
Archives of Acoustics Vol. 49, No. 2, pp. 287–295 (2024), doi: 10.24425/aoa.2024.148783

Technical Note

A Side Lobe Level Reduction Method Using Simulated Annealing Algorithm
in a Uniform Arc Array

Song-Il KANG∗, Kyong-Sim U, Kyong-Chol CHOE, Yong-Kwang RI, Hyok-Il KYE

Institute of Electronic Materials, High Tech and Development Centre
Kim Il Sung University

Pyongyang, Democratic People’s Republic of Korea
∗Corresponding Author e-mail: si.kang0604@ryongnamsan.edu.kp

(received June 22, 2023; accepted January 11, 2024; published online March 19, 2024)

In general, the amplitude-weighting method for an acoustic transducer array is widely used to improve the
array directivity and reject disturbances. This paper presents a method to effectively reduce the side lobe level
while minimizing the main lobe width increase. This is done using the simulated annealing algorithm (SAA) for
a uniformly spaced arc array of omnidirectional underwater acoustic transducers, even at low signal-to-noise
ratio (SNR). We propose a new cost function for the SAA and obtain the weighting coefficients for all array
elements using the SAA, and next compare them with various amplitude weighting methods.

Through simulation and comparison, it is verified that the proposed method is effective in beamforming of
the uniform arc array of underwater acoustic transducers.
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1. Introduction

Beamforming is used to increase the transmit power
and reduce losses in array antennas. Minimizing the
side lobe level and enhancing the main lobe level is very
important to improve target detection accuracy and
jamming stability for underwater acoustic transducer
arrays.

For an underwater acoustic transducer array trans-
mitting and receiving a sound wave, a time delay for
individual elements steers the acoustic beam in a cer-
tain direction, while array amplitude weighting is used
to reduce side lobe level, improving the SNR, and jam-
ming suppression capability. Weighting methods of the
two-dimensional arrays include the window method
(Nofal et al., 2013; Dessouky et al., 2006; 2007;
Sarker et al., 2016; Schmerr Jr. 2015; Rucksana
Begum, Ramarao, 2015) and various heuristic op-
timization methods (Albagory, Alraddady, 2021;
Singh, Salgotra, 2018; Li et al., 2017; Van Luyen,
Vu Bang Giang, 2017). These optimal search weight-
ing methods generally result in optimal position as
well as magnitude weight values for array elements

if a cylindrical array is used. The window weighting
method with the array elements placed at equal spac-
ing suits the requirements of problem we consider in
this paper.

Conventional weighting methods effectively reduce
the side lobe level. However, it is inevitable that a de-
crease in the level of the side lobe is accompanied by
an increase in the main lobe width. So, we cannot re-
duce the side lobe level indefinitely, and we must also
pay due attention to the degradation of the system
resolution due to the widening of the main lobe.

Originally, designed for the annealing heat process
in metals, the simulated annealing algorithm (SAA) is
now applied to optimal designs. The SAA seeks the
solution that minimizes the value of a cost function
among a number of possible solutions, which is ana-
logous to the process of finding a stable state with the
lowest free energy during annealing. There exist many
examples of the SAA used in various optimization
problems (Zangene et al., 2014; Chen et al., 2019;
Hong et al., 1991; Cretu et al., 2010; Rasdi Rere
et al., 2015; Gintaras et al., 2019; Cardone et al.,
2002). For instance, Zangene et al. (2014) reduced the
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side lobe level while minimizing the main lobe width
increase by applying the SAA to non-uniform circular
arrays used in wireless communication. The authors
optimized the position of elements placed in the cir-
cumference and the element amplitude weight vector
to reduce the main lobe level, and demonstrated that
the proposed method is more efficient than genetic al-
gorithm and uniform weighting methods. An applica-
tion of SAA for acoustic sensors can be found in (Chen
et al., 2019), where it is used to effectively reduce the
sound pressure level in passenger trains. Many previ-
ous methods in which the SAA was used to reduce
the side lobe level of the array antenna mostly focused
on enhancing the beamforming effect in wireless com-
munication systems and adopted the unequally spaced
array.

