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Abstract. The reconstruction of a pipe organ involves determining the blowing pressure. The lack of information about the pressure value
significantly prolongs the process of instrument restoration. In addition, it may even result in irreversible damage to the pipes, as the adjustment
of the sound parameters that depend on the pressure requires changing the physical structure of the pipes. In this paper, we provide a methodology
for determining the blowing pressure in a pipe organ. We also present a formula describing the air pressure in the pipe foot, depending only
on the height of the pipe’s cut-up and the fundamental frequency. We apply machine learning to determine the blowing pressure, based on the
parameters of only a percentage of pipes. Moreover, we use generative artificial intelligence, which achieves outstanding prediction accuracy. We
conclude that the height of the cut-up and the fundamental frequency allow determining the blowing pressure. The more pipes, the higher the

accuracy, but even 10% of pipes can be sufficient.
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1. INTRODUCTION

Fire can destroy valuable works, as happened in Notre-Dame de
Paris and in St. Elizabeth’s Church in Wroctaw. Warfare, rob-
bery, or even incompetent repairs may also destroy pipe organs
or the original features of the instrument. The historical pipe or-
gan in Wroctaw burned completely, and rebuilding it took years.
The reconstruction work may employ IT methods [1,2], which
were also used in this case. The data for the reconstruction were
obtained by analyzing historical sources and other preserved
instruments built by the same organbuilder [3]. However, such
data are not always available; sometimes the instrument must be
restored from its picture only [4].

The pipe organ is one of the oldest musical instruments. At
the end of the 4th century, CE, bellows were invented to supply
organs with pressurized air called wind. The usage of a big
pipe set requires a mechanism to regulate the pressure supplied
to the pipes. Initially, water was used to stabilize air pressure.
Ensuring the stability of pressure in the windchest of a pipe
organ is a fundamental issue, as it guarantees the stability of
the parameters of the generated sound. Today, this is achieved
using pressure regulators, which control the airflow in particular
pipes [5]. Weights placed on the bellows adjust the set pressure
value. Occasionally, there are large pipe organs that use not just
one, but several air supply systems for different sets of ranks [6].
Air supply systems provide constant air pressure in each pipe,
which ensures even volume throughout the instrument.
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A pipe organ has a fixed relative air pressure, i.e., pressure
relative to the respective atmospheric pressure. It is measured
using a water-filled U-shaped tube (water manometer), with one
end open to the atmosphere, and the measured pressure applied
to the other end. The manometer reading shows the difference
between the tops of the water column on both sides, caused by
raising the initial water level by the measured pressure of the
windchest. The difference in water level is usually measured in
millimeters of water gauge (mm H,O), or in inches, and shows
the pressure difference between the pressure in the windchest
and the environment. This unit is commonly used in blowing
pressure measuring, and the Pascal unit, from the International
System of Units, is generally not used; 1 mm H,O =9.80665 Pa.
Relative pressure is a permanent attribute of the organ because
all the pipes of the organ are adjusted to the appropriate pressure
value, which affects the basic sound parameters of the pipes. The
pipe organ consists of flue (labial) and reed (lingual) pipes, and
the same low-pressure value is used for both. Very rare are
the special reed pipes, for which the pressure is 255 mm water
column [7]. Flue pipes are always present in pipe organs and
constitute the vast majority of all pipes. The exception is the
regal, which consists solely of reed pipes, but this is a very rare
instrument.

The value of air pressure in the pipe organ is essential not only
during its construction, but also in the reconstruction process.
It is usually impossible to determine its value based on the
preserved elements of the wind pressure system. In such a case,
it is necessary to change the structure of the (usually antique)
pipes, e.g., by cutting them or deforming the pipe’s mouth. Thus,
incorrect selection of the pressure by the organbuilder may lead
to the destruction of the instrument due to irreversible damage
to the pipes.

© 2026 The Author(s). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
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In this work, we extend the previous research on the de-
termination of blowing pressure based on the parameters of
the pipes [8]. Our main goal is to protect the reconstructed
instruments and facilitate the work of organbuilders in the re-
construction process. Restoring the blowing pressure is a time-
consuming process, and our methodology helps reduce the time
and costs involved. This is important because many damaged
instruments require reconstruction, e.g., in the case of fire or
warfare.

So far, there are no methods to reproduce the pressure value
used in a damaged pipe organ, based on the pipes alone. Air
pressure values vary by region and era. Baroque pipe organ
usually has lower pressure than Romantic ones, and French pipe
organ differs from German ones in terms of air pressure and the
way of the pipe voicing [5]. The pressure may also depend on the
style and period of construction of the instrument, the material
used to build the pipes, the size and design of the instrument, the
construction of the windchest, the way of playing at that time, the
nature of the place, etc. However, the pipe sound generation is a
physical phenomenon, in which the style of organ construction,
era, or geography is irrelevant. The edge tone, one of the two
sources of sound generated in an organ pipe, is related to the
cut-up. The second sound source is at the top of the pipe. In the
case of a properly voiced pipe, both of these sound sources have
to be in tune.

Reproducing the blowing pressure is much easier when all
pipes remain, as the bellows are then usually retained as well.
However, in most cases, some or even most of the pipes are
missing in the reconstructed pipe organs, and then the pressure
cannot be calculated, analytically, numerically, or using com-
putational fluid dynamics (CFD) methods. The pressure in the
bellows is determined by the load placed on it. In this way,
the pressure in the bellows is stabilized, almost independently
of the degree of filling. Wedge bellows behave differently be-
cause the load on the bellows depends on the opening angle, but
they are rare. Since we are dealing with a proportional-integral-
derivative (PID) controller stabilization system, with the blower
as the flow source, and the bellows applied to stabilize the pres-
sure, CFD methods are not applicable, as we are not simulating
the flow. Instead, in the process of organ reconstruction, we are
dealing with an opposite situation than in the time of build-
ing the pipe organ, when other parameters of the instrument
were adjusted to the blowing pressure. This reverse approach,
where we determine the blowing pressure based on the physical
characteristics of the pipes, is a form of reverse engineering.

The motivation for our research was to verify whether it is
possible to determine the blowing pressure value based on an
incomplete set of pipes. This boils down to establishing the
relationship between the parameters of the remained pipes and
the pressure of a pipe organ. Nowadays, machine learning (ML),
including deep learning (DL), contributes significantly to the de-
velopment of acoustics [9]. Unlike conventional acoustics and
signal processing, ML relies on a data-driven approach. With
sufficient training data, ML can uncover complex relationships
between features and the predicted values, as well as interactions
among the features themselves. By leveraging large datasets, ML
can develop models that capture various acoustic phenomena,

e.g., source separation, acoustic modeling, and timbre analy-
sis [10, 11]. This is why we decided to use ML to find a solution
to a problem that cannot be solved analytically.

