
Archives of Acoustics Vol. 49, No. 2, pp. 255–266 (2024), doi: 10.24425/aoa.2024.148787

Research Paper

Modeling of Acoustic Coupling of Ultrasonic Probes
for High-Speed Rail Track Inspection

Sławomir MACKIEWICZ, Zbigniew RANACHOWSKI∗, Tomasz KATZ,
Tomasz DĘBOWSKI, Grzegorz STARZYŃSKI, Przemysław RANACHOWSKI

Institute of Fundamental Technological Research
Polish Academy of Sciences

Warsaw, Poland
∗Corresponding Author e-mail: zranach@ippt.pan.pl

(received July 5, 2023; accepted January 4, 2024; published online March 28, 2024 )

The paper presents the modeling of transmission of the ultrasonic plane wave through an uniform liquid
layer. The considered sources of the ultrasonic wave were normal (straight) beam longitudinal wave probes and
angle beam sheer waves probes commonly used in non-destructive testing. Coupling losses (CL) introduced by
the presence of the coupling layer are discussed and determined applying the numerical procedure. The modeling
applies to both monochromatic waves and short ultrasonic pulses with a specified frequency bandwidth. Model
implementation and validation was performed using a specialized software. The predictions of the model were
confirmed by coupling losses measurements for a normal beam longitudinal wave probe with a delay line made
of polymethyl methacrylate (PMMA). The developed model can be useful in designing ultrasonic probes for
high-speed rail track inspections, especially for establishing the optimal thickness of the water coupling layer
and estimation of coupling losses, due to inevitable changes of the water gap during mobile rail inspection.
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1. Introduction

Rail track failures create a significant problem en-
forcing the railroad administration to permanent con-
trol of the integrity of exploited infrastructure. Both
International Union of Railways [UIC] as well as Fed-
eral Railroad Administration in USA issue the legisla-
tive rules for regulating the safety of the subject rail-
road system (UIC, 2022; Federal Railroad Administra-
tion, 2015). A detailed codes of appropriate procedures
of rail track testing can be found in European Union
Standards (EN 16729-3, 2018; EN 17397-1, 2021). A re-
markable challenge related to the testing procedure is
the total length of the railway network, which is by
UIC estimated at 260 000 kilometers.

Railway rails are exposed to high mechanical loads
and challenging environmental conditions such as
rolling contact fatigue, thermal stresses and corrosive
environment. Due to such operational conditions dif-
ferent types of defects can develop in the rail head,

web, and foot (Bray, 2000). The rolling contact de-
fects, like wear, stripping, crushing, and fatigue cracks
are distributed mainly on the surface and in the up-
per part of the rail head. Many of these defects can
steadily grow and finally cause rail breakage, leading to
derailments or more catastrophic events. Such extreme
consequences can be avoided, provided that proper in-
spection procedures are performed and all unaccept-
able defects are detected before they cause the catas-
trophic failure.

A variety of equipment is applied for ultrasonic in-
spection (Papaelias et al., 2008). The simplest solu-
tion is a push-trolley. In this case the operator is mov-
ing across the track with his instrumentation at a walk-
ing pace, simultaneously interpreting the test data on
a flaw detector. When a suspect defect is identified, the
operator stops and manually verifies the defect type
and location. The most efficient solution used for ul-
trasonic rail inspection is the use of specialized wag-
ons or entire inspection trains, as it was described in
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(Heckel et al., 2018). The detailed investigation has
revealed that the efficient operation of the SPZ1 train
is possible below 80 km/h and the practical inspection
speed is highly influenced by the local quality of the
track. The further progress in ultrasonic testing of rail-
way rails depends heavily on computer modeling and
simulations of all aspects of the ultrasonic inspections
process (Heckel et al., 2019). One of these aspects is
quality and stability of acoustic coupling between the
testing probe, and the rail surface. No extensive re-
search on this specific subject has been carried to date.
One of the few published works (Zulian, 2022) ex-
plores the effect of the coupling media type and surface
roughness on contact transfer losses. Unfortunately, in
the case of automatic railway rail inspection, the only
possible coupling agent is water, and the main reason
for the fluctuation of transfer losses is the instability
of the water layer thickness rather than roughness of
the rail surface.

The inspection probes are mounted in specially de-
signed probe holders enabling the fixed position of the
probes over the tested rail. The holders are equipped
with water bleeders, that provide acoustic coupling be-
tween the ultrasonic probes and the rail surface.

The quality of the acoustic coupling between the
probe and the tested rail is one of the key issues, re-
lated to the high speed ultrasonic inspection of rail-
way tracks. Under real test conditions – the gap be-
tween the rail surface and testing probes may vary
due to waviness and dents on the rail surface. To en-
sure the continuous transmission of ultrasonic waves
to the rail body, the gap must be constantly filled with
water without any air bubbles or cavitation. To fulfill
this critical condition, the water coupling system for
high speed scanning must be designed in much greater
detail than for ordinary ultrasonic inspections, where
the water gap is usually undefined and uncontrolled.
An example of such an ordinary probe holder, used in
moderate speed inspection wagons (i.e., 30–40 km/h)
is presented in Fig. 1. In such a solution – both the
lower surface of the probe holder and the surfaces of
ultrasonic probe wedges are pressed directly to the wet-
ted rail surface, without any distance. It means that
the water supplied by the dispensers located at the be-
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Fig. 1. General view of ultrasonic probe holder used for
inspection in Polish Railways: 1 – signal cable; 2 – water

coupling bleeder connector; 3 – positioning bracket.

ginning of the probe holder, can be wiped off the rail
surface before it fills the gap between the active surface
of the probe and the rail. Such a method has turned
out to be impractical in the case of high speed rail
inspection systems. In that case, other solution prefer
train probe holders equipped with some abrasion resis-
tive slides – to set the gap between the probe surface
and rail surface to 0.2 mm (Heckelet al., 2009). Such
an arrangement ensures better water coupling and en-
hances the probe lifespan.