The SAA was rarely used in underwater signal pro-
cessing and in the case of arrays used for underwa-
ter signal processing, in particular, circular arrays and
cylindrical arrays, it is difficult for engineers to arrange
acoustic elements with non-uniform spacing at any lo-
cation. This is because the size of the elements becomes
very large due to the fact that the sound velocity is five
times higher, and the available frequencies are lower in
water than in air.

To overcome this drawback and improve the trans-
mitter and receiver directivity in the acoustic sensor
array, the SAA is introduced into the beamforming
of uniform arc arrays of underwater acoustic trans-
ducers. We propose a new cost function for the SAA
and use it to obtain the weight coefficients for the ar-
ray elements. Thus, we reduce the side lobe level while
minimizing the main lobe width increase of the array
directivity, even for low signal-to-noise ratio (SNR).

The effectiveness of the proposed method is verified
by comparing it with various array weighting methods,
such as the cosine weighting method, Hanning weight-
ing method, Hamming weighting method, Blackman
weighting method, triangular weighting method, etc.
(Schmerr Jr., 2015).

The paper is organized as follows: Sec. 2 briefly
describes the array weighting method and the SAA;
Sec. 3 presents a new side lobe level reduction method
using the SAA; in Sec. 3, the new cost function of SAA
and the weighting coefficients of the array elements de-
rived using this SAA are presented; Sec. 4 presents the
simulation results, underwater test results, and analy-
sis; Sec. 5 provides the conclusion.

2. Theoretical fundamentals

2.1. Array weighting

Arc arrays are a special case of circular arrays, com-
monly used in underwater acoustic transducer arrays.
The array of interest is a uniform arc array consisting
of 12 omnidirectional elements, each positioned with

identical central angles between them. An illustration
of this arrangement is shown in Fig. 1.
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Fig. 1. Uniform arc array of 12 elements. 

Assuming that the signal incident on the array is 𝒔(𝑡), the steering matrix of the array is 
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Fig. 1. Uniform arc array with 12 elements.

We assume the signal incident on the array is s(t),
the steering matrix of the array is A(θ, I), and the
output of the array beamforming is expressed as (Zan-
gene et al., 2014):

B(θ, I) = ∣A(θ, I)s(t)∣, (1)

A(θ, I) = [a1(θ) a2(θ) ⋯ aN(θ)], (2)

s(t) = [s1(t) s2(t) ⋯ sN(t)]T, (3)

an(θ) = Inej2πf0r cos(θ−φn)/c, n = 1,2, ...,N, (4)

sn(t) = Amej2πf0(t−tn), (5)

tn = rn/c = r cos(θ0 − φn)/c, n = 1,2, ...,N, (6)

where θ is the angle of interest, I is the weight vector,
In is the n-th weight coefficient of the weight vec-
tor, f0 is the center frequency of the signal, θ0 is the
angle of incidence of the signal, r is the radius of the ar-
ray, c is the propagation velocity of the signal, φn is
the angle from the center line (OO′) to the n-th ele-
ment, N is the number of elements, and Am is the sig-
nal amplitude. The sign of the angle is positive when
its orientation is counterclockwise from the center line
and vice versa.

2.2. Simulated annealing algorithm

The SAA yields good results, although it is rather
time-consuming. This algorithm, deriving its name
from metallurgy, was first proposed by Kirkpatrick
et al. (1983). The SAA used to improve the directivity
of the underwater transducer array minimizes the cost
function obtained from the directivity function of the
array by setting the initial temperature, final temper-
ature, and the initial weight vector and decreasing the
temperature according to certain rules. In subsequent
iterations, the weight vector is updated such that the
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value of cost function decreases with decreasing tem-
perature. The algorithm prevents the value of the cost
function from being trapped in a local minimum and
allows it to reach a global minimum. The global mini-
mum is derived by accepting with a certain probability
the state in which the cost function increases as well
and setting the current state to the state in which the
cost function decreases. During the minimization pro-
cess of cost function, the probability of accepting the
state in which the value of the cost function increases
gradually drops to zero.