Intuitively, this problem can be solved by training artificial
neural networks (ANNs) on the recordings of pipe organ sounds,
but they usually do not exist or cannot be obtained due to the
lack of pressure information. The results obtained in our tests
confirm that it is possible to overcome the problem of the lack
of pipes and determine the pressure with high accuracy. ML
and DL models trained can determine the pressure based on
data from other pipes of the instrument. The main features from
which the models infer the pressure value are the cut-up height
of the labial pipes and the air pressure in the pipe’s foot. We also
give a formula for determining the pressure in the foot depending
on its construction features.

A reconstruction process without basic data is difficult, and
usually relies on already available methods or software [2]. In
our case, this is not possible, so we created software for repro-
ducing the basic parameters of the windchest, i.e., the blowing
pressure.

The rest of the paper is organized as follows. Section 2
presents the methodology of the research, and Section 3 de-
scribes the data that were used for training and testing the mod-
els. Section 4 describes the input data processing, and Section 5
presents the obtained results. In Section 6, we compare our for-
mula with other studies in the area of the analysis of flue pipes
and blowing pressure, including a discussion of the limitations
of our study. Section 7 concludes our work.

The main contribution of this research is the development of
a methodology for determining the blowing pressure in a pipe
organ. It empirically confirms the relationship between the phys-
ical features of the labial pipes and the blowing pressure, which
allows the training of a model to determine the value of this
pressure with high accuracy. The second contribution is a pro-
posal for a formula describing the air pressure in the foot of the
pipe. The next innovation is the incorporation of generative ar-
tificial intelligence (AI) to check what architectures it proposes
for prediction, and to compare them with our results obtained
using ML. An additional finding is the identification of key
parameters influencing the blowing pressure. Additionally, we
prepared a multi-threaded implementation of Weka regressors,
which accelerated their training with various hyperparameters.
This work also improves the pipe organ parameters reconstruc-
tion process and contributes to the area of pipe organ science
in establishing the value of the pressure in the windchest, and
paves the way for further research.

2. METHODOLOGY

Based on the so far good results of using ML in the field of
examining the influence of the pipe’s mouth parameters on the
characteristics of the generated sound [12], we decided to in-
vestigate the relationship between the pipe parameters and the
blowing pressure using ML, especially ANNs. The purpose of
this study is to create a model that, after receiving selected pipe
attributes at the input, will indicate the blowing pressure at the
output. To train a model that works in various situations, a suf-
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ficiently large set of input data is needed. Since the pressure
value for pipe organs does not vary much and is usually in the
range of 50-100 mm of water gauge [13], data from four instru-
ments with different blowing pressures were used (66, 71, 74,
and 94 mm H,0). The same pipe stops (e.g., principal, octave,
flute) repeat in various pipe organs. Materials from which organ
pipes are made affect the timbre of the generated sound, i.e.,
the harmonics, but not its basic physical parameters, such as the
fundamental frequency [14]. This allows data collection to be
limited to only a few instruments, without the need to use data
from multiple instruments.

Based on these data, we generated one million input datasets,
where each input dataset simulates one damaged instrument.
Each dataset contains data from one instrument only, represent-
ing the percentage of randomly selected pipes from all pipes
available in this instrument. For 75% of pipes, one dataset con-
tained an average of 180 samples, for 50% an average of 90
samples, for 30% an average of 55 samples, and for 10% an
average of 20 samples. Creating all possible subsets of k pipes
within a single instrument with n pipes would require generating
all possible variations without repetition VX, defined as

VE=nl/(n-k), (1)
where 7 is the number of all pipes and k is the number of pipes
remaining in the damaged instrument. Usually, in a pipe organ,
n > 1000. For example, if 50% of the pipes remain (k = 500,
n = 1000), we would need about 3.3 - 101433 variations, and
with 10% of the instrument remaining (k = 100, n = 1000),
about 6 - 10%°7 variations. Therefore, we have not conducted this
research on all possible subsets, as such inputs are extremely big
data. It is technically difficult to train a model on all variations
due to the time required and/or memory limitations. On the
other hand, there is no need to train the model on all possible
subsets; thus, we limited training to one million input datasets.
This value seems reasonable because it is large enough and does
not require extensive random-access memory (RAM) resources.

2.1. Solutions to key issues encountered

Creating a million instruments to be used as input data causes
problems. The first one is to ensure the uniqueness of randomly
generated instruments, as obtaining unique sets of pipes within
one instrument ensures that, after dividing these data into ran-
domly chosen train and test sets, there is no overlap between
them, and no train data are used in tests. We applied 5-fold
cross-validation during training. Additionally, we also tested
the trained models on another (fifth) instrument [15], which was
not used in training nor evaluation of the models, i.e., data gath-
ered from another pipe organ, with a different blowing pressure
(80 mm H,0).

This research uses a pseudo-random number generator to
draw pipes to be included in datasets. To avoid, on the one hand,
the generator falling into periodicity [16] and, on the other hand,
possible repetitions of pipe sets, a mechanism of indexing pipes
in sets was implemented. All pipes within one instrument are
numbered sequentially. After generating the sets of randomly
selected pipes, each set was assigned a binary number, with the
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number of digits equal to the number of pipes in this instrument.
Each digit corresponds to the presence (1) or absence (0) of the
corresponding pipe in the set. Thanks to this one-hot approach,
a binary number representing each set was obtained, which
allowed verifying the uniqueness of the sets. In the case of
repetitions, new sets were generated, and the uniqueness of the
sets was verified again. We assume that a pipe set is unique if
at least 20% of its pipes differ from other sets. This simulates
differences between real organs, as the same stops in pipe organs
frequently occur; too small differences (e.g., just one different
pipe) could lead to overtraining of ML algorithms.

The second issue is the problem of memory (space) com-
plexity. To accelerate the model learning process, the optimal
solution is to load all the training data of the model into the
memory. As mentioned before, the data were processed to en-
sure uniqueness, which increased space complexity. To ensure
smooth operation of our software, we carefully control RAM
usage, see Subsection 4.1.

2.2. Programming language, libraries, and generative
artificial intelligence

When choosing a programming language for our software, two
popular languages with libraries for ML were taken into account:
Java and Python. We chose the Java language for its better mem-
ory management. Firstly, we needed a statically typed language
(with variable types assigned before using them) to accurately
reserve the space for variables and optimize memory usage.
Secondly, we needed a mechanism of immutable objects that
ensures that the object remains permanent after its creation, to
achieve secure and efficient memory management. In addition,
Java provides efficient support for multithreading, which allows
the parallel execution of different tasks.

