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Abstract. In modern drive systems, the aim is to ensure their operational safety. Damage can occur not only to the components of 

the motor itself but also to the power electronic devices included in the frequency converter and the sensors in the measurement 

circuit. Critical damage to the electric drive that makes its further exploitation impossible can be prevented by using fault-tolerant 

control (FTC) algorithms. These algorithms are very often combined with diagnostic methods that assess the degree and type of 

damage. In this paper, a fault classification algorithm using an artificial neural network (ANN) is analysed for stator phase current 

sensors in AC motor drives. The authors confirm that the investigated classification algorithm works equally well on two different 

AC motors without the need for significant modifications, such as retraining the neural network when transferring the algorithm to 

another object. The method uses a stator current estimator to replace faulty sensor measurements in a vector control structure. The 

measured and estimated currents are then subjected to a classification process using a multilayer perceptron (MLP), which has the 

advantage of a small structure size compared to deep learning structures. The uniqueness of the method lies in the use of data in the 

training set that are not dependent on the parameters of a specific motor. Four types of current sensor faults were studied, namely total 

signal loss, gain error, offset, and signal saturation. Simulations were performed in a MATLAB/SIMULINK environment for drive 

systems with an induction motor (IM) and a permanent magnet synchronous motor (PMSM). The results show that the algorithm 

correctly evaluates the type of damage in more than 99.6% of cases regardless of the type of motor. Therefore, the results presented 

here may help to develop universal diagnostic methods that will work on a wide variety of motors. 

Key words: ac motor drives; current sensor faults; fault classification; neural networks; universal fault 
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NOMENCLATURE 

State variables: 

 us spatial vector of stator voltage, 

 is, ir spatial vectors of stator and rotor currents, 

 Ψs, Ψr spatial vectors of stator and rotor fluxes, 

 Ψf permanent magnet flux, 

 tem, tL electromagnetic and load torques, 

 ωm angular rotor speed, 

 ωs angular synchronous speed of the rotor flux 

spatial vector, 

  angle between rotor flux vector and axis A of 

the stator winding, 

 is angle between stator current vector and axis 

A of the stator winding, 

 Im instantaneous current amplitude, 

 rs, rr, stator and rotor winding resistances, 

 lσs, lσr, lm stator and rotor leakage inductances and 

main inductance of the IM, 

 TM mechanical time constant, 

 fsN nominal frequency, 

 ed, eq  decoupling signals. 

Indexes: 

 ref reference value, 

 mea measured value, 

 est estimated value, 

 N nominal value, 

 A, B, C indexes of components in phase A, B, C 

coordinate system, 

 α, β indexes of components in stationary α, β 

coordinate system, 

 d, q indexes of components in synchronous d, q 

coordinate system. 

Abbreviations for current sensor faults: 

 NF, OC, G no fault, open circuit, gain, 

 OFF, SAT offset, saturation, 

 g, offset, sat value of gain, offset, and saturation. 

1. INTRODUCTION 

The development of industrial drive systems that provide 

optimum motion performance of machines with a high dynamic 
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of changing operating conditions requires the application of 

advanced control structures. In recent years, closed control 

structures for electric motors have ceased to perform only 

regulatory functions, but also monitor the behaviour of the 

object. This is due to the desire to maintain high reliability of the 

drive system and to respond quickly to the defects that occur. 

This issue is directly related to the idea of fault-tolerant control 

systems (FTC) [1, 2], which can include both electromechanical 

systems (electric motors) and elements responsible for the flow 

of information to the control structure (sensors) [3]. Defects that 

occur in the induction motor (IM) and permanent magnet 

synchronous motor (PMSM) drives most commonly used in 

industrial applications do not ensure the elimination or 

nullification of the impact of damage during drive operation. On 

the other hand, the effects of sensor defects due to interference 

with the values of variables within the control structure can be 

reduced by changes in the control algorithm [3]. For this 

purpose, it is necessary to detect the defect sufficiently quickly 

(detection), determine its type (classification), and then perform 

control changes that ensure compensation for the identified 

defect (compensation) [4, 5]. 

The fault detection methods for sensors operating in closed-loop 

control structures presented in the literature involve analytical 

techniques. This approach is applied to speed [6, 7] and current 

sensors (CS) and is limited mainly to drives with induction 

motors [4, 6–9] and less frequently synchronous motors [10]. 