The objective of the presented paper is to analyze
in detail the influence of the probe – rail gap filled with
water on the transfer loses of ultrasonic energy emitted
and received by ultrasonic transducers. The practical
purpose of these research is to establish optimal thick-
ness of the water coupling layers for ultrasonic probes
of different types (angle probes, normal probes), op-
erating at different frequencies and refraction angles.
It is expected that the optimal gap thickness heavily
depends on ultrasonic waves frequency as well, as on
the angle of incidence on wedge – rail contact. The
analysis should consider not only the absolute mini-
mization of the transfer losses but, also the minimiza-
tion of ultrasonic signal fluctuation, due to inevitable
variability of the water gap thickness under practical
conditions. Minimization of signal fluctuations due to
coupling variations is particularly important to main-
tain the constant sensitivity of ultrasonic inspection
along the whole rail length.

In order to achieve the intended goals, the new
theoretical model for calculation of transmission losses
through the coupling layer was developed. The model
is more general and comprehensive than simplified tra-
ditional solutions, used up to now in ultrasonic non-
destructive testing and described in (Krautkrämer,
Krautkrämer, 1990; Obraz, 1983). The first novelty
is going beyond the case of perpendicular incidence
of the wave on the coupling layer. Due to this, the
model is applicable not only to normal beam longitu-
dinal wave probes, but also to angle beam shear wave
probes, which are commonly used in non-destructive
testing. The second novelty is going beyond the case
of monochromatic wave, and taking into consideration
the wideband nature of modern ultrasonic probes.

The developed model was implemented in the com-
puter program and used for example calculations,
showing its compatibility with existed analytical for-
mulas for normal incidence on the coupling layer.
A very good agreement was also achieved with ex-
perimental results obtained for the typical ultrasonic
probes used in non-destructive testing of railway rails.

2. Theoretical model

2.1. General considerations

In this section the general theoretical model of
transmission of ultrasonic plane wave through the uni-
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form liquid layer is developed. It is more general,
than widely known formulas presented in ultrasonic
textbooks (Krautkrämer, Krautkrämer, 1990),
which consider only the normal incidence of ultra-
sonic wave on the contact layer. It assumes the lon-
gitudinal wave incidence at an arbitrary angle, as it
actually takes place in angle beam ultrasonic probes.
The theoretical treatment follows the one used by
Folds and Loggins (1977) in their paper on trans-
mission and reflection of ultrasonic waves in layered
media. Compared to the mentioned theoretical work
there is one important change. Folds and Loggins con-
sidered transmission of plane wave from one semi-
infinite liquid media to another semi-infinite liquid me-
dia, through a system of plane-parallel solid layers. In
this work, transmission of the longitudinal (L-type)
wave from one semi-infinite solid media to another
semi-infinite solid media through a plane parallel liquid
layer, is considered. Due to this change it is possible
to model, not only direct transmission of longitudinal
wave, but also the transmission with transformation
from a longitudinal to a transversal wave – as it ac-
tually takes place in shear wave angle beam probes,
widely used in ultrasonic testing of railway rails.

The transmission of ultrasonic waves through the
system of plane-parallel layers was extensively inves-
tigated, in the context of underwater sound appli-
cations for optimization of sonar domes, underwa-
ter transducer windows and reflectors. One of the
first theoretical works which considered the trans-
mission of ultrasonic plane wave through the system
of plane-parallel layers at oblique incidence was by
Brekhovskikh (1980). As there were some restric-
tions concerning the validity of equations presented in
that paper, the other authors (Barnard et al., 1975;
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Fig. 2. General scheme of a coupling layer problem.

Folds, Loggins, 1977) improved the solution to be
valid for a system of solid layers with arbitrary param-
eters. However, in all these treatments, it was assumed
that both the initial and final medium is liquid – as it
was natural for underwater applications.

In the case of ultrasonic angle beam probes, used
for nondestructive testing, the ultrasonic wave is trans-
mitted from a solid wedge made of PMMA or Rexo-
lite to a solid rail material (steel), through the liquid
coupling layer (water). Therefore, the considered prob-
lem is somewhat different from the mentioned hydro-
acoustic problems. The general scheme of a wave prop-
agation in a coupling layer problem is shown in Fig. 2.

In the probe wedge (medium 3) there is one inci-
dent longitudinal (L-type), a wave with an arbitrary
incidence angle θ3 and two reflected waves, L-type
and transversal (T -type), with reflection angles, re-
spectively – θ3 and θ′3, given by the Snell law. In
the coupling layer (medium 2) there is only one re-
fracted L-type wave and one reflected L-type wave,
both with angles θ2 to the normal. In the tested ma-
terial (medium 1), there is generally one refracted
L-type wave and one refracted T -type wave, with re-
fraction angles, respectively, θ1 and θ′1. But, if the
incidence angle θ3 is between the first and second
critical angle there is only one, T -type wave – which
propagates in medium 1. This is actually the case en-
countered in angle beam shear wave probes, used in
nondestructive testing. However, it should be noted
that instead of a sinusoidal L-type wave propagating
in the tested material, there exists so called evanescent
L-type wave, exponentially decaying from the material
surface as in the work (Schmerr Jr., 2016). It must
be included in the theoretical model, despite the fact
that it has no practical significance.
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The all three media are assumed to be perfectly
elastic and isotropic with Lame moduli: λi , µi, mass
density ρi, and ultrasonic velocities of longitudinal
waves Cli =

√
(λi + 2µi)/ρi, and transversal waves

Cti =
√
µi/ρi, respectively. Index i denotes the num-

ber of medium (1, 2 or 3), as indicated in Fig. 2. For
harmonic waves the time dependence for all consid-
ered waves is given by a factor exp (iωt), which is ne-
glected in further considerations.