The Application Programming Interface (API) of the Weka
library, version 3.9.6 [17], was used in the software develop-
ment process. We chose the Weka platform due to its constantly
updated API and a large collection of implemented ML meth-
ods. In our research, the problem of regression is addressed,
i.e., the output of our software is a real number. Therefore,
all regression algorithms implemented in Weka were tested,
in various configurations and with various hyperparameter set-
tings, to obtain the best solution. Namely, we used the following
algorithms: random forest (RandomForest), linear regression
(SimpleLinearRegression), support vector machine for regres-
sion (SMOreg), sequential minimal optimization (SMO), radial
basis function network (RBFNetwork), and single- and multi-
layer perceptron (MultilayerPerceptron). These algorithms were
designed for batch or incremental learning.

Additionally, we used the Deeplearning4;j library, version
1.0.0-M2.1 [18], and the Nd4j sub-module, which allows load-
ing, executing, and retraining TensorFlow models. We used sev-
eral popular ANN models for regression problems in various
hyperparameter configurations. Namely, we used convolutional
neural networks and recurrent neural networks, including long
short-term memory (LSTM) and dense (DenseLayer) layers.
The results obtained using these models were compared with
the results obtained using ML algorithms from the Weka li-
brary, see Section 4.
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For all ML algorithms applied in our work, we used default
values of their hyperparameters, unless specified otherwise in
Section 5.

In this work, we also decided to use generative Al: Gemini,
version 1.5 Pro [19], and Llama, version 3.2 [20], which are
large language models (LLMs). The LLMs we used were not
fine-tuned, and the default settings of their generation param-
eters were applied. These chatbots were applied to see what
generative Al has to offer to analyze relationships between at-
tributes, suggest hyperparameters for various ANNSs, and train
and test selected ANN models. Generative Al models, even
without specific training in predicting pipe organ blowing pres-
sure, can create valuable neural network architectures based on
the provided attributes. They focus on key input data, apply-
ing proven design principles to capture complex relationships
between features. The proposed models can serve as rapid pro-
totypes for further optimization and leverage interdisciplinary
knowledge, offering a flexible and efficient approach to solving
the problem.

We found that Gemini hallucinates when data is imported
from external sources, i.e., publicly available data in CSV for-
mat, as described in Section 4.1. The imaginary models achieved
high accuracy and other results as expected, which could con-
firm their effectiveness. However, an in-depth analysis of the
models and dialogue with the Gemini chatbot revealed hallu-
cinations, i.e., fabricated information. Additionally, the results
were unstable, as they varied between different chats. Therefore,
we discarded models built on external data and only analyzed
results for input data limited to 1315 lines that did not cause
hallucinations when using Gemini. We did not encounter simi-
lar problems using a local LLM, i.e., Llama. Furthermore, the
results obtained by Llama are better than those obtained using
Gemini.

3. OUR DATA
Based on the analysis of the related research, we selected a small
set of input attributes, described in this section. This allowed us
to avoid data redundancy and, as a result, overfitting when cre-
ating the models. In our selection of features, we focused on
ensuring their high predictive values, which influences the con-
struction of more effective models. We use four input attributes,
the values of which were different for each pipe. These attributes
are: cut-up height, fundamental frequency, airflow velocity, and
air pressure in the pipe’s foot. The input data used to train and
test models represents either measured or calculated values. The
output value is the blowing pressure p,,, measured in millime-
ters of water gauge; this value is predicted using ML and DL.
The air pressure in the foot of the pipe is different from the
blowing pressure. The blowing pressure is usually stable for the
entire instrument or sometimes for a large group of pipes, while
the pressure in the foot of the pipe is different for each pipe. In
the case of incomplete instruments, when bellows and a signifi-
cant percentage of pipes are missing, it is difficult to determine
the blowing pressure, and the trial-and-error method may lead
to the destruction of historical pipes.

Our data describe 191 pipes representing 21 stops from five
complete instruments. The collected data are publicly available

in The Diapason [15,21-25], a journal dedicated to the organ,
harpsichord, carillon, and church music. The data representing
our input and output attributes are hard to obtain, as access
to most pipes in instruments is usually almost impossible, be-
cause they are set tightly. Access for measurements is possible
when disassembling the instrument for renovation, which hap-
pens rarely. In the literature, lip dimensions are usually not
published together with blowing pressure; they are most often
published separately. Such data cannot be used for the training
of ML algorithms, as we need both input and output values. This
is why we only have data for five instruments.

The first (measured) attribute is the height & of the pipe
mouth’s cut-up, in millimeters, see Fig. 1. The values of this
attribute were measured by organbuilders and were published in
The Diapason, as mentioned above.

Upper hp
Mouth
Flue ICut-up h
Lower hp
W Im}, Pipe foot

Foot hole \

Fig. 1. Construction of a flue pipe with the height
of the cut-up % indicated

The second (calculated) attribute is the fundamental fre-
quency Fy of the pipe’s sound. It can be calculated in two ways.
The first one is based on the wavelength of the sound

Fo=c/a, (©))

where c is the speed of sound (m/s), and A is the wavelength (m).
In the case of instruments tuned in the equal temperament sys-
tem, the second method to determine F{ can be used. It is based
on musical intervals and is calculated as the ratio of frequencies,
which is constant and equal to N2 for consecutive semitones
in the twelve-tone equal-tempered scale, and tuned relative to a
standard pitch A (around 440 Hz). We used this method to cal-
culate the second attribute because it is faster than determining
the wavelength for each pipe individually.

The third (calculated) input attribute is the velocity v of the
airflow in a pipe, in meters per second. A constant value of
the Strouhal number S; = 0.2 was assumed for the calculations.
The previous research published in [12] indicates that this value
for labial pipes is constant when rounded to one decimal place,
regardless of the type of pipe or its mouth. The airflow velocity
v in a flue pipe is calculated as

v="Fy-h/S;. 3

In addition, we assume that the pipe was properly voiced,
which means that the pipe sounds as intended (without beats).
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To achieve proper voicing, the edge tone produced in the cut-up
must be of the same frequency as the resonator.

The fourth (calculated) input attribute is the air pressure p,
in the pipe’s foot. As mentioned above, the value of p, dif-
fers from the blowing pressure p,, and varies between pipes.
When analyzing the outflow of air from the pipe’s flue, this
phenomenon can be considered as an adiabatic outflow of gas
from a container with a higher pressure to an area with a lower
pressure, with constant pressure in the container. In the case of
a pipe organ, the pressure in the windchest and thus in the pipe
foot is constant, as the roller valve and the bellows regulate the
air supplied by the blower. Next, the wind duct supplies air to
the windchest at the same pressure, see Fig. 2.