Analytical methods provide almost instantaneous fault detection 

and evaluation of the type of fault, but in cases where the exact 

nature of the fault is known at the design stage [11]. If the effect 

of the defect on the control system or measured signals cannot be 

determined by strict rules and relationships, then the use of 

analytical techniques is severely limited. This fact is of particular 

importance when the type of machine or its rated parameters change, 

but also when the analysed sensor changes (different sensor 

characteristics). Any interference with the parameters of the 

control system or its components can result in reduced precision 

or total inability to assess the technical condition of the sensors. 

Despite the differences in IM and PMSM designs, field-oriented 

control algorithms are not significantly different. In both cases, 

information on the current values of the phase currents is 

required. The use of analytical methods based on current 

samples and the determination of the relationship between them 

does not ensure the universality of the diagnostic system. This 

means that a system developed for one machine will not be able 

to be used successfully when operating on another object. 

Therefore, it becomes important to look for universal fault 

symptoms that ensure a correct defect evaluation regardless of 

the control object used (electric motor). 

The development of fully automated fault diagnosis systems for 

current sensors is currently linked to the use of artificial 

intelligence methods and, in particular, neural networks (NN) 

[10]. Nevertheless, it should be clearly emphasised that the NN 

used should fulfil the assumed functions but also not be a burden 

on the computing system. Therefore, deep neural structures 

(DNN) [12, 13] or machine learning techniques [14, 15] 

described in the literature result in increased demands on the 

computational capacity of the host system. Nevertheless, their 

particular advantage is the ability to directly analyse signals 

without pre-processing [16]. This results in a significant 

reduction in the reaction time to an emerging fault. However, 

DNNs require extensive training data sets, a long training 

process, and cause a significant complication in the 

implementation process of the detection system. 

An alternative to computationally expensive DNNs are classical 

shallow neural structures (SNNs) [4]. They are currently used in 

FTC systems in fault detection and classification tasks. A special 

feature of SNNs is the ability to approximate new unknown 

input samples obtained from a small set of learning data. This 

makes the implementation process of such networks as a 

multilayer perceptron (MLP) very easy. However, in this case, 

it is important to properly select the elements of the input vector 

of the network. It should provide good-quality information on 

the technical condition of the analysed object (sensors in our 

case). Additionally, due to the high dynamics of drive systems 

involving speed changes and variable load torque, the input 

information should be properly processed. High precision in 

sensor faults detection will be achieved if the input vector of the 

neural network is independent of the operating conditions of the 

motor and its parameters. This issue is strongly related to the 

universality of the diagnostic system, understood as the 

preservation of the precision of operation for different objects 

under varying operating conditions. Currently, this topic is 

increasingly associated with the idea of transfer learning [16]. 

However, it should be clearly emphasised that transfer learning 

implies an additional process of training the network to use 

known patterns. In this article, the universality of the developed 

classification system includes the appropriate development of 

the input vector in such a way that a single NN structure can be 

used for different test objects (IM and PMSM) without an 

additional training process. This fact is an undoubted advantage 

of the proposed approach over advanced systems based on deep 

neural structures. The main contribution of the authors can be 

characterised as follows: 

• The main achievement was the development of a universal 

fault classification algorithm for stator current sensors in 

AC motor drives. 

• The classification quality results obtained are comparable 

for the IM drive and the PMSM drive. 

• A multilayer perceptron network (MLP) structure with a 

small size compared to deep network structures was used as 

a classifier. 

• The neural network does not require retraining when the 

algorithm is transferred to another object. 

• Training data, which are independent of the electric drive 

parameters and which can be easily synthesised based on 

mathematical damage models, were used. 

• A simulation verification of the performance of the 

proposed algorithm was carried out. 

The article is divided into five sections. Section 1 gives a 

mathematical description of IM, PMSM motors, and the 

mathematical models of current sensor faults used. The 

investigated vector control structure is also presented and a 

study of the effect of sensor faults on drive performance is 

carried out. The next section describes the fault detection, 
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compensation, and classification algorithm. Section 3 provides 

information on the NN structure used for classification and the 

training method. Section 4 contains the test results, and the 

article ends with conclusions in Section 5. 

2. PROBLEM DESCRIPTION 

A. CS faults description 

Current sensors (CS) used in vector-controlled electric drives 

must exhibit high accuracy and be reliable. Shunt resistors and 

transducers that use the Hall phenomenon are the most 

commonly used. Both provide a good quality-to-price ratio and, 

thanks to the use of feedback in Hall transducers, allow the 

influence of temperature and external magnetic interference on 

the measurement results to be reduced.  

