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Abstract
In the logistics center (warehouse or distribution center), customer orders need to be picked
up by the pickers. In this research, we examine the order-picking problem with sequence-
dependent constraints with two decision variables (container start time and product quantity)
in a distribution center with a one-directional conveyor. The decision-making is based on the
developed two variations of two-step matheuristics. At first, the main order-picking problem is
divided into two subproblems. Next, each step of each variant of the subproblem is solved
using a mathematical programming-based technique. Both matheuristics were better in 85 of
120 test instances compared to the initial model solved by mathematical programming. Pickers
matheuristics were better on average at 46.56%, while Buffers matheuristics were better on
average at 46.87%. The proposed matheuristics approach allows distributors to schedule orders
in the logistics center fast enough and with fewer resources.
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Introduction

The manufacturing industry has seen numerous sig-
nificant changes, and the introduction of new tech-
nology is changing how people are involved in the
production process (Beauchemin et al., 2022).
One of an industrial company’s most crucial tasks

in order to maintain its competitiveness in the market
is production management (Fuchigami and Rangel,
2018). Effective production schedule management low-
ers production costs, makes better use of resources,
and improves the quality of the service (Da Col and
Teppan, 2022).

Based on the availability of resources and customer
orders, businesses can modify their production schedul-
ing. A production schedule aims to operate cost-
effectively while maintaining a balance between client
needs and the resources at hand. The warehouse or
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distribution centers (DC) will encounter difficulties
picking orders and meeting the delivery deadlines if
the production schedule is not precise and realistic to
the given available resources.

In recent years, mail-order business via the Internet
has benefited greatly from large-scale logistics centers.
Quick product delivery to clients in the logistics center
depends on effective management. There have been
numerous studies on how to effectively regulate the
logistics center (Iwasaki et al., 2013).

Several multinational corporations constructed dis-
tribution centers across Europe at the same time. Typ-
ically, these DCs are in charge of delivering items
made outside of Europe to clients in Europe as part of
business-to-consumer (B2C) e-commerce transactions
(Hultkrantz and Lumsden, 2001).

The fulfillment center receives, stores, and organizes
inventory until it is requested. Following receipt of
an order, the fulfillment center selects, packages, and
ships an item to the final recipient.
Online consumer orders are transformed into de-

livery packages by fulfillment warehouses. The main
distinctions between fulfillment warehouses and a regu-
lar warehouse are an enormous quantity of tiny storage
bins, an explosive storage policy that distributes each
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item’s inventory among several bins, and commin-
gled bin storage. The highly volatile storage picking
problem, a variant of the conventional order-picking
problem, is introduced by Onal et al. (2023). There
are several picking possibilities available for every item
because they stock them in several locations.
One of the most popular services in e-commerce re-

tail is quick delivery. It entails quick delivery of online-
ordered merchandise. In this market, customer orders
have deadlines, and adhering to them is essential to pro-
viding high-quality services. Order picking takes up the
greatest time in the warehouse. It entails aggregating
orders into batches, giving order pickers access to those
batches, and sequencing the batches given to each order
picker in a way that both meets order deadlines and
cuts down on picking time. E-commerce warehouses use
new logistical techniques to expedite the order-picking
processes (Haouassi et al., 2022).

Additionally, if the production plan was not produced
quickly enough, it can happen that orders were packed
after the scheduled shipment time, and they must wait
for the next shipment date and time, so the plan was
already out of date. In this article, we outline a method
for approaching the issue in the warehouse and DC
with matheuristics so that the scheduling outcome is
acceptable for both small and large-scale businesses.

This article’s scientific contribution then consists of
the following:

• Proposing the model for the logistics order-picking
problem with sequence-dependent constraints and
a one-directional conveyor with two decision vari-
ables: container start time and product quantity.
This model differs from the research by Czernia-
chowska et al. (2023 a,b) with a sequence of prod-
ucts that should be added to the container.

• Simplifying the model by excluding not-ordered
products from all constraints. This is also a feature
that differs this model from Czerniachowska et al.
(2023 a,b).
• Developing the two variants of matheuristics to

solve the proposed order-picking problem in 2 steps
using mathematical programming.

• Simplifying the 2nd step of matheuristics excluding
products that do not exist in the buffers from
calculations. This approach was not present in
Czerniachowska et al.’s (2023b) matheuristics.