/ Flue pipe
\

‘Wind duct

[
F

Windchest Reservoir

Weight

' Bloiver
)

Bellow

Fig. 2. Construction of the wind supply system of a pipe organ

Assuming an adiabatic outflow of an ideal gas without heat
exchange and mechanical work from the container, the Saint
Venant-Wantzel formula [26] for the velocity v of such outflow

can be used
-1
oo 2o (22) 7).
k=1 p Pp

where « = 1.401 is the adiabatic exponent, p,, is the pressure
in the pipe’s foot (Pa), p. = 1013.25 Pa is the pressure outside
(ambient), and p = 1.225 kg/m? is the density of dry air at 15°C.
In the situation of air intake by the blower from the same room
where the windchest is located, the temperature is assumed
to be constant. We can next transform (4), with the constants
K, Pe, P, as above, and use (3). As a result, we receive the
following formula to determine the pressure p, in the foot of a
flue pipe, which depends on the pipe mouth cut-up height 4 and
the fundamental frequency Fy of the pipe’s sound [8]

4)

7.25- 1\ p, —pp+4.38-F2 - h* =0, )
where 7.25 and 4.38 are approximate values (rounded to two
decimal places), resulting from transformations of (3) and (4).
The approximation in (5) results from these approximations; for
exact values, this formula is an equation.

As we can see, the fourth parameter (p ) uses both the first
attribute (/) and the second one (Fp), in a nonlinear equation.
The pressure calculated using (5) does not consider losses in
the airflow, and it indicates an absolute pressure. To determine
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the value of relative pressure pr, used in blowing pressure
measurement, the ambient pressure p, must be subtracted from
the obtained pressure p,, and the units converted to mm H,O

Prel = (Pp_Pe)/f’ 6)

where & =9.80665 Pa/mm H,O is the conversion factor applied
to convert Pascals to millimeters of water gauge.

We use (5) to calculate the fourth input attribute, i.e., the
air pressure in the foot of a pipe. This equation is a nonlinear,
transcendental equation — it is not an algebraic equation because
it contains the variable p, under the root of the noninteger
degree x = 1.401. It is not possible to solve this type of equation
analytically. Therefore, we attempted a geometric solution to
achieve an intuitive insight into the structure of the solution.
Based on the graphical solution, we can find that (5) has a unique
solution. Unfortunately, this method proved to be inaccurate in
determining the solution. Solving this equation requires the use
of numerical methods that iteratively allow the solution to be
determined with higher precision, especially for more complex
values of fractional roots. In this work, we used the Newton-
Raphson tangent method [27] as an iterative numerical method
for finding the zeros of functions in a given range. It is often used
in numerical analysis or optimization and is applied to nonlinear
equations whose derivatives are easy to calculate. This method
proved to be effective, and the solutions obtained were consistent
with those obtained graphically.

4. DATA PROCESSING

We used the input data sets, prepared as shown in Section 3, to
generate ML and DL models. We used the software we wrote
for this research for this purpose. Additionally, we also used
generative Al, as described in Subsection 4.2.

4.1. Programming ML and ANN models

The software for this research was written in the IntelliJ IDEA
IDE, version 2023.3.4, using Java SE Development Kit, ver-
sion 19.0.2, and Apache Maven, version 3.9.6. We used a Dell
EMC PowerEdge R540 server with two Intel Xeon Silver 4110
2.10 GHz CPUs (16 physical cores) and 96 GB of ECC DDR4
2133 MHz RAM. Our software allows performing the following
steps.

The first step is to set (by the user) the model options, and the
number of pipes to be randomly selected in each draw from input
data, to create the sets of pipes to be used in training and testing
of ML algorithms. Next, data from CSV files are loaded into
RAM. The file consists of four columns with input attributes and
one column with an output attribute. All features are numeric,
with two decimal places. The features (descriptors) of the pipes
are: cut-up (mm), airflow velocity (m/s), fundamental frequency
(Hz), and pressure in the pipe’s foot (mm H»O). The output data
is the blowing pressure (mm H,0).

The next step is to generate simulated sets of pipes, stored as
two-dimensional arrays of double-precision floating-point num-
bers. Next, a procedure which ensures that each set is unique
is executed, see Subsection 2.1. The unique sets that simu-
late pipe sets from different instruments are saved as two lists,
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namely the list of the Instance class objects for ML algorithms
in Weka, and the list of the DataSet class objects for DL models
in Deeplearning4j. These lists of objects are randomly divided
into a nonoverlapping train set (70%) and test set (30%). For
memory efficiency, only the training and test lists are kept. Ad-
ditionally, the train and test sets for both lists are normalized to
the range [0, 1] after splitting into train and test sets, to avoid
bias in the test data.

Next, regressors are trained on the prepared train data in a sep-
arate module. Additionally, we used five-fold cross-validation in
training. All algorithms from the Weka library [17] and ANN
models from Deeplearning4j [18], which are suitable for regres-
sion problems, were successively trained on the same data, see
Subsection 2.2. The observed variance in the results within the
folds for each model was negligible and did not affect the fi-
nal ranking of the compared algorithms. Therefore, to maintain
maximum clarity and to focus on the key performance differ-
ences between the models, we have chosen to present only the
mean values of the performance.

The trained models are next tested on the test data. The fol-
lowing measures are calculated to evaluate the obtained re-
sults [28, 29]: the Pearson’s correlation coeflicient (r), mean
absolute error (MAE), root-mean-square error (RMSE), rela-
tive absolute error (RAE), root relative square error (RRSE),
mean absolute percentage error (MAPE), and acceptable error
rate (AER), which is a version of the MAE adjusted to this re-
search. The metrics used in the model evaluation are shown in

(N-(13)

n n n
nYXiyi— 2D Xit 2 Vi
i=1 i=1 i=1

L

"= 2 21’ @
Vg (B ()
i=1 i=1 i=1 i=1
i|xi_Yi|
®)
9
(10)
3 (i -y
RRSE= |Z -100%, (11)
> (xi=x)
i=1
~100% < |x; - yi
MAPE = — ; - ‘ (12)
AER = 13- 100%/n, (13)

where x; is an actual value, y; is the predicted value, X is an
arithmetic mean of all actual values, n is the total number of
predictions, and 73 is a number of predictions such that |y; —x;| <
3. We used the AER measure because theadmissible error in
the blowing pressure is < 3 mm H,O, which is caused by two
reasons. Firstly, the measurement error made by the organbuilder
is < 1 mm H,O. Secondly, the difference in pressure in the air
supply system itself can vary because of differences in the height
of the position of various components of the system relative to
the ground. Assuming that the position difference between the
bellow h; and the windchest A, is not greater than 3 m, the
change in pressure between the bellow p; and the windchest
p2 may be circa 3 mm H,O. This results from the Bernoulli’s
equation [30] for an ideal gas and adiabatic transformations

22
g(hz—h1)+(vzzvl)),

where g ~ 9.81 m/s? is gravitational acceleration, v; is the ve-
locity of the air coming out of the bellows, and v; is the velocity
of the air entering the windchest. Additionally, to ensure the
reliability of the r correlation results, we applied the standard z-
score measure, confirming the set absence of outliers (z-scores
in the range from —1.34 to 1.97).