TABLE 1. Mathematical model of CS faults 

Type of fault Mathematical model 

No fault (NF) ( )( ) sin
m

f x I x=  

Open circuit (OC) ( ) 0f x =  

Gain (G) ( )( ) sin
m

f x gI x=  

Offset (OFF) ( ) ( )sin
m

f x I x offset= +  

Saturation (SAT) ( ) ( )( ) ( )( )min , sin sign sin
m m

f x sat I x I x=  

 x – an arbitrary function of time and/or frequency 

 

However, despite the accuracy and reliability of these 

instruments, the possibility of misalignment (gain error, offset 

error) and failure (total signal loss described as open circuit in 

this paper) must be taken into account. In addition, in the case 

of Hall transducers, there is a risk that the permitted 

measurement ranges are exceeded, so the operating point shifts 

into the nonlinear region and a magnetic core saturation 

phenomenon occurs [17]. Table 1 provides a summary of CS 

faults, together with mathematical models. 

B. Mathematical models of IM and PMSM.   

The research carried out focusses on comparing the 

performance of the proposed fault classifier for stator current 

sensors in a drive system with IM and PMSM. Since the 

characteristics of AC machines under field-oriented control 

were used to develop the classification method, it is therefore 

necessary to analyse the mathematical models of both types of 

motors, which were also used in the simulation studies carried 

out. To write the description of these machines, well-known 

simplifying assumptions are made regarding the replacement of 

windings with distributed parameters by windings with 

concentrated parameters, the assumption of constant 

parameters and sinusoidal distribution of induction in the air 

gap, the omission of nonlinear phenomena (magnetic 

hysteresis, saturation, eddy currents) [18]. 

The application of the above assumptions allows us to write the 

mathematical model of electromagnetic circuits of an AC motor 

in the state equation form (in per unit [p.u.] system), in a 

synchronously rotating reference frame (d-q): 

 ( )
d

,
d

N mT
t

= +x A x Bu  (1) 

with: x – state vector, u – input vector, A – state matrix, B – the 

input matrix, ωm – angular velocity of the rotor. 

For the alternative current motors (ACM) considered, namely 

induction motor (IM) and permanent magnet synchronous 

motor (PMSM), these state and input vectors, and suitable 

matrices are expressed in Table 2.  

 

TABLE 2. Detailed mathematical description of the IM and PMSM 

Induction motor PMSM 

 ( ), ,s rcol=x i Ψ  (2)  ,s=x i  (7) 

 ,s=u u  (3)  ( ), ,s fcol=u u Ψ  (8) 

 ( )
( )

( )
1 2 3

4 5

,
s m

m

s m

a a a

a a

 


 

 + − 
=  

− − 

I I J
A

I I J
 (4) 

with:  

 

( )
1 2 2

3 4 5

1
, ,

, , ,

rs m r

s r s r

m m r r

s r r r

rr l r
a a

l l l l

l l r r
a a a

l l l l



  



−
= − − =

= = = −

 (5) 

 ( )  6 ,m ma = −A I J  (9) 

with:  

 6 ,s

s

r
a

l
= −  (10) 

where: 

 
1 0 0 1

,
0 1 1 0

−   
= =   

   
I J  

 
1

,
sl

 
=  

 

I
B

0
 (6)   

1
,m

sl
= −B I J  (11) 

s sd sqi ji= +i , s sd squ ju= +u ,  σ = (lslr – lm
2)/(lslr), 

TN = 1/(2πfsN), 

s sd sqi ji= +i , s sd squ ju= +u , ( ),0 ,f fcol= Ψ  

f f= Ψ  (equal to PM flux) 
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Dynamics of the angular speed, ωm, can be described using the 

equation of motion: 

 
d

,
d

M m em LT t t
t
 = −  (12) 

and the electromagnetic torque for the IM is described as 

follows: 

 ( ) ( )Im ,m m

em r s rd sq rq sd

r r

l l
t i i

l l
=  =  − Ψ i  (13) 

and for PMSM, respectively as: 

 ( ) ( )( )Im .em s s f sq sd sq sd sqt i l l i i=  =  + −Ψ i  (14) 

C. Field-oriented vector control structure of IM and 

PMSM. 