The problem is solved using potential functions for
the particle velocity ϕi – for longitudinal waves and ψi
– for transversal waves. The Cartesian coordinate z is
normal to the coupling layer, the coordinate x lies in
the plane of incidence, and the coordinate y is normal
to the plane of incidence. For the geometrical configu-
ration shown in Fig. 2 the explicit forms of potential
functions in media 1, 2, and 3 are:

– in medium 1:
ϕ1 = B1e

−i(∝1z−σx),

ψ1 =D1e
−i(β1z−σx);

(1)

– in medium 2:

ϕ2 = B2e
−i(∝2z−σx) +A2e

i(∝2z−σx),

ψ2 = 0;
(2)

– in medium 3:

ϕ3 = B3e
−i(∝3z−σx) +A3e

i(∝3z−σx),

ψ3 = C3e
i(β3z+σx),

(3)

where αi are the z-coordinates of wave vectors of the
longitudinal wave, βi are the z-coordinates of the wave
vectors of the transversal waves, Ai are the amplitudes
of potential functions for L-type waves traveling in the
positive z-direction, Bi are the amplitudes of poten-
tial functions for L-type waves traveling in the neg-
ative z-direction, Ci are the amplitudes of potential
functions for T -type waves traveling in the positive
z-direction, and Di are the amplitudes of potential
functions for T -type waves traveling in the negative
z-direction.

The σ symbol indicates the x-coordinate of all the
wave vectors. They have to be equal to meet the con-
tinuity conditions at the interfaces. Actually, this is
a condition equivalent to the Snell law, and can be
expressed as:

σ = kl1 sin θ1 = kt1 sin θ′1 = kl2 sin θ2

= kl3 sin θ3 = kt3 sin θ′3, (4)

where kli = ω
Cli

is the wave number of longitudinal wave
in the i-th medium and kti = ω

Cti
is the wave number

of transversal wave in the i-th medium.
Consequently, the z-coordinates of the wave vectors

in the three media are given by the formulas:

– in medium 1:

α1 =
√
k2l1 − σ2, β1 =

√
k2t1 − σ2; (5)

– in medium 2:

α2 =
√
k2l2 − σ2; (6)

– in medium 3:

α3 =
√
k2l3 − σ2, β3 =

√
k2t3 − σ2. (7)

It should be noted that z-coordinate of wave vec-
tor of longitudinal wave in medium 1 (tested material)
can be a real value – for incidence angles below the
1st critical angle or an imaginary value – for incidence
angles above the 1st critical angle. The z-coordinates
of all other wave vectors are real, as we consider only
practical cases, where the incidence angle is below the
2nd critical angle.

The particle velocities and stresses of all considered
waves can be determined from potential functions by
the following formula. For simplicity we neglect the
media indexes i, since the form of these formulas is
the same for all media:

vx(z) =
∂ϕ

∂x
− ∂ψ
∂z

, (8)

vz(z) =
∂ϕ

∂z
+ ∂ψ
∂x

, (9)

Tzz(z) =
i

ω
(λ∂vx

∂x
+ λ∂vz

∂z
+ 2µ

∂vz
∂z

), (10)

Txz(z) =
i

ω
(µ∂vx

∂z
+ µ∂vz

∂z
). (11)

Substituting into these formulas potential functions
given by Eqs. (1), (2), (3) and doing some ordering, the
particle velocities and stresses in each medium can be
expressed as the linear combinations of the amplitudes
of relevant potential functions.

In medium 1:

v1x(z) = iσe−iα1zeiσxB1 + iβ1e−iβ1zeiσxD1, (12)

v(1)z (z) = −iα1e
−iα1zeiσxB1 + iσe−iβ1zeiσxD1, (13)

T (1)zz (z) = −ie1e−iα1zeiσxB1 + ig1β1e−iβ1zeiσxD1, (14)

T (1)xz (z) = ig1α1e
−iα1zeiσxB1 + ie1e−iβ1zeiσxD1, (15)

where e1 = (λ1k2l1 + 2µ1α
2
1) /ω and g1 = 2µ1σ/ω.

In medium 2:

v(2)x (z) = iσeiα2zeiσxA2 + iσe−iα2zeiσxB2, (16)

v(2)z (z) = iα2e
iα2zeiσxA2 − iα2e

−iα2zeiσxB2, (17)

T (2)zz (z) = −ie2eiα2zeiσxA2 − ie2e−iα2zeiσxB2, (18)
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T (2)xz (z) = 0, (19)

where e2 = λ2k2l2/ω and T (1)xz (z) = 0 because medium 2
is a liquid and does not transfer shear stresses.

In medium 3:

v(3)x (z) = iσeiα3zeiσxA3 + iσe−iα3zeiσxB3

− iβ3eiβ3zeiσxC3, (20)

v(3)z (z) = iα3e
iα3zeiσxA3 − iα3e

−iα3zeiσxB3

+ iσeiβ3zeiσxC3, (21)

T (3)zz (z) = −ie3eiα3zeiσxA3 − ie3e−iα3zeiσxB3

− ig3β3eiβ3zeiσxC3, (22)

T (3)xz (z) = −ig3α3e
iα3zeiσxA3 + ig3α3e

−iα3zeiσxB3

+ ie3eiβ3zeiσxC3, (23)

where e3 = (λ3k2l3 + 2µ3α
2
3) /ω and g3 = 2µ3σ

ω
.