We encountered various technical problems when develop-
ing our software. We started with single-threaded processing of
regressors, but with an increasing number of the generated sets
of pipes, the time of model training increased to the order of
hours. To speed up the calculations, each regressor we used has
been rewritten to a multi-threaded version, using the Executor
class and Lambda expressions in Java. Unfortunately, regres-
sors from the Weka library in multi-threaded training require
synchronization of model threads and the input data, which sig-
nificantly increases the training time. Additionally, we had to
deal with the RAM usage problem, to avoid the program stop-
ping because of running out of memory, with the increase in
the number of pipe sets. Therefore, RAM monitoring and mem-
ory cleaning via manual control of the garbage collector were
used. Another problem was posed by a pseudo-random num-
ber generator applied in the process of generating the sets of
pipes. In the case of a small number of pipes remaining in the
set, we found repetitions in the generated sets. This confirms
that it is necessary indeed to use a procedure that ensures the
uniqueness of pipe sets, which we implemented as described in
Subsection 2.1.

P1—P2=p (14)

4.2. Application of generative Al

We used generative Al [19,20] to suggest ANN architectures
and compare its proposals with our results obtained from Weka
and Deeplearning4j. We provided the chatbot commands with
one prompt. In the case of Gemini, its length could not be longer
than 1316 lines: 1315 lines of data and 1 line of instructions.
Llama, however, was tested locally, on the server described in
Subsection 4.1. The prompt for both LLMs' consists of:

e The command to analyze the data provided below.

Uhttps://github.com/damianwegrzyn/LLMs_prompt
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e Information that the data is numeric, stored in five columns
separated by commas, with the first four columns storing
input attributes, and the fifth one the output value.

e The command to propose three of the most adequate ANN
architectures and their hyperparameters, based on the anal-
ysis of the provided data.

e The command to train the proposed ANN models on 70% of
randomly selected data rows, which should be normalized
and scaled before training.

e The command to evaluate models on the remaining 30% of
data rows, which should be normalized and scaled before
testing.

e The command to print numerical values of model evalua-
tion measures (all accurate to four decimal places): r, MAE,
RMSE, in percentage: RAE, RRSE, MAPE, and the AER
calculated as AER =t3/n

e Only for Gemini: input data in the form of 1315 lines (i.e.,
1315 pipes).

The Gemini chatbot proposed ANN architectures and their
hyperparameters presented in Table 1. Table 2 presents Llama’s
proposals based on the same prompt as Gemini, but for the full

Table 2
The architectures and hyperparameters of the ANNs proposed
by Llama
ANN Architecture Hyperparameters Data'
type preparation
Input layer: 4 neurons
_§ Decision tree layer: Optimizer: stochastic
L 16 trees, gradient descent
S % max depth 5 Learning rate: 0.01 The dat.a was
=5 normalized and
s & | Neural layer: No. of epochs: 50 .
= . . scaled using the
SR 2 hidden layers, Batch size: 64 R
=2 . MinMax scaler.
&8 16 neurons each, Loss function: MSE
A ReLU activation Early stopping: True
Output layer: 1 neuron
Input layer: 4 neurons
S Hidden layer I: Optimizer: Adam The data was
5S 32 neurons, . . .
=< L Learning rate: 0.001 normalized and
8 o ReLU activation .
= 5 . No. of epochs: 100 standardized
= £ | Hidden layer 2: . .
za Batch size: 32 using z-score
=3 16 neurons, Loss function: MSE | scalin,
E ReLU activation ’ &
Output layer: 1 neuron
= Input layer: 4 neurons N
3 = | Hidden layer 1: Optslr?llaz:;r. 1;20;“;:21 The data was
-S Z 64 neurons, d propag scaled using the
SR L (RMSprop)
S5 K Tanh activation . robust scaler.
5] . . Learning rate: 0.0005 Lo
S <4 | Hidden layer 2: Outliers in target
S 3 No. of epochs: 100
S =z 32 neurons, o values were
28 Sigmoid activation Batch size: 128 clipped
= = Loss function: MSE :
[ Output layer: 1 neuron

Table 1
The architectures and hyperparameters of the ANNs proposed
by Gemini
A . D
NN Architecture Hyperparameters ata.
type preparation
Input layer: 4 neurons
£ Hidden layer 1:
= 16 neurons, Optimizer: Adam
S DA . . The data was
3 rectified linear unit Learning rate: 0.001 normalized and
- . .
8 Ay (ReL.U) activation No. of epochs: 100 .
2 | . scaled using
5 = | Hidden layer 2: Batch size: 32
= . the standard
= 8 neurons, Loss function: mean MinMax scaler.
= ReLU activation squared error (MSE) '
p= Output layer: 1 neuron,
linear activation
Input layer: 4 neurons
- Hidden layer 1: Optimizer: Adam
5Z 16 neurons, Learning rate: 0.001 | The data was
2 E ReLU activation No. of epochs: 100 normalized and
g ;: Hidden layer 2: Batch size: 32 scaled using
g g 8 neurons, Loss function: MSE | the standard
E ‘g ReLU activation Dropout: 0.2 MinMax scaler.
Output layer: 1 neuron, Bidirectional: True
linear activation
Input layer: 4 neurons
Convolutional layer 1:
32 filters, size 3 x 3,
ReLU activation
—~ Max pooling layer 1: .
g . The input data
S Pool size 2 x 2 . .
eZ . . Optimizer: Adam was normalized
Z. | Convolutional layer 2: . .
=0 . Learning rate: 0.001 | using standard
a2 32 filters, size 3 x 3, )
kg o No. of epochs: 100 scaling (z-score).
= ReLU activation .
29 . Batch size: 32 The target value
S 2 | Max pooling layer 2: . .
Z 3T . Loss function: MSE | was scaled using
g < Pool size 2 x2 a logarithm
© Fully connected layer 1: & ’
128 neurons,
ReLU activation
Output layer: 1 neuron,
no activation
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set of input data. The model evaluation measures are described
in Subsection 4.1.

