1

A ((ci
c0[5]

)−1
xcT01[1]

)

∆t ns1

, (40)

where the operator A−1
A transforms the homogeneous ma-

trix into column vector containing three Cartesian coordinates
supplemented by angle and axis representation of orientation.
The operator decides when the drawing teach-in process is
finished by sending a dedicated signal to the agent:

2fτ0(xci
0) ,

{

0 for xci
T0h[1]

= continue

1 for xci
T0h[1]

= trigger
. (41)

Drawing reproduction phase. The second phase of the task
execution consists in the reproduction of the memorized draw-
ing. Now the coordinator sends exactly the same commands
to both manipulators. At the beginning the operator moves
two compliant manipulators to the initial locations, in which
the memorized drawing has to be reproduced (Table 2). The
function 3f ′

cc0
is an identity function retaining the previously

memorized data:

3f ′

cc0
(xci

0) ,

{

ci+1
c0[l]

= ci
c0[l]

l = 1, . . . , 6 (42)

In the initial location the pen should be above the pa-
per surface. Then the operator signals the system to start the
automatic reproduction process .

3fτ0(xci
0) , 2fτ0(xci

0). (43)

First, both pens are moved down (the Lowering state) (Ta-
ble 3a).

The function 4f ′

cc0
is an identity function retaining the

previously memorized data:

4f ′

cc0
(xci

0) , 3f ′

cc0
(xci

0). (44)

Bull. Pol. Ac.: Tech. 58(1) 2010 23

C. Zieliński and T. Winiarski

Fig. 7. Copying drawings – the reproduction phase

Table 3
Drawing copying task Effector Driver command arguments

a) lowering phase (m = 4)
c 4b 4Fd

4ṙ
i+1
(A)d

4I 4B

x u – 0 – –

y u – 0 – –

z g – 0.01 20 0.005

ax u – 0 – –

ay u – 0 – –

az u – 0 – –

b) lift off (m = 6)
c 6b 6Fd

6ṙ
i+1
(A)d

6I 6B

x u – 0 – –

y u – 0 – –

z u – −0.01 – –

ax u – 0 – –

ay u – 0 – –

az u – 0 – –

The terminal condition checks if both pens have hit the
paper surface:

4fτ0(xci
0) ,











0 for xci
T01[3]

6= Paper surface ∨

xci
T02[1]

6= Paper surface

1 otherwise

. (45)

If one of the pens hits the paper surface it starts to push
first, it pushes the paper surface with the desired force as
it can be derived from the control law and the parameters
contained in Table 3a. Then after the second pen strikes the
surface of the paper the system starts to draw two pictures
with the same speed and of the same size. The robots are
mutually synchronized (45) before each new line segment is
reproduced, thus the two drawings will appear approximate-
ly at the same time – this is due to the implementation of
continuous coordination.

Hence after impact the vertical motion stops and the hor-
izontal motion on the surface of the paper is induced with

simultaneous desired force set in vertical direction (Table 4a)
(the Paper surface state), where

ṙi
(A)dj [x] , ci

c0[1][p][x]
, ṙi

(A)dj [y] , ci
c0[1][p][y]

, j = 1, 2
(46)

and p , ci
c0[3]

is the index of the currently reproduced drawing
node.

Table 4
Copying drawing task Effector Driver command arguments

a) horizontal motion on the surface of the paper (m = 5)
c 5b 5Fd

5ṙ
i+1
(A)d

5I 5B

x u – ṙ
i+1
(A)d[x]

– –

y u – ṙ
i+1
(A)d[y]

– –

z c 1 – 20 0.005

ax u – 0 – –

ay u – 0 – –

az u – 0 – –

b) horizontal motion above the surface of the paper (m = 7)

c 7b 7Fd
7ṙ

i+1
(A)d

7I 7B

x u – ṙ
i+1
(A)d[x]

– –

y u – ṙ
i+1
(A)d[y]

– –

z u 1 0 – –

ax u – 0 – –

ay u – 0 – –

az u – 0 – –

The function 5f ′

cc0
increments the current time instant

for the memorized trajectory node:

5f ′

cc0
(xci

0) ,







ci+1
c0[3]

= ci
c0[3]

+ 1

ci+1
c0[l]

= ci
c0[l]

for l = 1, 2, 4, 5, 6
.