All tests were carried out in a field-oriented control (FOC) 

structure, which involves controlling the flux and torque by 

using the components of the stator current vector in the 

synchronous d-q coordinate system rotating concurrently with 

the associated rotor flux vector Ψr. A schematic diagram of the 

FOC structure is shown in Fig. 1, highlighting the reference 

current signal 
ref

sd
i and the angle signal γΨ required for the 

coordinate system transformation. 

 

Fig. 1. Schematic diagram of the FOC structure for an IM and PMSM motor 

including the detection (FD), compensation (FC) and classification (FCL) 

module 

 

The way in which these signals are determined differs between 

the structure designed for IM and PMSM. In the case of the 

PMSM, the angle is equivalent to the rotor (and permanent 

magnets) position angle, while in the case of the IM, an estimator 

of the amplitude and position angle of the flux vector associated 

with the rotor winding must be used. Improved control quality 

in the FOC structure using linear PI controllers is achieved by 

including decoupling signals ed and eq, which make the isd and 

isq current control paths independent of each other. These signals 

are determined from analysis of the stator winding equation in 

the mathematical model of the motor. Also included in Fig. 1 is 

the block responsible for implementing the current sensor fault 

detection, compensation, and classification algorithm 

(FD+FC+FCL), which will be discussed later in the article. 

D. Impact of CS faults on the drive system performance 

The simulations were carried out in a converter system with 

SVM vector modulation. The FOC control structure used 

measurements from only two CSs in the calculations, which is 

common practice in industrial applications. The frequency of 

the current and speed measurements, the frequency of the PWM 

carrier signal, and the calculations associated with the control 

structure were 8 kHz, while the motor dynamics equations were 

calculated at 800 kHz. The parameters of the motors tested are 

included in Table 4, in the appendix. The simulations assumed 

g = 1.25, offset = 0.15Im, and sat = 0.75Im. The values of these 

parameters were chosen to show the impact of faults on the 

performance of the drive. Fig. 2 – Fig. 5 show the waveforms 

of isA, isB and isC phase currents, d-q current components, the 

electromagnetic torque, and angular velocity when the 

considered CS faults occur. 

 

Fig. 2. Waveforms of selected state variables in IM when CS faults (OFF, 

SAT) occur in phase A (tL = tLN,  ωm = ωmN) 

 

In the case of G and OFF faults, oscillations appear in the 

current waveforms. These are also noticeable in the 

electromagnetic torque waveforms, which are proportional to 

the isq current. Although the speed is stabilised at a given value, 

in the real system the torque oscillations can lead to accelerated 

wear of the mechanical parts (rolling bearings) and 

consequently to serious damage. Furthermore, it should be 

noted that in the case of G, OFF and SAT faults, ripples appear 

in the PMSM motor speed (larger than for IM), which increase 

with the degree of damage. The isd current, on the other hand, is 

proportional to the associated rotor flux in the case of IM while 

in PMSM it is responsible for weakening the flux coming from 
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the permanent magnets. The oscillations of this signal are also 

significant, resulting in the flux not acquiring a steady-state 

value, and thus the operating state of the motor can only be 

described as a quasi-steady state. The most dangerous is the 

OC-type fault, as measurements from only one CS are then 

available and, without compensation for this fault, speed 

control is lost. 

Therefore, it is necessary to classify CS damage to decide 

whether the damage that has occurred is the result of 

miscalibration or physical damage to the sensor. This can 

prevent future mechanical faults, which in turn can be difficult 

to repair and/or cause considerably more serious production 

line-related damage, for example. 

 

 

Fig. 3. Waveforms of selected state variables in IM when CS faults (G, OC) 

occur in phase A (tL = tLN,  ωm = ωmN) 

 

 
Fig. 4. Waveforms of selected state variables in PMSM when CS faults (OFF, 

SAT) occur in phase A (tL = tLN,  ωm = ωmN) 

 

 

Fig. 5. Waveforms of selected state variables in PMSM when CS faults (G, 

OC) occur in phase A (tL = tLN,  ωm = ωmN) 

3. METHODOLOGY OF CS FAULT DETECTION AND 

CLASSIFICATION 

In order to implement the classification, appropriate measurements 

must first be taken to detect and compensate for CS faults. This 

action is essential because, as demonstrated in the previous 

chapter, a sensor fault can cause damage to the drive system. 

Sufficiently fast detection and compensation will keep the drive 

system running, which is crucial in fault-tolerant control (FTC) 

systems.  