Now, we consider the boundary conditions for par-
ticle velocities and stresses at the borders z = 0 and
z = d. Both borders are between solid and liquid
medium and we neglect viscosity of the liquid medium
– in our case water. It follows that there is no conti-
nuity of tangential displacements and particle veloci-
ties at the borders. Consequently the boundary condi-
tions are:

– at the border z = 0:
continuity of normal particle velocities

v(1)z (0) = v(2)z (0), (24)

continuity of normal stresses

T (1)zz (0) = T (2)zz (0), (25)

zeroing of tangential stresses in the solid media

T (1)xz (0) = 0; (26)

– at the border z = d:
continuity of normal particle velocities

v(3)z (d) = v(2)z (d), (27)

continuity of normal stresses

T (3)zz (d) = T (2)zz (d), (28)

zeroing of tangential stresses in the solid media

T (3)xz (d) = 0. (29)

Substituting Eqs. (12)–(23) to the above boundary
conditions there are obtained six complex equations,
for six unknown amplitudes of potential functions: A3,
C3, A2, B2, B1,D1. The amplitude B3 is the amplitude

of incident longitudinal wave, so it is a known value
which can be set to 1.

The obtained set of six linear equations can be con-
veniently expressed in a matrix form to facilitate fur-
ther numerical processing:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α3e
iα3d σeiβ3d −α2e

iα2d α2e
−iα2d 0 0

−e3eiα3d −g3β3eiβ3d e2e
iα2d e2e

−iα2d 0 0

−g3α3e
iα3d e3e

iβ3d 0 0 0 0

0 0 α2 −α2 α1 −σ
0 0 −e2 −e2 e1 −g1β1
0 0 0 0 g1α1 e1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A3

C3

A2

B2

B1

D1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α3e
−iα3d

e3e
−iα3d

−g3α3e
−iα3d

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (30)

or
[M] [X] = [Y ] . (31)

By inverting this matrix equation, all unknown A3,
C3, A2, B2, B1, D1 amplitudes of potential functions
in media 1, 2 and 3 are obtained:

[X] = [M]−1 [Y ] , (32)

or
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A3

C3

A2

B2

B1

D1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= [M]−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α3e
−iα3d

e3e
−iα3d

−g3α3e
−iα3d

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (33)

In this work the main subject of interest is the
transmission coefficient of the ultrasonic wave from
medium 3 (probe wedge) to medium 1 (tested mate-
rial). For the standard angle beam shear wave probes,
i.e., for cases when the incident angle is between the 1st
and the 2nd critical angle, this coefficient is given by:

TL−T3−1 =
D1

B3
= D1

1
=D1. (34)

For angle beam longitudinal wave probes, i.e., for cases
where the incident angle is below the 1-st critical angle,
this coefficient is given by:

TL−L3−1 =
B1

B3
= B1

1
= B1. (35)

In non-destructive testing procedures, the ultrasonic
pulse passes through the coupling layer twice, first
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when it is introduced to the tested material, and sec-
ond – on its way back, after reflection from the defect.
So, from practical point of view, the most interesting
is the double transmission coefficient, i.e., the product
of transmission coefficients from medium 3 to 1 and
from medium 1 to 3.

For shear wave probes it is given by:

TL−T−L3−1−3 = TL−T3−1 ⋅ TT−L1−3 . (36)

For longitudinal wave probes it is given by:

TL−L−L3−1−3 = TL−L3−1 ⋅ TL−L1−3 . (37)

The inverse transmission coefficients TT−L1−3 and
TL−L1−3 could be determined from properly redefined
models similar to the one given in Fig. 2. However,
most easily they can be calculated from the direct
transmission coefficients using the so-called Stokes’ re-
lations (Schmerr Jr., 2016). Applying these relations
we obtain, respectively:

TT−L1−3 = TL−T3−1 ⋅
Ct1ρ1 cos θ′1
Cl3ρ3 cos θ3

(38)

and
TL−L1−3 = TL−L3−1 ⋅

Cl1ρ1 cos θ1
Cl3ρ3 cos θ3

. (39)

Finally, substituting (38) and (39) to (36) and (37),
the sought formulas for double transmission coeffi-
cients, for both types of ultrasonic probes used in non-
destructive testing are obtained. The formulas take
into account the liquid coupling layer of thickness d,
between the probe wedge and tested material:

TL−T−L3−1−3 = (TL−T3−1 )2 ⋅ Ct1ρ1 cos θ′1
Cl3ρ3 cos θ3

= D2
1

Ct1ρ1 cos θ′1
Cl3ρ3 cos θ3

(40)

and

TL−L−L3−1−3 = (TL−L3−1 )2 ⋅ Cl1ρ1 cos θ1
Cl3ρ3 cos θ3

= B2
1

Cl1ρ1 cos θ1
Cl3ρ3 cos θ3

. (41)

The aforementioned formulas, for double transmis-
sion coefficients, are derived for harmonic plane waves
with a strictly defined frequency. In practice, the ul-
trasonic pulses generated by ultrasonic probes have
a specified frequency spectrum, characterized by the
so-called relative bandwidth parameter defined as:

WB = fu − fl
f0

⋅ 100%, (42)

where fu – upper frequency of the −6 dB frequency
spectrum, fl – lower frequency of the −6 dB frequen-
cy spectrum, f0 = fu−fl

2
– center frequency of the −6 dB

frequency spectrum.

It means that the actual drop of amplitude of an
ultrasonic pulse, traveling through the coupling layer
from the probe to the tested material and vice versa,
is a certain average of the double transmission coeffi-
cients for all frequencies represented in the pulse spec-
trum. To include this effect in the discussed model,
a certain frequency spectrum is assumed for ultrasonic
pulse incident on the boundary between the probe
wedge and the coupling layer. Such an initial spec-
trum distribution can be reasonably approximated by
the Gaussian function, given by:

Gi(f) = exp(− (f − f0)
2

2σ2
), (43)

where f0 is the center frequency of the ultrasonic
probe. The parameter σ = WB/235 is defined so that
the modeled spectrum has a bandwidth equal to the ac-
tual bandwidth parameter WB of the ultrasonic probe.
The WB parameter is usually presented in the probe
certificate or can be measured according to EN ISO
22232-2 (2020).