• Simplifying the 2nd step of matheuristics excluding
products with zero quantities, achieved in the 1st
step of matheuristics. This approach was also not
used in Czerniachowska et al. (2023b) matheuristics.

Conducting the computational experiments for 3
variants of the DC layouts, which differ with pickers
to buffers assignment.

The contributions of the order-picking model pro-
posed in this research which differ it from other order-
picking models are the following:
• The racks with the products are grouped into

buffers.
• The buffers are assigned to one or more pickers.
• The pickers are assigned to one or more buffers.
• The same product could be stored in different
buffers, but the same product is allowed to be
picked only from one buffer to the order.

• Containers are moved via the conveyor in one di-
rection in a distribution center.

• A sequence of products that are picked to the
container is important.
The order picking problem (OPP) investigated in

this research is similar to the job shop scheduling
problem (JSSP). Table 1 presents the comparison of
OPP with JSSP.

Table 1
Comparison of OPP with JSSP

OPP JSSP

Order Job

Product Operation

Picker Machine
Travelling and picking

time Processing time

Sequence of picking
products in the order

Sequence of operations
in the job

The remainder of this paper is organized as follows.
Related literature is discussed in the following sec-
tion. After that, an order-picking problem definition is
given. Its mathematical formulation is given in the next
section. The following section explains the developed
matheuristics. The next section reports the computa-
tional results. Finally, conclusions and an overview of
future research opportunities are provided.

Related literature

Order picking takes up the greatest time of all the
processes in a warehouse (Roodbergen and de Koster,
2001; de Koster et al., 2007) and costs between 55 and
75 percent of all warehousing expenses (Chiang et al.,
2011; de Koster et al., 2007).

Order picking is the process of gathering items at
the logistics hub. Creating a succession of plans for
picking items from the shelves, choosing items, and
distributing orders to workers is known as an order-
picking problem (Iwasaki et al., 2013).
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Order picking has grown in importance as a result of
the increased focus on efficiency in logistics warehousing,
and it is frequently suggested to use a range of various
algorithms to reduce picking times (Wu et al., 2020).

Numerous papers examining order-picking methods
have been published over the past few decades.
Several kinds of literature for order picking are

surveyed and reviewed by De Koster et al. (2007).
By emphasizing the most effective internal layout de-
sign, storage assignment methods, routing methods,
order batching, and zoning, they organized typical
decision problems in the design and management of
order-picking processes. They included examples of
class-based storage, zoning, batching, and routing tech-
niques (De Koster et al., 2007).
Enhancing picking systems and customer service

both depend on technological advancements and in-
creased warehouse productivity. There are various pick-
ing system techniques that can be carried out by auto-
mated systems or people. Pinto et al. (2023) presented
the theoretical foundation for the most popular picking
system classifications among researchers. They focused
on picking systems based on automation strategies and
processes and picking systems based on picking opti-
mization policies and procedures. They also showed
that researchers should concentrate on methods that in-
tegrate people, warehouses, technology advancements,
and the adoption of multi-objective algorithms.
The study by Iwasaki et al. (2013) suggested an

approach to the order-picking issue that takes into
account workers being crowded onto the same shelf at
the logistics center. The proposed approach optimized
the job-shop scheduling problem. Iwasaki et al. (2013)
formulated the logistics center worker scheduling issue
(Iwasaki et al., 2013).

Liu (1999) examined the location of stock and order
picking in a distribution center where elements of
dependent customer demands are presented. In order
to optimize the stock location and picking procedure,
clustering methods are used to extract the related
information from the customer orders (Liu, 1999).

Roundy et al. (2005) created a more straightforward
explanation of the order acceptance problem. The
discrete-time variant is written as an integer program
(Roundy et al., 2005). Roundy et al. (2005) proposed
simulated annealing, a genetic algorithm, and a linear
programming-based heuristic (Roundy et al., 2005).
Lee and Murray (2019) investigated a unique

method for warehouse order picking, which was mo-
tivated by current developments in mobile robotic
technology. Their study specifically took into account
two types of commercially accessible mobile robots:
a picker, which could rapidly move every item from
the pick list to the packing station, and a transporter,

which could grab goods off a shelf. The pick, place,
and transport vehicle routing problem was a novel one
that aimed to reduce the amount of time it took to
convey every item on a pick list to the packing station.
To address three connected research concerns, a for-
mulation for mixed integer linear programming was
created (Lee and Murray, 2019).
Researchers have previously created a variety of