A. Stator current estimators.   

The developed classification method assumes that an estimator 

of stator currents is available in the control system. The 

estimated current values are used for detection and 

compensation purposes and for fault classification. Therefore, 

it is important to use an estimator that demonstrates high 

operating accuracy. 

The reconstruction of stator phase currents can be realised using 

Luenberger observers. This type of solution is very accurate, 

however, measurements from at least one undamaged sensor 

are required for operation. When the required measurements are 

missing, good current reconstruction results are obtained using 

open-loop observers [8, 19], which were used in this paper. For 

both motors, these estimators are mathematical models that 

describe the dynamics of the electromagnetic state variables, in 

the form of equation (1) and the corresponding equations (2)-

(6) for IM or (7)-(11) for PMSM. 

B. Fault detection and compensation. 

Early damage detection is performed by comparing the 

measured and estimated current values (green part in Fig. 1). In 

the method described in this paper, the localisation is the task 

of the neural classifier, so a simple residuum expressed by the 

following equation is assumed: 

 ( ) ( )
2 2

.mea est mea est

sA sA sB sBiii i − −= +  (15) 
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For undamaged sensors, the residuum calculated using the 

above formula should be zero. However, due to measurement 

noise and possible discrepancies in the parameters of the current 

estimator, the value of ε will be non-zero, so it should be 

compared with the detection threshold, ϑ. It should also be 

noted that the residuum can have different values at different 

points of drive operation, so a fixed detection threshold value 

may not be sufficient in some applications and should then be 

replaced by an adaptive value [4]. When significant 

measurement discrepancies occur and the value of   exceeds 

the detection threshold, ϑ, the measuring sensors must be 

disconnected, and the unavailable measurements replaced by 

estimated currents (fault compensation). In this way, the 

continuity of control is maintained, and the drive can remain in 

safe operation. 

C. Classification.  

The evaluation of the type of fault is carried out using a neural 

classifier that compares the values of measured and estimated 

currents. The assumption of the effectiveness of the classifier is 

the presence of reproducible fault symptoms in each recorded 

period of sinusoidal stator current. However, classification of 

sinusoidal signals is difficult due to the variable frequency and 

variable amplitude of the signals. Both problems were solved 

using an available current estimator. Difficulties due to variable 

amplitude were eliminated by normalising the signals with 

respect to the instantaneous amplitude of the estimated current: 

 

( ) ( )
2

/ /

/ / /

/
2

.
mea est mea est

mea est sA B sA B

snA B est
est est

s s
m

i i
i

I
i i 

= =

+

 (16) 

In the above equation, isnA/B denotes the currents normalised in 

phases A and B, respectively. The variable frequency of the 

current signal is in turn the result of sampling the measurements 

at a constant frequency. Therefore, it is proposed to synchronise 

measurement acquisition with the position angle of the stator 

current vector. An estimator is also used for this purpose, and 

the current angle of the stator current vector γis determined in 

the stationary α-β system as follows: 

 1tan .

est

s

is est

s

i

i





 −
 

=  
 
 

 (17) 

If the current samples are always recorded at the same values γis 

= γacc then a current waveform independent of the sampling 

frequency will be obtained. The values of γacc can be determined 

from the formula: 

 
0

2
, 0,1,..., 1.

1
acc is k k M

M


 = + = −

−
 (18) 

In the above formula, γis0 depends on the stator phase in which 

the measurement acquisition is made and it defines the 

conventional start of the current period, while M is the assumed 

number of samples that forms one period of the signal. 

4. MLP-BASED CLASSIFIER 

A. Structure of NN-based classifier.   

In the study a multilayer perceptron neural network with two 

hidden layers was used. The mathematical description of such 

a network is very simple, which allows for easy 

implementation. Networks of this type are also characterised by 

relatively high performance with a small learning data set. The 

input layer contained 2M = 34 inputs, of which the first M = 17 

inputs correspond to the measured current signal and the next 

17 inputs to the estimated current signal (Fig. 6). Both signals 

were subjected to the acquisition process described in Section 

3C. Due to the data normalisation performed, the input layer did 

not contain any additional signal conditioning functions. The 

hidden layers consisted of H1 = 11 and H2 = 3 neurons, 

respectively, whose activation functions were a hyperbolic 

tangent. The output layer was a classifier layer described by a 

softmax function and contained 5 outputs corresponding to the 

following classes: NF, OC, G, OFF, SAT. The chosen network 

structure was characterised by the highest accuracy on the 

learning data prepared as described in the next subsection and, 

at the same time, contained the lowest number of weight 

connections. 