5. RESULTS

We compared all trained models using the following evaluation
metrics, listed in Subsection 4.1: r, MAE, RMSE, RAE, RRSE,
MAPE, and AER. The most important metric in the assessment
was the acceptable error rate (AER). The models that performed
best were the random forest (RF) and the multilayer perceptron
(MLP). We publish the best trained models for future research
purposes®, and present the dependence of their AER on the
number of remaining pipes in the instrument in Fig. 3.

The perceptron and sequential minimal optimization for re-
gression (SMOreg) algorithms also performed well. Table 3
presents evaluation results for the best three models, for four
percentages of the pipes drawn into the pipe set (simulating the
remained pipes in an instrument), namely: 75%, 50%, 30%, and
10% of the full set of pipes.

Considering the specificity of the data and the training tar-
get, we find the trained algorithms very useful. The value of
Pearson’s correlation coefficient of 0.97 for the RF with 75% of
the pipes remaining indicates a strong correlation between the
predictions and the actual values. A low mean value of abso-
lute differences between model predictions and actual values,
i.e., MAE, also indicates good performance and accurate pre-
dictions. The MAPE value, often used as a loss function in
regression, was always less than 5.5%. This confirms that the

https://github.com/damianwegrzyn/ML_models
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Table 3
The evaluation of the top three ML algorithms for training on 75%, 50%, 30%, and 10% of all pipes
Remaining AER RAE RRSE MAPE
pipes Rank Model (%] r MAE RMSE (%] [%] [%]
1 RF 96 0.97 0.80 1.84 13.39 22.40 1.04
75% 2 MLP 79 0.69 4.46 9.36 74.41 113.74 5.01
3 Perceptron 74 0.54 4.99 8.36 83.32 101.56 5.23
1 RF 93 0.95 0.92 243 15.41 31.05 1.27
50% 2 MLP 84 0.82 4.50 8.52 78.37 108.60 5.06
3 SMOreg 72 0.54 3.34 6.91 55.62 88.30 4.07
1 RF 85 0.86 2.05 4.20 33.29 50.29 2.62
30% 2 MLP 83 0.63 4.89 8.56 78.73 101.89 541
3 RNN 68 0.44 4.50 8.49 72.75 99.00 5.49
1 MLP 84 0.47 4.50 8.10 73.38 100.09 5.10
10% 2 SMOreg 76 0.09 4.49 9.27 71.18 111.89 4.99
3 CNN 75 0.12 4.56 9.64 73.96 113.24 5.12
100 — , , even an RF with only 10 trees yielded good results; thus, we
present results for this small RF, which are even better than
os | i for 200 trees. For at least 30% of pipes remaining in the set,
the RF was unbeatable and showed high resistance to outliers,
but its quality dropped significantly for 10% of remaining pipes
90 - 7 in the set.
¥ In addition, we analyzed the importance of individual input
T oesh ] attributes in our best RF model. We used the built-in function-
3 T T ality in Weka to determine the importance of attributes, which
= is calculated as mean decrease in impurity; the higher the score,
s e the more important the feature is.
Figure 4 presents the importance of features in our best RF
75+ - model. As we can see, all features contribute to predictions,
and the height of the cut-up is the most important feature. This
o L ‘ . . confirms the dependence of the blowing pressure on the features
10 0 s 75 we used, and is consistent with organ building knowledge.

Remained pipes [%]

Fig. 3. The dependence of the accuracy of RF (grey solid line) and
MLP (red dotted line) models on the number of remained pipes

output values predicted by these algorithms are close to actual
values. The RMSE of 1.84 shows that large error values are
rare; low RMSE indicates that predictions rarely differ much
from actual values. RAE and RRSE allow comparing the qual-
ity of forecasts between different models and between input data
of different scales. The obtained low values of these measures
confirm the good quality of the obtained models. These results
confirm that it is possible to predict the blowing pressure in a
pipe organ using ML and the features described in Section 3.
The training was repeated several times (up to 50 repetitions
for RF), and similar values of evaluation measures were ob-
tained, which confirms the repeatability of the results. We built
an RF with 200 decision trees with a maximum depth of 5 and
the number of attributes to randomly investigate set to 4, but

9.47 % 58.48 9, MCut-up height

6.49 % — 2
B Fundamental
frequency

Airflow velocity
25.56 %

BPipe foot pressure

Fig. 4. The importance of individual input attributes in the best model
RF for 75% of the remaining pipes

The perceptron and the MLP were adapted to solve the re-
gression problem by changing the activation function to a linear
function (no activation) and changing the cost function to mean
squared error (MSE). Training was performed for 100 to 1000
epochs, with a step of 100 epochs, and with additional train-
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ing for 1500 and 2000 epochs. Both models achieved the best
results for the following hyperparameters: learning rate for the
backpropagation algorithm equal to 0.3, momentum rate for the
backpropagation algorithm equal to 0.2, training for 100 epochs,
with a validation threshold equal to 20 (default value), the size
of the validation set equal to 20, and the seed for the random
number generator equal to 1. The MLP model consisted of three
hidden layers.

The SMOreg model is also worth attention. It is a regression
algorithm based on support vector machines that uses the se-
quential minimal optimization. This model is especially useful
for nonlinear regression problems because it can automatically
extract a data transformation function that allows the model to fit
the data better. Models built using linear regression, i.e., linear
regression and simple linear regression, yielded worse results,
and their accuracy was low.

CNN and RNN models also yielded satisfactory results, espe-
cially for the lowest investigated percentage of remaining pipes:
CNN for 10% and RNN with DenseLayer for 30% of remaining
pipes. Thus, as the number of remaining pipes decreases, more
complex ML algorithms are better at discovering the relation-
ships within the input data.

We also applied generative Al to compare our results with the
results obtained by Gemini Al (for data limited to 1315 lines).
As shown in Table 4, these models achieved similar results for
various types of ANNs.

Table 4
The evaluation of the ANN models proposed and created by Gemini
on the 1315 pipes dataset

Rank | Model A[OI;; l]{ r | MAE |RMSE 1?02 ;E R[l:;]E M[/;O?E
1 |MLP | 95 |099| 2.78 | 423 |5.94 | 10.13 | 3.87
2 |RNN | 94 [0.99]| 2.75 | 393 | 524 | 7.85 | 2.14

CNN | 92 |095]| 213 | 3.02 | 622 | 9.16 | 543

The obtained model accuracies are high, but they were
achieved for the limited input data set, which is in accordance
with our expectations. It is worth noting that relying on limited
input data for Al evaluation may not fully capture the model
performance in diverse scenarios.