(47)

The drawing of a single segment lasts until the pen tip
reaches the location in which an upward jerk was recorded in
the teach-in phase or reproduction is finished:

5fτ0(xci
0) ,







0 for ci
c0[2][p]

6=Lift−off ∧ p=ci
c0[3]

6=ci
c0[4]

1 otherwise
.

(48)

Then the pen is raised above the paper (Table 3b). The func-
tion 6f ′

cc0
memorizes the initial time instant of the current

transition function execution (beginning of the lift-off opera-
tion):

6f ′

cc0
(xci

0) ,



















ci+1
c0[6]

= xc i
T01[2]

for i = i0

ci+1
c0[6]

= ci
c0[6]

for i 6= i0

ci+1
c0[l]

= ci
c0[l]

∀i ∧ l = 1, 2, 3, 4, 5

.

(49)
The operation is executed until the desired time elapses:

6fτ0(xci
0) ,







0 for xc i
T01[2]

− ci
c0[6]

< id

1 otherwise
, (50)

where id is the desired duration.

24 Bull. Pol. Ac.: Tech. 58(1) 2010

General specification of multi-robot control system structures

The trajectory that the pen tip traverses above the paper
surface in the horizontal plane is an accurate copy of the
memorized trajectory in the same plane (46). In the repro-
duction phase the motions executed in the Above paper and
Lift-off states are fully position controlled, whilst in the oth-
er state hybrid position-force control is utilized. The Above

paper motions are executed in a horizontal plane (the z coor-
dinate is kept constant (Table 4b), even if it varied during the
teach-in phase). The function 7f ′

cc0
increments the current

time stamp of the memorized trajectory pose:
7f ′

cc0
(xci

0) , 5f ′

cc0
(xci

0). (51)

The motion above the paper lasts until the pen tip reaches
the location in which an impact was recorded in the teach-in
phase.

7fτ0(xci
0),

{

0 for ci
c0[2][p]

6=Paper surface∧ci
c0[3]

6=p=ci
c0[4]

1 otherwise
.

(52)

Then the pen can move down again to start reproducing of
the following segment.

8.3. Drawing reproduction using a conveyor. The multi-
robot drawing task was also executed in another configura-
tion. The motion of the manipulators in the y direction was
substituted by the motion of a conveyor on which the two
drawing papers were located. So instead of moving the ro-
bots in the y direction the conveyor shifted the paper in that
direction. Hence, the system consisted of three motion induc-
ing devices, each capable of independent motion. Thus a three
effector MRROC++ based system was created. The tests demon-
strated that the so extended system also works correctly.

8.4. Experimental results. The presented formal specifica-
tion was used as the description of the controller of a ro-
bot capable of reproducing taught–in drawings. The controller
was implemented using the MRROC++ [36, 48, 49] robot pro-
graming framework. This controller was used in the below
described experiments. Figure 8 presents the three dimen-
sional trajectories of the end-effector motion during teach-in
and reproduction of the six feathers of an arrow drawn by the
operator (Fig. 7). A visible difference between the graphs is
caused by the way the pen moves up and down and above
the paper. The operator makes unconstrained moves, hence
the trajectory above the paper is uneven in the vertical direc-
tion. The reproduction algorithm produces exact horizontal
motions, thus the trajectories above the paper are horizontal.
This is evident in the graph in Fig. 9. The plots obtained for
both effectors during the reproduction phase are very similar,
thus only the plots for one of the effectors are presented here.