The signal waveform of the initial pulse in the time
domain is given by the inverse Fourier transform of its
spectrum:

hi(t) =
∞

∫
−∞

Gi(f)ei2πft df. (44)

After the double passage of the ultrasonic pulse
through the coupling layer its spectrum is modified
by the double transmission coefficient in the following
way:

Gt(f) = Gi(f) ⋅ TL−T−L3−1−3 (f) (45)1
for the shear wave probes, and

Gt(f) = Gi(f) ⋅ TL−L−L3−1−3 (f) (45)2

for the longitudinal wave probes.
Knowing the spectrum of the double transmitted

ultrasonic pulse, its signal waveform may be calculated
using the inverse Fourier transform:

ht(t) =
∞

∫
−∞

Gt(f)ei2πft df. (46)

Then, the double transmission coefficient for the ul-
trasonic pulse in a time domain may be calculated ac-
cording to the formula:

T
L−T (L)−L
3−1−3 (f0,WB) = max{∣ht(t)∣}

max{∣hi(t)∣}
. (47)

The designation TT (L) denotes here that the formula
is valid for TL−T−L, and for TL−L−L configurations.
The above definition of the double transmission coef-
ficient in the time domain, corresponds to the experi-
mental measurements of this value, where one com-
pares the maximum amplitudes of the ultrasonic pulse
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before and after double passage through the coupling
layer. The arguments f0 and WB, specified to the dou-
ble transmission coefficient in the time domain, indi-
cate that its value depends not only on the central
frequency of the ultrasonic probe (as it is the case
in the monochromatic model), but also on the probe
bandwidth defined by its WB parameter.

2.2. Model implementation and validation

The described theoretical model was implemented
in the prepared computer program TransmissionLoss 1.x
of which the main purpose was to facilitate the de-
sign of ultrasonic probes for the new, high speed in-
spection wagon for the Polish Railways. In contrast to
the known analytical solutions, the program allowed
for calculation of double transmission coefficients and
related transfer losses. It was possible not only for nor-
mal beam longitudinal wave probes, but also for angle
beam shear wave probes and angle beam longitudinal
wave probes, which are used in ultrasonic testing of
railway rails. Moreover, the program took into account
the finite bandwidth of modern ultrasonic probes, what
considerably changes the dependence of transfer losses
on the coupling layer thickness.

To use effectively the formulas quoted in Sec. 2
in the computer program they have to be discretized.
In particular, the continuous initial pulse spectrum de-
fined by Eq. (43) was replaced by a discretized spec-
trum given by dependency:

Gi (n∆f) = exp
⎛
⎝
− (n−32

32
)2

2σ2

⎞
⎠
, (48)

where ∆f = f0/32 was specified as a step in the fre-
quency domain and integer n was changing from 1
to 63, to embrace frequency spectrum from 1

32
f0 to

near 2f0. The bandwidth of majority of ultrasonic
probes, used in non-destructive testing, lies between
30% and 80% of f0, so their −6 dB spectrum is within
the range from 0.6f0 to 1.4f0. It means that the as-
sumed discretization range is sufficient for that appli-
cation.

After calculation of the discretized initial spec-
trum, the program numerically inversed the ma-
trix Eq. (30) for every discreet frequency n∆f –
within the probe spectrum – and calculates com-
plex amplitudes D1 (n∆f) and B1 (n∆f). Based on
these amplitudes, the double transmission coefficients
TL−T−L3−1−3 (n∆f) and TL−L−L3−1−3 (n∆f) were calculated
from Eqs. (40) and (41), for every discreet frequency
in the probe spectrum.

Then the discreet inverse Fourier transforms were
calculated for the initial pulse spectrum Gi (n∆f)
and for the pulse spectrum after double trans-
mission through the coupling layer Gt (n∆f) =
TL−T−L3−1−3 (n∆f)Gi (n∆f) using the FFT algorithm for

N = 1024 point. As a result, discreet time waveforms
for initial pulse hi (k∆t) and after transmission pulse
ht (k∆t) were obtained, where ∆t is the time step in
the time domain, and k is integer from 0 to N . The
time domain step ∆t is related to the ∆f step and
the number of points in the FFT transform by relation:

∆t = 1

N ⋅∆f =
1

1024 ⋅∆f . (49)

For example, for a typical ultrasonic probe with cen-
tral frequency f0 = 2 MHz and time period T0 = 0.5 µs
the frequency domain step ∆f = f0/32 = 0.0625 MHz,
and the time domain step ∆t = 0.015625, µs = 1/32T0.
It means that the discretization of waveform functions
hi(t) and ht(t) can produce quantization error not
greater than 0.5%, when estimating maxima of these
functions from its discreet representations in Eq. (47).
In non-destructive testing 0.5% error in evaluation of
the ultrasonic signal amplitude is negligible – so the
implemented calculation algorithm is sufficient for the
intended application. On the other hand, it is fast
enough to be executed on a typical personal computer.

In ultrasonic testing practice signal amplitudes re-
lations were commonly expressed using a logarithmic
scale, so the signal amplitude drop, caused by its
double transmission through the coupling layer, can
be conveniently expressed in decibels by the transfer
losses (TL) defined as:

TL = −20 log10 (T
L−T (L)−L
3−1−3 ). (50)

The TL defined in Eq. (50) include the signal ampli-
tude drops caused not only by the presence of the cou-
pling layer, but also by the impedance mismatch be-
tween the material of ultrasonic probe wedge and the
material tested. In many practical applications, such
as ultrasonic testing of railway rails, the impedance
mismatch is the same throughout the entire inspection
process, and the only changing factor is the thickness
of the coupling layer between the probe and the tested
material. To focus attention on this dependency a more
suitable parameter called coupling losses CL can be de-
fined:

CL(d) = TL(d) −TL(0), (51)
where d is the thickness of the coupling layer and TL(0)
are the transfer losses, calculated for the thickness d
set to 0.