The expression shows the probability of accepting
a new state:

P (∆F (I)) =
⎧⎪⎪⎨⎪⎪⎩

e−
∆F (I)

T if ∆F (I) > 0,

1 if ∆F (I) ≤ 0,
(7)

where ∆F (I) = Fnew(I+I)−Fcurrent(I) is the difference
between the cost functions for the new and current
states and T is the temperature.

The optimization procedure by the SAA is given as:

1) Generation of the initial solution vector: generate
the initial vector I0 and compute the value of the
cost function.

2) Setting of the initial temperature: in the algorithm,
the initial temperature T0 is very important; if the
temperature is too high, the system cannot con-
verge to the minimum state, whereas if it is too
low, the global minimum cannot be reached.

3) Generation of a new solution: at the temperature
T , the new solution I0 + I is generated.

4) Evaluation of the new solution: calculate the value
of the cost function for the new solution and,
based on Eq. (7), accept or reject the new state
according to the difference ∆F .

5) Decrease of the temperature: decrease the temper-
ature so that the probability of accepting the state
in which the value of the cost function increases
is reduced.

6) Repeat of the above steps: repeat steps 2–5 until
the temperature value reaches the final tempera-
ture set.

3. The side lobe level reduction method
using the SAA

The proposed cost function for reducing the side
lobe level to the maximum while minimizing the beam
width increase of array directivity is defined as follows:

F (W) = α ∣Wd −WI

Wd
∣ + β

M

∑
i=1
B (θi, I)

B (θ0, I)
, (8)

where θi is the position of the i-th side lobe, M is
the number of side lobes, I is the weight vector,

Wd is the zero beam width of interest by the weight
vector, and WI is the zero beam width by the
weight vector.

While the first term on the right-hand side in
Eq. (8) expresses the deviation between the beam
width of interest and the beam width by the weight
vector, the second term is the ratio of the sum of all
the side lobe levels for Eq. (1) to the main lobe level,
and the cost function is divided by Wd to be dimen-
sionless.

In Eq. (8), α and β are constants that determine
the contributions of the main lobe width and side lobe
level, respectively. While the classical cost function
(Zangene et al., 2014) considered only the third-order
lobe level, the proposed method considers all side lobe
levels. Given an array, it is impossible to simultane-
ously make both the side lobe level and the main lobe
width small. Therefore, to optimize the lobe level while
minimizing the main lobe width increase, α and β are
introduced to reflect the characteristics of the side lobe
level and the main lobe width, respectively. Thus, de-
pending on whether the main lobe width or the side
lobe level is considered, the values of α and β can be
set differently.

In this paper, we theoretically consider the con-
vergence of the proposed cost function for the SAA.
The cost function is related to the directivity function
of the arc array, which is rather complicated and can
only be obtained from numerical calculations. There-
fore, we use the approximate equation for the directiv-
ity function expressed by the zero-order Bessel function
as (Li, 2011):

B(θ) ≈ ∣J0 (
4πr

λ
sin(θ − θ0

2
))∣ . (9)

Equation (9) is satisfied for the uniform arc array under
the condition:

1

α0
≥ 2r

λ
+ 1

π
, (10)

where λ is the signal wavelength and α0 is the central
angle between adjacent elements in the radian. Because
the cost function is expressed by the Bessel function,
as in Eq. (9), the proposed cost function can converge
to maintain the main lobe width and simultaneously
reduce the side lobe level with changing the weighting
coefficients.

Let F0 be the initial value of cost function, T0 the ini-
tial temperature, Te the final temperature, I0 the unit
vector, MaxTryT the maximum number of trials at
a given temperature, MaxSucT the maximum number
of successes at a given temperature, MaxRej the max-
imum exclusion number, and trialCountT the number
of trials at a given temperature. First, we find the dif-
ference ∆F = Fnew−Fcurrent between the cost functions
for the new and current states by randomly changing
the weight vector of the array beamforming output.
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The procedure to randomly change the weight vec-
tor is as follows:

1) Generation of random numbers: generate a ran-
dom number vector of size N/2.

2) Sorting of random numbers: sort the generated
random number vectors in ascending order.

3) Symmetrizing of the random number vector: make
a random number vector of size N , symmetrizing
the sorted random number vector.

4) Update of the weight vector: update the weight
vector by adding the random number vector to
the current weight vector.