There are four segments of the trajectory marked as: 1, 2,
3 and 4 in the graphs in Figs. 9 and 10. All the four segments
occur while drawing each feather of an arrow: 1 – motion
on the paper surface, 2 – pen tip lift-off, 3 – motion above
the paper, 4 - lowering of the pen tip. The symbol “∗” draws
attention to the fragment of the plot representing the impact
caused by the pen tip hitting the surface of the paper. During
the whole of the teach-in phase and in segment 1 of the re-
production phase, the Effector Driver is commanded to reach
the vertical force of 1N , however, in the segments: 2, 3 and
4 of the reproduction phase, the motion is purely position
controlled. Experiments show that the applied algorithms are
robust enough to execute the whole task correctly.

a) the teach-in phase b) the reproduction phase

Fig. 8. Three dimensional motion trajectory during copying drawings

Bull. Pol. Ac.: Tech. 58(1) 2010 25

C. Zieliński and T. Winiarski

a) the teach-in phase b) the reproduction phase

Fig. 9. The z coordinate of the pen tip pose during copying drawings

a) the teach-in phase b) the reproduction phase

Fig. 10. Force applied in the vertical direction during copying drawings

9. Conclusions

The paper presents a formal approach to the specification of
controllers executing diverse tasks. This approach assumes
that a multi-robot system is composed of embodied agents,
where each such agent has its effector, receptors and a capa-
bility to exchange information with other such agents.

The structure is expressed in terms of interconnections
between the agents constituting the system, while its opera-
tion is described in terms of transition functions governing
the actions of each agent. This part of the presented approach
is general. Every system can be described in such a way.
However, the paper goes deeper into the description of a par-
ticular system containing manipulators interacting with their
environment. In this case three elementary behaviours have
been distinguished and a control law enabling the implemen-
tation of those behaviours has been formulated. The presented
method of system specification falls into the category of top-
down methods, where the general description is refined going
into ever more detailed description. The general approach has

been exemplified by specifying the operation of a two effector
robot system capable of reproducing drawings. This specifica-
tion was subsequently used as the basis for the implementation
of the system. MRROC++ robot programming framework was
used as an implementation tool for it. This design procedure
has been used also for the implementation of other systems,
e.g.: two-handed system solving a Rubik’s cube puzzle, two-
effector haptic device, where one of the arms was used as
a master and the other as a slave device. In all of those cases
the proposed design procedure led to a quick and effective
result.

Acknowledgements. The authors gratefully acknowledge the
support of the Ministry of Science and Higher Education grant
N N514 1287 33.

REFERENCES

[1] D.M. Lyons and M.A. Arbib, “A formal model of computation
for sensory-based robotics”, IEEE Transactions on Robotics

and Automation 5 (3), 280–293 (1989).

26 Bull. Pol. Ac.: Tech. 58(1) 2010

General specification of multi-robot control system structures

[2] C. Zieliński, “Description of semantics of robot programming
languages”, Mechatronics 2 (2), 171–198 (1992).

[3] A.C. Dominguez-Brito, D. Hernández-Sosa, J. Isern-González,
and J. Cabrera-Gámez, “CoolBOT: a component model and
software infrastructure for robotics”, Software Engineering for

Experimental Robotics 1, 143–168 (2007).
[4] D. Brugali, “Stable analysis patterns for robot mobility”, Soft-

ware Engineering for Experimental Robotics 9–30 (2007).
[5] D. Brugali, A. Agah, B. MacDonald, I. Nesnas, and W. Smart,

“Trends in Robot Software Domain Engineering”, Software

Engineering for Experimental Robotics 1, 3–8 (2007).
[6] I.A.D. Nesnas, “The CLARAty project: Coping with hardware

and software heterogenity”, Software Engineering for Experi-

mental Robotics 30, 31–70 (2007).
[7] D. Brugali, M. Alencastre-Miranda, L. Muñoz-Gómez, D. Bot-

turi, and L. Cragg, “Trends in Software Environments for Net-
worked Robotics”, Software Engineering for Experimental Ro-

botics 1, 401–408 (2007).
[8] V. Hayward and R. P. Paul, “Robot manipulator control un-

der unix RCCL: a robot control C library”, Int. J. Robotics

Research 5 (4), 94–111 (1986).
[9] V. Hayward and S. Hayati, “Kali: an environment for the pro-

gramming and control of cooperative manipulators”, 7th Amer-

ican Control Conf. 1, 473–478 (1988).
[10] V. Hayward, L. Daneshmend, and S. Hayati, “An overview of

KALI: a system to program and control cooperative manipu-
lators”, Advanced Robotics 1, 547–558 (1989).