Due to such a definition, the coupling losses were
zero for the best case scenario (the zero coupling layer)
and allow for analyzing changes in the transfer losses,
due to fluctuations of the coupling layer thickness. This
is an important aspect of every mechanized ultrasonic
inspection, as the changes in the transfer losses – due
to fluctuations of the coupling layer thickness – cause
uncontrolled changes in testing sensitivity during ul-
trasonic scanning. Knowing the characteristic of sen-
sitivity changes as a function of coupling layer thick-
ness, some scanning gain corrections can be applied to
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compensate for the predicted sensitivity drops. This
way, the coupling layer thickness fluctuations during
actual examination can only increase testing sensiti-
vity, which is a more secure situation than uncontrolled
sensitivity drops.

The developed model was checked against the
known analytic solution for monochromatic longitudi-
nal plane wave incident on the coupling layer at an in-
cident angle θ3 = 0○ (see Fig. 2). The analytic formula
for the transmission coefficient through the layer was
taken from work (Obraz, 1983) and rewritten using
the notations defined in this work:

TL−L3−1 = 2 [(1 + ρ3Cl3
ρ1Cl1

)
2

(cos
2π df
Cl2

)
2

+ (ρ2Cl2
ρ1Cl1

+ ρ3Cl3
ρ2Cl2

)
2

(sin
2π df
Cl2

)
2

]
− 1

2

. (52)

The reverse transmission coefficient TL−L1−3 can be cal-
culated from Eq. (52) by interchanging indexes 1
and 3. Then the double transmission coefficient from
medium 3 to 1 and back can be calculated as TL−L3−1 ⋅
TL−L1−3 in the same way as in Eq. (37) of the model
developed in this work.

The example calculations executed using the above
analytic formula and our more general numerical
model, in which we assumed the monochromatic wave
and incident angle θ3 = 0○, were shown in Table 1. The
calculations were performed for typical conditions en-
countered in a railway rail inspection – i.e., for 2 MHz
L-type probe with the PMM wedge and assuming wa-
ter coupling layer changes from 0.0 to 0.5 mm.

Table 1. Comparison of coefficient TL−L−L
3−1−3 , calculated for

2 MHz longitudinal monochromatic wave and incident an-
gle θ3 = 0○, applying the proposed model (Eq. (41)) and by

the analytic Eq. (52).

d [mm]
TL−L−L
3−1−3

model analytic formula
0.00 0.242355 0.242355
0.05 0.156465 0.156465
0.10 0.085844 0.085844
0.15 0.061231 0.061231
0.20 0.057934 0.057934
0.25 0.072430 0.072430
0.30 0.120302 0.120302
0.35 0.221854 0.221854
0.40 0.201053 0.201053
0.45 0.106440 0.106440
0.50 0.067703 0.067703

The aforementioned calculations were performed
using double precision arithmetic. As can be seen from
Table 1, the results of the presented numerical model
and the known analytic solution match up to six deci-
mal places. It could be expected, as both approaches

assume the same problem geometry and boundary con-
ditions. It is a prove however, that the rather compli-
cated model implementation, based on the numerical
solution of a complex 6× 6 equation set, does not con-
tain any errors in the program algorithms.

3. Experimental verification of modeling results

The preliminary experimental verification of the
developed model was performed using the commercial
ultrasonic probe Panametrics A106 integrated with
a delay line (probe wedge) made of PMMA. The
probe was of the longitudinal wave and of the straight
(θ3 = 0○) beam type, with the nominal frequency
2.25 MHz and the transducer diameter of 12.5 mm.
The spectral characteristic of the probe with the
PMMA delay line was determined using the laboratory
system comprising Panametrics Epoch 650 Pulser/Re-
ceiver/Digitizer, Calibration Block No 1 (according to
ISO 2400), and proprietary software implementing the
Fourier transform using the FFT algorithm.

The details of the experimental setup are presented
in Fig. 4. The central frequency f0 and −6 dB band-
width BW were determined according to EN 12668-
2:2010 applying the measured transmitting-receiving
spectral characteristic. The lower band frequency was
fl = 1.17 MHz, and the upper fu = 2.58 MHz. Applying
the abovementioned data, the central frequency and
relative bandwidth of the probe coupled with the de-
lay line, were calculated using the following standard
formulas:

f0 =
(fl + fu)

2
= 1.17 + 2.58

2
= 1.88 MHz, (53)

BW = 2(fu − fl)
(fu + fl)

100% = 1.41

1.88
100 = 75%. (54)

The parameters BW and f0 were introduced to the
presented model, that takes into account the band-
width of the probe. It was performed applying Eq. (43)
to calculate CL introduced by a thin water layer placed
between the delay line of the probe and the steel
block representing the tested material. The conceptual
scheme of this experimental setup is shown in Fig. 3.

According to this diagram, the piezoelectric trans-
ducer of the ultrasonic probe transmits to the PMMA
delay line a short pulse of longitudinal wave, which
travels to the coupling layer of a thickness d on the bor-
der between the delay line and the steel block. Part of
the ultrasonic energy reflects on the border layer, cre-
ating on the screen of the ultrasonic receiver the first
ultrasonic echo (so called interface echo with ampli-
tude A0), which is normally of no importance for ultra-
sonic testing. The other part of the ultrasonic energy
passes through the coupling layer to the steel block
and reflects from its bottom giving a so-called back
wall echo of amplitude A1. The amplitude of this echo
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A0

A1

Fig. 3. Scheme of the experimental setup used for verification of theoretical models for calculation of CL, introduced
by water coupling layer between PMMA delay line and the steel block (look for a description in the text).

depends on the double transmission coefficient through
the coupling layer, but also on all other factors affect-
ing the pulse on the way from the sending transducer
to the bottom surface of the steel block, and after re-
flection on the way back to the receiving transducer:

A1 = A0Sa3Sd3Sa1Sd1R1 T
L−L−L
3−1−3 , (55)

where A0 – the initial amplitude of the ultrasonic pulse
near the sending transducer, TL−L−L3−1−3 – the two way
transmission coefficient through the coupling layer, Sa3
– attenuation of the signal amplitude in the PMMA de-
lay line (medium 3), Sd3 – diffraction divergence losses
in the PMMA delay line, Sa1 – attenuation of the sig-
nal amplitude in the steel block (medium 1), Sd1 –
diffraction divergence losses in the steel block, R1 – re-
flection coefficient at the bottom surface of the steel
block.