 

Fig. 6. Schematic diagram of the neural network used 

B. Training dataset.   

The process of conditioning the current signals has made it 

possible to eliminate frequency and amplitude information that 

is unnecessary from a classification point of view. As a result, 

and assuming that the mathematical damage models are known, 

training data can be generated without having to simulate the 

drive operation. 

The process of preparing the training data is based on 

generating one period of a sinus function waveform consisting 

of M samples. The basic waveform is then modified on the basis 

of mathematical models of sensor faults to produce waveforms 

representing the current signal for different classes and different 

damage values. To differentiate the training data, waveforms 

shadowed by a random variable with normal distribution are 

also included.  

Increasing the generalisation capability of the network and 

making it immune to indicating false predictions was achieved 

by adding waveforms recorded on the laboratory bench with the 

IM motor. Additional data represented 20% of the total set. The 

method of mixing packets derived from the model and 

measurements of the object used in the study refers to instance-

2M = 34 H1 = 11

tanh

H2 = 3

tanh

5

softmax

OC

G

OFF

SAT

NF

est

si

mea

si

1

est

si

est

sMi

1

mea

si

mea

sMi

M = 17

M = 17
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based transfer learning. This technique involves inserting 

random samples from the target set (the test object) into the 

training data set of the neural network. Mixing samples from 

the source set with random samples from the target set helps 

ensure high performance for unknown input sample networks. 

The purpose of this paper is to investigate the performance 

quality of the MLP network developed for the IM in a drive 

system with PMSM, so NN retraining was not performed for a 

different motor. 

5. RESULTS COMPARISON FOR IM AND PMSM 

A. Simulation conditions.   

A comparison of the performance of the classifier was carried 

out by simulation in the MATLAB/SIMULINK environment. 

Four different types of faults (OC, G, OFF, SAT) with values g 

= 1.25, offset = 0.15Im and sat = 0.75Im were tested for four 

different speeds (ωm = ωmN, 0.75ωmN, 0.5ωmN, 0.25ωmN) and 

four load torque values (tL = tLN, 0.75tLN, 0.5tLN, 0.25tLN). The 

drive system assumed the existence of only two current sensors 

(in phases A and B), so two simulations were run for each 

operating point, in which only the selected sensor was damaged. 

The drive system used the estimated currents to determine 

control from the start of its operation, so the measured currents 

had no effect on the performance of the structure. This 

operation was intended to compare the quality of the 

classification. 

B. Signals analysis. 

The velocity and load torque profiles used in each simulation 

are shown in Fig. 7a, while examples of measured and 

estimated currents and classification results for the IM and 

PMSM motor systems are shown in Fig. 7b and Fig. 7c. In Fig. 

7c, significant classification inaccuracies can be observed at 

times when the PMSM motor was unloaded with any torque 

(from 0.67 to 0.80 s). The green arrow marks the first current 

period detected by the classifier, immediately at start-up. It is 

classified erroneously, which, however, can be negated by 

software. In Fig. 7c, significant classification inaccuracies can 

be seen in the instants when the PMSM motor was unloaded 

(from 0.67 to 0.80 s). These are due to the small value of the 

current, which is significantly distorted from the assumed 

sinusoidal waveform under this operating condition. 

Classification in an unloaded PMSM motor is therefore 

significantly difficult, but such a motor operating condition is 

rare and not economically justified. In the case of the IM motor, 

no-load classification errors do not occur. Nevertheless, during 

the start-up itself, when the speed rises quite rapidly to the set 

speed (from 0.33 to 0.67 s), the classification is correct, 

confirming the robustness of the developed classification 

method to variations in frequency of current. 

Figure 8 shows an example of classification instants after a SAT 

fault. Due to the method of measurement acquisition, the 

correct network response is obtained at the end of the current 

period. The green rectangle is the result of classification of the 

period marked by the green arrow, while the subsequent current 

periods are separated by vertical lines in the diagrams. 

Therefore, the classification time is variable and depends on the 

fundamental frequency of the current signal in each phase. 