5) Normalization of the weight vector: normalize so
that the maximum value of the weight vector is
equal to 1.
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Fig. 2. Computational flow diagram using the proposed algorithm.

Then, the cost function is updated by introduc-
ing the new solution with the transition probability
by Eq. (13). This process is repeated while the trial
number (trialCountT) is less than the maximum num-
ber of trials at a given temperature (MaxTryT) or the
success number (sucCountT) is less than the maximum
number of successes (MaxSucT) that is to be accepted
as a new state. Next, the above process is repeated by
changing the temperature in a certain way.

If the temperature reaches the final temperature
Te set or the number of states rejected (countRej) is
greater than the maximum rejection number (MaxRej)
set, the calculation is ended. The algorithm used in the
simulation is shown in Fig. 2.

The solution obtained by the proposed algorithm
deviates from the local minima and converges to the
global minimum, thus giving good results.
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4. Simulation and discussion

In the simulation, all the array elements are con-
sidered to be omnidirectional. The center angle be-
tween each element is 10○, the center frequency of the
signal is f0 = 50 kHz, the speed of sound in water
is c = 1500 m/s, and the radius of the arc is r = 0.08 m.
For simplicity, let us consider the directivity of the ar-
ray as the incidence direction of the signal to be set
at 0○ and the range of angles as [−60○, 60○], while the
SNR is varied to −5, 0, 5, 10, 20, and 30 dB.

The initial values of parameters used in the simu-
lation are shown in Table 1.

Figure 3 shows the convergence of the cost func-
tion and the temperature throughout the iterative pro-
cess for the simulation using the proposed method. The
temperature drastically reduces until 2000-th iteration
and then gradually converges to 0. It can be seen that
the convergence process of the cost function exhibits
a local minimum around 1445-th iteration, and this is
due to the nature of the SAA, which deviates from
the local minimum and then converges to the global
minimum.

Figure 4 shows the directivity of the arc array
obtained by applying various weighting methods and
compares them with the proposed method. The side
lobe level of the directivity function using the proposed
method is −16.6 dB, even for an SNR of −5 dB, but it
is about −10 dB for the other methods. It can be seen
that the proposed method is effective in side lobe level

Table 1. The initial values of parameters.

Parameters Initial values
Initial temperature T0 1
Final temperature Te 1e-8
Maximum number of trials at a given temperature (MaxTryT) 3000
Maximum Success at a given temperature (MaxScT) 40
Maximum rejection number (MaxRej) 1000
[α, β] [1, 1]

a)

C
os

t f
un

ct
io

n,
 F

Interation

b)

Te
m

pe
ra

tu
re

, T

Interation

Fig. 3. Convergence of the cost function and the temperature throughout the iterative process:
a) convergence; b) temperature.

reduction and powerful over noise suppression, even at
low SNRs.

Table 2 presents the weighting factor vectors cal-
culated by the proposed method and the weighting
factor values calculated by different methods. Table 3
provides a comparison of different weighting methods
with the proposed method for the main lobe width and
side lobe level of array directivity at different SNRs. In
Table 3, the front values in each column are the 6 dB
beam width in degrees, followed by the maximum side
lobe levels in dB. From Table 3, it can be seen that
at low SNRs below 0 dB, the proposed method min-
imizes the main lobe width increase, while the side
lobe level is the smallest among the seven methods.
Furthermore, the main lobe width and the side lobe
level do not change significantly at various SNRs. This
indicates that the proposed method exhibits high noise
robustness.

Table 4 shows the main lobe width (6 dB beam
width) and the maximum lobe level of the array di-
rectivity with varying values of α and β. From Ta-
ble 4, it is evident that the main lobe width decreases
and the maximum side lobe level increases as β in-
creases.

Figure 5 shows the comparison between the pro-
posed method and various weighting methods using
the cost function for different SNRs. Only the maxi-
mum side lobe level is used. As shown, the proposed
method maintains a constant cost function value, re-
gardless of the SNR change.
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Fig. 4. Comparison between the proposed method and various weighting methodsfor the different SNRs:
a) −5 dB; b) 0 dB; c) 5 dB; d) 10 dB; e) 20 dB; f) 30 dB.
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Table 2. Weighting vectors by various weighting methods (SNR = 10 dB).