The double transmission coefficient, and in conse-
quence the amplitude of the back wall echo A1, de-
pends on the thickness of the coupling layer d. For
practical applications, this dependence is most conve-
niently expressed in terms of CL, defined by Eqs. (51)
and (50). In the presented experiment, coupling losses
are determined by the ratio of back wall echo am-
plitudes, obtained for the coupling layer of a thick-
ness d to the back wall echo amplitude for the coupling
layer thickness equal to zero. It is expressed in decibels
by the formula:

CL(d) = −20 log10 (
A1(d)
A1(0)). (56)

It should be noted, that in an experimental ap-
proach described here, it can be determined the cou-
pling losses without considering the ultrasonic atten-
uation and beam divergence in the PMMA delay line

and the steel block as well as considering the reflec-
tion coefficient of the ultrasonic pulse at the bottom
of the steel block. All these factors obviously affect the
measured amplitudes of back wall echoes but are in-
dependent of the thicknesses of the coupling layer and
are reduced in the fractional expression of Eq. (56).

The photograph of the experimental setup, used
for determination of CL, depending on the coupling
layer thickness d, is shown in Fig. 4. The distance d
between the PMMA delay line and the steel block was
adjusted using three fine-pitch screws. This distance
was controlled using a dial micrometer with accuracy
of ± 0.001 mm. During measurements the steel block
and a lower part of the delay line were immersed in

Fig. 4. Photograph of the experimental setup to determine
CL, introduced by water coupling layer existing between

a PMMA delay line and a steel block.
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water to ensure complete filling with water of the gap
between these objects.

The first step of the performed procedure was to de-
termine the back wall echo amplitude for the coupling
layer of zero thickness – A1(0). During this step, the
distancing screws were released and the PMMA plate
was slightly pressed against the steel block to remove
any remaining water between them. Within the next
steps the distance between the coupled objects, rep-
resenting the thickness of the water coupling layer d,
was steadily increased, and back wall echo amplitudes
A1(d) were measured. Finally, the measured echo am-
plitudes were substituted to Eq. (56) and CL in depen-
dence of d, were determined. The measurements were
performed for a water layer thickness in the range from
0.0 to 0.8 mm, which embrace the coupling layer thick-
ness fluctuations, that can be reasonably expected in
actual rail testing.

The results of experimental measurements of CL(d)
are presented in Fig. 5 with discreet points (squares).
The range of measurement errors was determined
based on the spread of twelve measurements for each
point. The continuous line presents a theoretical curve
calculated for the considered setup using the wide-
band model, and the dashed line depicts the theo-
retical curve calculated from the basic monochromatic
model. It can be seen that in an initial layer thickness
range (up to ca. 0.15 mm), the agreement between ex-
perimental results and both theoretical curves is very
good. Then the experimental results and model pre-
dictions start to diverge. The curve calculated from
the monochromatic model presents much larger devi-
ations from the experimental data than the curve cal-
culated applying the wideband model. This is espe-
cially visible for the layer thicknesses above 0.2 mm,
where the more precise model still gives reasonable
approximation of experimental data, while the basic
monochromatic model completely fails showing nonex-
istent minima and maxima of coupling losses. In gen-
eral, the wideband model predicts slightly higher val-
ues of coupling losses then experimental data, however,
the difference does not exceed 1.0 dB at any measure-
ment point. This can be assessed as a quite sufficient

C
L 

[d
B

]

Fig. 5. Comparison of experimentally determined CL in-
troduced by water coupling layer with theoretical calcula-
tions using the proposed wideband model and a commonly

known monochromatic model.

modeling accuracy from the point of view of practical
applications in automated ultrasonic examinations.

4. Exploration of model implications
for railway rail testing

One of the most important factors, affecting the re-
liability of ultrasonic inspections of railway rails, is de-
pendence of testing sensitivity on the random changes
of coupling between scanning probes and the rail sur-
face. Fluctuations of coupling layer thickness during
high speed ultrasonic scanning are unavoidable due to
waviness of the rail surface and spring suspension of
ultrasonic probes.

According to widely known monochromatic Eq. (52)
dependence of CL on the water layer thickness d is peri-
odic – as shown in Fig. 6 – with a black color curve. The
results were calculated for the probe of a longitudinal
wave and of θ3 = 0○ beam type. In this approximation
the minima of the coupling losses occur periodically at
d = nλ2

2
that is, at multiples of half the wavelength in

the coupling layer. It is rather a theoretical result not
observed in the ultrasonic testing practice.

0

5

10

15

20

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

C
L 

[d
B

]

d [mm]

WB 20%

WB 50%

WB 80%

Monochromatic

Fig. 6. Dependences of CL versus the water layer thickness,
calculated for 2 MHz L-type probes, with different relative

bandwidths WB.