 

(a) 

 
(b) 

 
(c) 

 

Fig. 7. The waveforms of the set speed and torque and the moment of fault 

occurrence (a), the waveforms of the currents and the classification results in 

a drive system with an IM motor (b) and a PMSM motor (c) at a speed of 
0.75ωmN and a load of 0.25tLN  

 

Fig. 8. Classification results for phase A, at nominal speed and nominal 

torque 

C. Statistical analysis 

Evaluation metrics used to describe the performance of 

classifiers (Tab. 3) and the confusion matrix (Fig. 9) were 

determined from the tests. The calculations included a 2 s 

simulation for each point of steady-state drive operation (1 s to 

3 s), where for the first second of the selected time interval, the 

CSs were undamaged, and then a sudden failure occurred. The 

effectiveness (accuracy) of the classifier in the steady state of 
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the drive calculated for the IM is 99.6%, while for the PMSM 

it is 99.8%. Such high values are due to the simulation 

conditions, where the exact parameters of both motors are 

known, and thus the estimators show high performance 

accuracy.  

TABLE 3. Evaluation metrics describing the classifier under study 

Class 

IM [%] PMSM [%] 

P
re

ci
si

o
n
 

R
ec

al
l 

F
1

 s
co

re
 

P
re

ci
si

o
n
 

R
ec

al
l 

F
1

 s
co

re
 

No Fault (NF) 99.6 100 99.8 99.8 100 99.9 
Open circuit (OC) 100 99.0 99.5 100 99.6 99.8 

Gain (G) 99.7 97.8 98.7 99.9 98.9 99.4 

Offset (OFF) 100 98.3 99.1 99.5 99.0 99.2 
Saturation (SAT) 99.8 99.0 99.4 99.9 99.6 99.7 

Macro average 99.8 98.8 99.3 99.8 99.4 99.6 

Weighted average 99.6 99.6 99.6 99.8 99.8 99.8 

Accuracy 99.6 99.8 

 

 

(a) 

 
(b) 

 

Fig. 9. Confusion matrices for the IM (a) and the PMSM (b) 

 

Despite the simulation conditions, the results obtained confirm 

the effectiveness of the method and its versatility. Analysing the 

confusion matrix (Fig. 9), it can be seen that when damage 

occurred, it was correctly classified in the majority of cases, 

which is confirmed by the recall index values of around 99% in 

the Table 3. The double number of data in the confusion 

matrices for the PMSM is due to the fact that the rated 

frequency of this motor (100 Hz) is twice that of the IM (50 

Hz). 

6. CONCLUSIONS 

The presented tests confirm the applicability of the developed 

fault classifier for stator current sensors to AC motors of two 

different designs and therefore confirm the versatility of the 

method. The following observations can be drawn from the 

simulation studies carried out: 

• The accuracy of the classifier for the IM drive and the 

PMSM drive is comparable (99.6% for IM and 99.8% for 

PMSM) (Tab. 3). These results were obtained for tests 

carried out at various operating points of the drive, even at 

low speeds and loads (25% of the rated values). 

• The neural classifier does not require retraining to operate 

correctly on a new object. 

• The response time of the classifier depends inversely on 

the frequency of the first harmonic of the stator phase 

current. 

• Synthetic data derived from mathematical fault model 

accounted for 80% of the total training set. The remaining 

20% was recorded in a drive system with undamaged 

current sensors. This compilation allowed the classifier to 

be independent of the operating point and motor 

parameters. 

• An advantage of the classifier is its ability to operate in a 

dynamic state, as shown in Fig. 7. 

• The universal classification method developed using an 

MLP is also easy to the implement, and due to small 

structure of the neural network, does not require 

significant computing power. This property can be 

important in the case of implementation on physical 

controller. 

Future research will focus on implementing the system on a 

laboratory bench with a PMSM, as well as ensuring the 

reliability of the method's performance in the case of changes 

in machine parameters due to thermal effects. 

APPENDIX 

TABLE 4. Rated parameters of the AC motors tested 

Rated parameters IM PMSM 

Voltage [V] 230 325 

Current [A] 2.5 6.6 

Speed [r/min] 1390 1500 

Torque [N·m] 7.56 16 

Pole pairs [-] 2 4 

Rotor winding resistance [Ω] 4.968 – 

Stator winding resistance [Ω] 5.114 1.206 

Rotor leakage inductance [mH] 31.6 – 

Stator leakage inductance [mH] 31.6 – 

Main inductance [mH] 541.7 – 

Stator inductance [mH] – 27.58 

Mutual inductance [mH] – 7.02 
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