Method Weighting vector
Uniform [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
Cosine [0, 0.2817, 0.5406, 0.7557, 0.9096, 0.9898, 0.9898, 0.9096, 0.7557, 0.5406, 0.2817, 0]

Hanning [0.0000, 0.0794, 0.2923, 0.5712, 0.8274, 0.9797, 0.9797, 0.8274, 0.5712, 0.2923 0.0794, 0.0000]
Hamming [0.0800, 0.1530, 0.3489, 0.6055, 0.8412, 0.9814, 0.9814, 0.8412, 0.6055, 0.3489, 0.1530, 0.0800]
Blackman [0.1200, 0.1526, 0.2799, 0.5344, 0.8560, 1.0870, 1.0870, 0.8560, 0.5344, 0.2799, 0.1526, 0.1200]
Triangular [0, 0.1818, 0.3636, 0.5455, 0.7273, 0.9091, 0.9091, 0.7273, 0.5455, 0.3636, 0.1818, 0]
Proposal [0.2686, 0.4147, 0.5613, 0.7073, 0.8537, 1.0000, 1.0000, 0.8537, 0.7073, 0.5613, 0.4147, 0.2686]

Table 3. Main lobe width and side lobe level for various weighting methods.

Method
SNR [dB]

−5 0 5 10 20 30
Uniform 11.6, −7.4 11.4, −8.3 11.2, −8.6 11.2, −8.6 11.0, −8.7 11.0, −8.7
Cosine 16.0, −9.6 15.2, −12.6 15.0, −14.2 14.8, −14.7 14.8, −15.0 14.8, −15.0

Hanning 19.2, −9.6 18.0, −13.7 17.6, −17.0 17.6, −18.6 17.6, −19.4 17.6, −19.5
Hamming 17.2, 10.0 16.6, −14.2 16.4, −17.5 16.2, −19.2 16.0, −20.0 16.0, −20.1
Blackman 18.0, −10.1 17.0, −14.8 16.6, −19.4 16.6, −22.0 16.6, −22.8 16.6, −23.0
Triangular 17.2, −9.9 16.4, −14.1 16.2, −17.1 16.2, −18.6 16.0, −19.2 16.0, −19.3
Proposal 14.0, −16.6 14.0, −16.6 14.0, −16.6 14.0, −16.7 14.0, −16.7 14.0, −16.7

Table 4. Main lobe width and maximum side lobe level for α and β (SNR = 10 dB).

[α, β] [1,1] [1,3] [1,5] [1,7] [1,9]
Main lobe width [○] 14.0 13.8 13.6 13.5 13.4

Maximum side lobe level [dB] −16.7 −16.5 −16.2 −15.9 −15.5

Therefore, it is obvious that the proposed method is
effective in improving the directivity pattern of the ar-
ray and increasing the azimuthal resolution ability by
significantly reducing the side lobe level while minimiz-
ing the main lobe width increase even for low SNRs.

SNR [dB]
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Fig. 5. Comparison of array directivity using the cost func-
tion for different SNRs.

5. Conclusion

The array weighting by the proposed method can
reduce the side lobe level by about 8 dB lower than

the uniform method while minimizing the main lobe
width increase for low SNRs. Other methods, except
the cosine method, increase the main lobe width con-
siderably, although those may lower the side lobe level
more than the proposed method. Therefore, the pro-
posed method can effectively suppress the noise while
maintaining the resolution of the underwater acoustic
transducer array.

According to the evaluation of directivity by vari-
ous methods based on the cost function, for the SNR
equal to −5 dB, the value of the cost function by the
proposed method is 1.55, 1.44, 1.77, 1.39, 2.69, and 1.41
times lower than those by the uniform method, cosine
method, Hanning method, Hamming method, Black-
man method, and triangular method, respectively.

For uniform arc arrays with underwater acoustic
transducers, it is confirmed that array element weight-
ing with weight vectors obtained by using the proposed
cost function and simulated annealing based on weight
factor updating can effectively reduce the side lobe
level while minimizing the main lobe width increase
of array directivity even at low SNRs.
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