[11] C. Blume and W. Jakob, PASRO: Pascal for Robots, Springer-
Verlag, Berlin, 1985.

[12] C. Blume and W. Jakob, Programming Languages for Industrial

Robots, Springer-Verlag, Berlin, 1986.
[13] C. Zieliński, Robot Programming Methods, Publishing House

of Warsaw University of Technology, Warsaw, 1995.
[14] C. Zieliński, “Flexible controller for robots equipped with sen-

sors”, 9th Symp. Theory and Practice of Robots and Manipu-

lators 187, 205–214 (1993).
[15] C. Zieliński, “Control of a multi-robot system”, 2nd Int. Symp.

Methods and Models in Automation and Robotics MMAR’95

1, 603–608 (1995).
[16] C. Zieliński, Object–oriented Programming of Multi-robot Sys-

tems, Cambridge University, Cambridge, 1997.
[17] C. Zieliński, “The MRROC++ system”, First Workshop on Ro-

bot Motion and Control, RoMoCo’99 1, 147–152 (1999).
[18] S. Fleury and M. Herrb, “Genom user’s guide”, in Report,

LAAS, Publishing House of Toulouse, Toulouse, 2001.
[19] R. Alami, R. Chatila, S. Fleury, M.M. Ghallab, and F. Ingrand,

“An architecture for autonomy”, Int. J. Robotics Research 17
(4), 315–337 (1998).

[20] L. Petersson, D. Austin, and H. Christensen, “DCA: a dis-
tributed control architecture for robotics”, Proc. Int. Conf. on

Intelligent Robots and Systems IROS 1, CD-ROM (2001).
[21] R. Simmons, R. Goodwin, C. Fedor, and J. Basista, Task

Control Architecture: Programmer’s Guide to Version 8.0,
Carnegie Mellon University, Pittsburgh, 1997.

[22] R. Simmons and D. Apfelbaum, “A task description language
for robot control”, Int. Conf. on Itelligent Robots and Systems

IROS’98, 1, CD-ROM (1998).
[23] E.R. Morales, “GENERIS: The EC-JRC generalised software

control system for industrial robots”, Industrial Robot 26 (1),
26–32 (1999).

[24] H. Bruyninckx, OROCOS – Open Robot Control Software,
http://www.orocos.org/ (2002).

[25] H. Bruyninckx, “The real-time motion control core of the
OROCOS project”, Proc. IEEE Int. Conf. on Robotics and

Automation 14, 2766–2771 (2003).
[26] J. Cabrera-Gámez, A.C. Domı́nguez-Brito, and D. Hernández-

Sosa, “Sensor based intelligent robots”, in: A Component-

Oriented Programming Framework for Robotics, pages 282–
304, Springer, Berlin, 2002.

[27] A. Brooks, T. Kaupp, A. Makarenko, S. Williams, and
A. Orebäck, “Towards component-based robotics”, IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems 1, 163–168 (2005).
[28] A. Brooks, T. Kaupp, A. Makarenko, S. Williams, and

A. Orebäck,“Orca:Acomponentmodelandrepository”,Softwa-

re Engineering for Experimental Robotics 1, 231–251 (2007).
[29] B.P. Gerkey, R.T. Vaughan, and A. Howard, “The player/stage

project: tools for multi-robot and distributed sensor systems”,
Proc. Int. Conf. Advanced Robotics 1, 317–323 (2003).

[30] T. Collett, B. MacDonald, and B. Gerkey, “Player 2.0: toward
a practical robot programming framework”, Australasian Conf.

on Robotics and Automation 2, CD-ROM (2005).
[31] R.T. Vaughan, B.P. Gerkey, and A. Howard, “Reusable robot

software and the player/stage project”, Software Engineering

for Experimental Robotics 1, 267–290 (2007).
[32] K. Slonneger and B.L. Kurtz, Formal Syntax and Semantics

of Programming Languages: a Laboratory Based Approach,
Addison-Wesley Publishing Company, Reading, 1995.