We also verified the ANN architectures proposed by Llama.
The results obtained by Llama are presented in Table 5. The
best accuracy was achieved by the deep neural decision forest
(DNDF) [31] model: 97%, which is a better result than for the
RF model. The DNDF is a decision tree model that guides rep-
resentation learning in the initial layers of a CNN and replaces
the traditional fully connected layers with a decision forest for
the final prediction. This distinguishes DNDF from traditional
neural networks. It is especially effective in the case of nonlin-
ear relationships between input and output variables. The high
performance of the RF and DNDF models indicates that the use
of tree structures is an effective method for predicting blowing
pressure. MLP and fully connected neural network (FCNN) also
yield high accuracy, comparable to Gemini models.
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Table 5
The evaluation of the ANN models proposed and created by Llama
rank | wode | AER [ [ s RAF [RRSE [ViaPE
1 |DNDF| 97 [099]| 2.02 | 234 |15.54| 1434 | 1.38
2 |MLP 95 098] 3.49 | 4.06 [16.49|16.73 | 2.17
3 |FCNN| 94 |096]| 3.37 | 3.96 |1591|26.67 | 2.32

Such good results, obtained from both LLMs, open the pos-
sibility of further research toward model optimization. Modern
Al learning support techniques, such as techniques embeddings
Al, vector database, or retrieval augmented generation, can be
used to train the ANN models on large datasets and yield even
better results.

We also checked the performance of the best trained models,
i.e., RF and MLP, using the data representing the fifth instru-
ment [15] as a test set. This instrument was not used in training.
The instrument comes from a different region (Germany) and
era (baroque) than the pipe organs we used to train the models.
The evaluation results are presented in Table 6. They confirm
the usefulness of both models.

Table 6
The evaluation of RF and MLP models on the test instrument, not used
in the training process

Re-
“:i‘g Rank | Model /3[‘;}]{ r | MAE | RMSE IT%E R[};(?’]E M[‘;CI]JE
pipes
1 |RF 94 095|097 | 2.02 |14.02| 2820| 1.19
P TMe | 75 067|456 | 1013 [ 7742 | 117.10] 5.92
sos 1| RF 92 093] 1.01 | 2.86 |15.83| 32.75| 1.30
2 |MLP | 82 [077|4.62 | 8.64(80.00]|114.21| 5.53
w00 | L |RF 84 (086 2.11 | 432 |37.09| 59.04 | 2.84
2 |MLP | 81 057|497 | 8.84(80.10|109.36| 5.88
1o L1_IMLP | 83 |047|450 | 874 |7543|10483| 527
2 |RF 70 [0.24] 500 | 1022 [67.04 | 91.28| 4.71

6. RELATED RESEARCH AND DISCUSSION

Determining the blowing pressure in a pipe organ is not often
discussed in the literature; works on sound pressure level (SPL)
or acoustic pressure [32] and their measurement are more often
found. Saenger [33] presents the method of SPL measurement in
a labial resonator, and Rucz [34] shows the pressure distribution
for various modes in the resonator. Smith [35] states that the
sound generation process has two components: a standing wave
and turbulence coming from the upper lip or tongue. Angster
and Miklés [13] present the edge tone as a sound source in the
pipe. Odya et al. [36] confirm that the second sound source is at
the top of the flue pipe.

The influence of the cut-up height on the labial pipe voicing
is confirmed by research and organ-building practice [37, 38].
Adachi et al. [39] prove that even a small change in the pipe’s
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mouth results in significant changes in the sound characteristics.
The influence of the mouth on the sound is also seen in other
flute instruments, such as the recorder or the transverse flute [40].
Each change of the upper lip results in a spectrum change, as
studied by Stafura and Nagy [41]. Angster and Miklés [13]
proved that shortening the upper lip reduces the amount of air
flowing into the pipe; the decrease in air jet velocity results
either from the increase in the distance of the upper lip from
the flue (shortening of the upper lip) or from the decrease in
pressure. The influence of lip parameters on the velocity of the
air jet was confirmed by Fabre et al. [42]. Mallock [43] found
that the fundamental frequency of the pipe’s sound depends on
the jet velocity. An increase in air velocity increases frequency,
up to a certain limit. Our research results also show that the
cut-up height is the most important attribute influencing the
blowing pressure, which is consistent with the above-mentioned
research.

The velocity of the air jet is usually determined from
Bernoulli’s equation [44,45]. Steenbrugge [46] and Steenbrugge
and de Baets [47] published a formula for calculating the air jet
flow velocity depending on the pressure in the pipe’s foot. By
modifying this formula, if the flow velocity is given, the value
of the relative pressure in the pipe foot (in mm H;O) can be
determined

pv?

19.6° (15

Prel ®

The velocity of the jet coming from the flue was experimentally
measured by AuBerlechner er al. [48] and Elder [49]. The ve-
locity values for similar pipes are very close to the values we
calculated. The air jet velocity value was also experimentally
measured in various pipes by Wegrzyn et al. [12]. Wegrzyn et
al. [50] also confirmed the influence of the air jet velocity on
the pipe’s fundamental frequency.

The air pressure in the foot of the pipe depends mainly on the
blowing pressure, but also on the geometric dimensions of the
foot hole and the flue [13]. Fletcher and Rossing [7] stated that
the foot hole (the air intake) of the pipe effectively controls the
pressure exerted on the flue slit. Steenbrugge [46] experimen-
tally confirmed the relationship between the air pressure in the
foot of the pipe and the size of the foot hole. Angster et al. [51]
proved that different types of windchests affect the pressure in
the pipe foot, with the blowing pressure unchanged. Lunn [52]
and Steenbrugge [46] experimentally confirmed that the pres-
sure drop at the foot hole should be assumed. Due to frictional
losses, the pressure in the foot of the pipe is less than the bellow
pressure [52]. Kanda and Shimomukai [30] numerically proved
that the pressure at the walls of the foot is lower than in the central
core. This phenomenon even occurs for the Reynolds number
lower than 5000. AuB3erlechner et al. [48] measured the pressure
in the foot of the pipe using a pressure sensor. Pipes with similar
geometrical features, used in their research, had pressure values
similar to the values in our work, which confirms the correctness
of the calculated pressure values.