To investigate this problem in more detail, there
was calculated, applying the wideband model, coupling
losses characteristics for the same 2 MHz frequency,
but assuming three typical bandwidths of commercial
ultrasonic probes, ranging from 20 to 80%. The calcu-
lation results are shown in Fig. 6 with colored curves.
For the typical narrow band probe (WB = 20%) the
characteristic is similar to the monochromatic case,
but successive minima are getting shallower and cou-
pling losses reach zero value only for the layer thickness
equal to zero. For most common medium band probes
(WB = 50%), there is only one additional minimum at
d = λ2

2
but it is much shallower than the minimum

observed at the zero thickness layer. For wide band
probes (WB = 80%), there is no additional minima
and only one maximum of coupling losses observed at
d = λ2

4
. After this maximum, the characteristic flattens

out and shows no significant changes in coupling losses.
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The presented results confirm the statement, that
the bandwidth of ultrasonic probes has a significant ef-
fect on the coupling losses during ultrasonic scanning,
and should be taken into account when designing and
during calibration of ultrasonic inspection systems. For
a typical 2 MHz L-type probe with medium bandwidth
(parameter WB = 50%), the maximum coupling losses
of 12.3 dB occur at the coupling layer thickness of
0.18 mm, and falls rapidly to zero with reduction of the
layer thickness. It corresponds to 12.3 dB fluctuations
in testing sensitivity between different sections of the
tested rail, regarding the worst case scenario. To avoid
such big changes in testing sensitivity, the minimum
thickness of the coupling layer should be limited to
ca. 0.1 mm, by fixing a distancing pins made of the
hard material in the probe scanning surface. In this
way, the fluctuations of testing sensitivity could be re-
duced from 12.3 to about 8 dB.

In addition to the analysis of the operation of
2 MHz L-type probes, it is interesting to determine
how the coupling layer thickness affects the transfer
losses determined for angle beam shear wave probes,
commonly used in railway rail inspections.

As can be seen from Fig. 7, coupling losses char-
acteristics are almost the same for L-type probe and
T -type probes with refraction angles of 45○ and 70○,
assuming they have the same central frequency and
bandwidth. However, if the central frequency of the
probe would change, the coupling losses characteris-
tic also change considerably, as can be seen in Fig. 8.
Increase of the probe frequency from 2 to 4 MHz con-
tracts the characteristic curve by a factor 2 on the
layer thickness axis. It means that for 4 MHz probes
the minimum separation between the probe faces and
the rail surface could be reduced to 0.05 mm, without
negative consequences for testing sensitivity fluctua-
tions. The reduced fluctuations of CL of the order of
8 dB are rather high and still can cause problems dur-
ing rail inspections.
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Fig. 7. Dependences of coupling losses on the coupling layer
thickness for 2 MHz L-type probe and T -type probes with
the same bandwidth (WB = 50%) but with different re-
fraction angles; 2T45 – probe with transversal wave and
refraction angle θ3 = 45○; 2T70 – probe with transversal
wave and refraction angle θ3 = 70○; 2L0 – probe with lon-

gitudinal wave and refraction angle θ3 = 0○.
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Fig. 8. Dependences of coupling losses on the coupling
layer thickness for 2 MHz L-type probe and 4 MHz L-type
probe with the same bandwidth (WB = 50%); 2L0 –
2 MHz probe with longitudinal wave and refraction angle
θ3 = 0○; 4L0 – 4 MHz probe with longitudinal wave and

refraction angle θ3 = 0○.

Using the presented model, one can search for other
methods to reduce fluctuations of coupling losses. One
of the possibilities is replacement of water with a cou-
pling medium of higher acoustic impedance, e.g., glyc-
erin. Unfortunately, this solution is impractical for
a high speed ultrasonic inspection of railway rails due
to environmental and technical constraints. Instead,
one can investigate another solution consisting in re-
placing the conventional probe wedges made of PMMA
with probe wedges made of Rexolite, that is a relatively
new material which already entered ultrasonic applica-
tions. The Rexolite has lower acoustic impedance than
PMMA (2.4 versus 3.2 Rayls) which is closer to water
used as a coupling medium.

The coupling losses characteristic for 2 MHz probes
with wedges made of PMMA and Rexolite are shown
in Fig. 9. The maximum of the coupling losses for the
Rexolite wedge is about 4.5 dB lower than the maxi-
mum for the PMMA wedge. After restriction of the
minimal coupling layer to 0.10 mm, the amplitude of
the testing sensitivity fluctuations will be reduced from
8 dB for PMMA wedges to 5 dB for Rexolite wedges.
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Fig. 9. Dependences of coupling losses on the coupling layer
thickness for 2 MHz, WB = 50% probes with wedges made

of PMMA and Rexolite.
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The latter is a reasonably low value which may be com-
pensated by scanning gain correction.

5. Conclusions

Losses determined for the case of beam transmis-
sion through the coupling layer between the ultra-
sonic probe emitting longitudinal or transverse waves
and tested object, are presented in the article. As
a standard, formulas for double transmission coeffi-
cients have so far been derived for harmonic waves
of a strictly defined frequency. However, in practice,
the pulses generated by modern ultrasonic probes used
in non-destructive testing have a relatively wide fre-
quency bandwidth. This means that the actual de-
crease in the amplitude of the ultrasonic pulse pass-
ing through the coupling layer from the probe to the
tested material and vice versa is a certain average of
the double transmission coefficients for all frequencies
represented in the pulse spectrum. The numerical pro-
cedure presented in the paper takes into account the
finite bandwidth of modern ultrasonic probes, which
significantly changes the dependence of coupling losses
on the thickness of the coupling layer. Contrary to the
known analytical solutions, the model and program
presented in the work allowed for precise calculation
of coupling losses not only for normal beam probes
producing longitudinal waves, but also for angle beam
probes producing transversal waves, which are com-
monly used in non-destructive testing. Therefore, the
developed model can be a significant improvement to
the testing methodology for high speed ultrasonic in-
spection of railway rails, which can also be applied to
other kinds of ultrasonic inspections, where fluctuation
of the coupling layer thickness is an issue.
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