[33] S. Ambroszkiewicz, “Entish: A language for describing data
processing in open distributed systems”, Fundamenta Infor-

maticae 60 (1–4), 41–66 (2004).
[34] C. Zieliński, “Transition-function based approach to structur-

ing robot control software”, in: Robot Motion and Control: Re-

cent Developments, Lecture Notes in Control and Information

Sciences, Vol. 335, pages 265–286, ed. K. Kozłowski, Springer
Verlag, Berlin, 2006.

[35] C. Zieliński, “Formal approach to the design of robot program-
ming frameworks: the behavioural control case”, Bull. Pol. Ac.:

Tech. 53 (1), 57–67 (2005).
[36] C. Zieliński, W. Szynkiewicz, T. Winiarski, M. Staniak,

W. Czajewski, and T. Kornuta, “Rubik’s cube as a benchmark
validating MRROC++ as an implementation tool for service
robot control systems”, Industrial Robot: Int. J. 34 (5), 368–
375 (2007).

[37] M.S. Lim, J. Lim, and S.R. Oh, “Stiffness adaptation and
force regulation using hybrid systemapproach for constrained
robots”, Intelligent Robots and Systems, Int. Conf. 2, CD-ROM
(1999).

[38] R.V. Dubey, T.F. Chan, and S.E. Everett, “Variable damping
impedance control of a bilateral teleroboticsystem”, Control

Systems Magazine, IEEE 17 (1), 37–45 (1997).
[39] T. Tsumugiwa, R.Yokogawa, and K.Hara, “Variable impedance

control based on estimation of human arm stiffness for human-
robot cooperative calligraphic task”, Proc. IEEE Conf. on Ro-

botics and Automation 1, 644–650 (2002).
[40] H. Bruyninckx and J. De Schutter, “Specification of force-

controlled actions in the task frame formalism: a synthesis”,
IEEE Trans. on Robotics and Automation 12 (4), 581–589
(1996).

[41] O. Khatib, “A unified approach for motion and force control
of robot manipulators: the operational space formulation”, Int.

J. Robotics and Automation RA-3 (1), 43–53 (1987).
[42] M. Staniak, T. Winiarski, and C. Zieliński, “Parallel visual-

force control”, Proc. IEEE/RSJ Int. Conf. on Intelligent Robots

and Systems 1, 937–942 (2008).

Bull. Pol. Ac.: Tech. 58(1) 2010 27

C. Zieliński and T. Winiarski

[43] K. Mianowski, “Analysis of properties of special gripper for
a service robot”, Materials of TMM Conf. 1, 185–190 (2006),
(in Polish).

[44] T. Winiarski and C. Zieliński, “Force control in dual arm sys-
tems”, 9-th National Conf. on Robotics – Advances in Robotics

2, 267–276 (2006), (in Polish).
[45] T. Winiarski and C. Zieliński, “Position-force controller exper-

imental station”, Robotic’s Progress: Control of Robots with

environment Perception 1, 85–94 (2004), (in Polish).
[46] T. Winiarski and C. Zieliński, “Implementation of position–

force control in MRROC++”, Proc. 5th Int. Workshop on Robot

Motion and Control 1, 259–264 (2005).

[47] C. Zieliński, W. Szynkiewicz, and T. Winiarski, “Applica-
tions of MRROC++ robot programming framework”, Proc.

5th Int. Workshop on Robot Motion and Control 1, 251–257
(2005).

[48] C. Zieliński, T. Winiarski, W. Szynkiewicz, M. Staniak,
W. Czajewski, and T. Kornuta, “MRROC++ based controller
of a dual arm robot system manipulating a Rubik’s cube”,
Technical Report 06–10, 167–171 (2006).

[49] C. Zieliński, “Motion generators in MRROC++ based robot
controller”, 14th CISM–IFToMM Symposium on Robotics 1,
299–306 (2002).

28 Bull. Pol. Ac.: Tech. 58(1) 2010