The influence of changing the blowing pressure on the sound
generated by pipes is well-known [6]. The change of the blow-
ing pressure changes the amplitude of the generated sound, its

10

pitch, and timbre [45, 53]. Steenbrugge and de Baets [47] con-
firmed the increase in sound frequency with increasing blowing
pressure and vice versa. With the decrease in blowing pressure,
the sound becomes darker and duller [47]. If pressure increases,
a discontinuity of pressure at the mouth is observed, caused by
the centrifugal force of the curvilinear flow [52].

A fixed value of blowing pressure allows for a strong and clear
sound [36]. The blowing pressure cannot change significantly,
and if the pressure is too high, overblowing, typical of wind
instruments, occurs. Rucz et al. [45] analyzed the dynamic or-
gan pipe invented by Zacharias. Due to the use of a blown open
tongue with free reed, this pipe can be adjusted to blowing pres-
sure between circa 5 and 110 mm H;O. Tuned pipes, commonly
used in the pipe organ, do not allow the blowing pressure to
change significantly. Steenbrugge [54] also describes the feed-
back cycle operating regime for pipe blowing, which includes
cut-up, blowing pressure, and the flue width. Therefore, tuned
pipes are adjusted to a limited blowing pressure range.

6.1. Limitations of the study

The main limitation of this study is that our methodology can
be applied only to pipe organs with bellows with a reservoir.
It does not apply to wedge bellows, which are rare. Another
key requirement is the presence of flue pipes. If only reed pipes
survive, our method will not apply either. In addition, for the
blowing pressure predictions to achieve acceptable accuracy, the
remaining flue pipes should constitute at least 10% of all pipes.
Moreover, it is also required to gather pipe attributes, namely
cut-up height and fundamental frequency.

Due to the lack of dimensions of the pipe’s mouth published
together with the blowing pressure, our models were trained only
on four pipe organs. From the point of view of organ building
and the physics of sound generation, the attributes we selected
allow us to generalize our methodology to other pipe organs.

The limitation of interpretation is the admissible error in
the accuracy of the determined blowing pressure. It accepts a
pressure error of 3 mm H,O and a difference in the relative
position of the windchest to the bellows of up to 3 m.

The implementation limitation of ML and ANN training was
the restriction of input data to one million datasets, due to the
available amount of 96 GB of the server RAM. Furthermore,
in the case of using Gemini, the input data was limited to 1315
pipes due to the limitation of the input prompt in the case of this
chatbot.

When analyzing the results of generative Al, it is worth noting
the occurring hallucinations (Gemini and external data collec-
tion), i.e., a phenomenon in which an LLM generates informa-
tion that is false, fabricated, or has no basis in its training data,
but presents it confidently and convincingly. This carries the risk
that the generated proposals for ANN architectures and the ob-
tained evaluation values may be false. The second problem is the
black box problem, i.e., the impossibility of fully understanding
and explaining how chatbots achieve the presented results. Since
an LLM internal processing is not based on human-interpretable
rules but on complex patterns learned from data, it is difficult
to identify subtle, hidden errors, bias contained in the training
data, or the model limitations that could have influenced the final
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results. However, we were aware of the aforementioned limita-
tions. Thus, we verified the responses from the LLMs to avoid
the impossibility of research reproducibility. The results from
the LLMs are consistent with the outcomes from the evaluation
of our trained models.

7. CONCLUSIONS

The issue of restoring blowing pressure in a pipe organ has so far
been an unsolvable problem. In most cases, the restored organs
are incomplete, with bellows and a high percentage of pipes
missing. The proposed solution, based on ML and ANN models,
yields high accuracy and confirms the possibility of determining
the blowing pressure. Our methodology is currently the only
alternative to the trial-and-error method, which may destroy the
historical pipes, as there is no method to calculate the blowing
pressure. We also propose a faster yet equally effective way
of determining the blowing pressure using commonly available
tools such as LLMs, which facilitates the practical application
of our solution.

The most efficient ML model if the majority of pipes in the
remaining instrument is the RF model, with an accuracy of
96%. In an extreme situation, when circa 90% of the pipes
are missing, the MLP model is the most effective one, with
an accuracy of 82%. Among the tested models that use the
ANNS, the best predictor is the DNDF model, which achieved
an accuracy of 97%. Other ANN models also achieved high
results, exceeding 92%.

Equation (5) proposes a formula describing the air pressure
in the labial pipe’s foot depending only on its fundamental fre-
quency and cut-up height, with no other variables as we used
a constant Strouhal number, determined in the previous work
for various mouth and pipe types [12]. We also confirmed the
relationship between flue pipe attributes and blowing pressure.
We found that the height of the cut-up is the most important
feature. Fundamental frequency is also important, as it affects
the proper voicing of a pipe. These two attributes suffice to de-
termine the blowing pressure (the others can be calculated), and
their importance is confirmed in RF.

In our training, we used a variety of organ pipes, i.e., different
types, constructions, and mouths. They came from instruments
with different blowing pressures. As mentioned in Section 1, the
era or origin of the organ is not important, because we selected
input attributes that characterize the physical properties of the
sound, not its timbre. Thanks to this, we obtained diversity that
allows for generalization of our methodology also to other pipe
organs, not included in the training dataset. We confirmed this
by testing our best ML models on the data from a pipe organ
that was not used in training. It is worth noting that this pipe
organ comes from a different era and region than those used in
training.

The proposed methodology of determining blowing pressure
is an important achievement, which applies state-of-the-art in-
formation technology in the broader process of renovation and
reconstruction of historical objects, thus increasing financial ef-
ficiency and minimizing trial-and-error attempts. Sometimes,
only illustrations of the pipes have been preserved, but the in-
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strument has not survived [4]. If these graphics are of good
quality, they may be used to restore the blowing pressure. It
would significantly improve the instrument rebuilding process
while maintaining the authenticity of the original sound. Our
findings may help not only organ builders in the reconstruction
of destroyed pipe organs, but also in determining the pressure
in the windchest during new instrument building. Another area
that may benefit is the analysis of fluid flows, especially in the
problems of unknown value of constant fluid pressure. The next
area of ?7the application of our results is acoustic modeling.
The ability to accurately determine the blowing pressure can
aid in the creation of precise acoustic models that predict sound
behavior depending on changes in the construction of the pipes
or the windchest system.

In future work, we would like to investigate the influence of
other organ pipe attributes (flue dimensions, scaling, i.e., ratio
of pipe length to diameter, etc.) on blowing pressure. More-
over, the models for determining the blowing pressure can be
optimized to be efficient even in the case of highly incomplete
instruments. Designing a new neural network architecture or
machine learning regression technique may yield better results
than the commonly available models we used. Faster and more
accurate algorithms would significantly shorten the process of
reconstructing the instrument and facilitate the daily work of
organbuilders.
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