mathematical models that assist warehouse managers
in assigning products to shelf placements, restructuring
incoming orders, and directing order pickers through
the warehouse in an effort to lower the cost of order
picking (Van Gils et al., 2018). Often, it is wise to
modify planning processes to the warehouse’s unique
layout (Roodbergen et al., 2015).
Haouassi et al. (2022) examined the effects of sep-

arating the orders (assigning the order lines of order
to multiple pickers). In order to tackle the problem,
the researchers expanded the integrated orders batch-
ing, batch scheduling, and picker routing problem by
enabling order splitting, and they suggested a route
first-schedule second heuristic. The routing phase’s
heuristic clustered the orders and built choosing tours
that extracted the orderlines of each cluster using
a split-based method. The created tours were allo-
cated to pickers during the scheduling phase using
a concept known as constraint programming to ensure
that the order deadlines were met (Haouassi et al.,
2022).

Onal et al. (2023) provided three quick fixes for
the explosive storage picking issue. The two other
solutions are heuristics that look for a starting or seed
bin, whereas the first option concentrates on shrinking
the MIP’s decision space.
Effective order batching can also increase the ef-

fectiveness of order retrieval, as indicated by Gu,
Goetschalckx, and McGinnis (2007). Research on ware-
house order batching focused on breaking down a list
of orders (a pick list) into batches such that each
batch may be obtained in a timely manner. As a re-
sult, the batch size was established depending on the
time needed for each batch to be completed (Petersen,
2000; de Koster, et al., 2007). The approaches for order
batching that have been developed via research require
established routes and take into account predetermined
layout configurations.

A batching method for products based on the queu-
ing theory was proposed by Tang and Chew (1997),
and the outcome was used for storage assignment. They
also gave a rectangle-picking method some thought
(Tang and Chew, 1997).

Order picking can be improved using the high-
performance pick system. In order to fulfill requests, it
gives operators quick and easy access to the many boxes
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or totes. Because of its ergonomic form, it makes the
preparation of several orders at a time easy and is per-
fect for high-turnover items. Kawęcki and Gola (2022)
presented a pick performance system as an IT support
utilized for order complementing in an exemplary or-
ganization. The proposed method improved employee
dismissal and helped to maintain productivity levels
among the workforce. The authors also examined the
features of the order complementation procedure.

One of the most researched optimization issues from
the invention of computers to the present is job shop
scheduling. It can be expressed simply as a constraint
satisfaction problem due to its combinatorial character
(Cinar et al., 2017; Hsu and Liu, 2009; Da Col and
Teppan, 2019; Da Col and Teppan, 2022).

In the job shop, scheduling a group of machines and
jobs with an ordered series of operations makes up
the optimization issue. The execution duration of each
task on a certain machine is known; thus, there is the
need to find the start time and assigned machine of
each operation so that the complete production ends
as fast as possible. It is essential that the sequence of
steps is followed and that no two jobs are carried out
on the same equipment at once.
Due to its straightforward formulation and chal-

lenging situations to solve optimally, the job shop
scheduling problem has earned particular notoriety.
The makespan, or the amount of time between the
beginning of the first operation and the conclusion of
the last one, is the most common optimization crite-
rion. The issue is described as a collection of tasks
that a group of machines must complete (Da Col and
Teppan, 2019).

In the job shop scheduling problem, the input for
each job includes a specified order of operation types
and equipment that are typically varied (Nowicki and
Smutnicki, 1996). Complex factories that generate
a variety of items, each requiring a unique workflow,
are real-world examples (Da Col and Teppan, 2022).

Each job consists of a series of tasks, each of which
needs to be completed by a particular machine and
has a set processing time. Every task has a specific
sequence of steps that must be followed. A series of
operations on every machine in which the ordering
of the operations is respected and there is no time
overlap between operations on the same machine is
an acceptable solution to this problem (Da Col and
Teppan, 2019).

Industrial companies often use a facility to work
with both Make-to-Stock (MTS) and Make-to-Order
(MTO) products. The main goal of the MTO systems
is to maintain a defined amount of completed goods
inventory. MTS systems are used to fulfill a customer’s
order during a specific period of time.

Peeters and van Ooijen (2020) reviewed and classi-
fied the hybrid make-to-stock/make-to-order produc-
tion control systems, introducing a taxonomy of dif-
ferent types of such systems.
Danilczuk et al. (2022) presented the premises of

a procedure and a main algorithm for manufactur-
ing job scheduling in hybrid make-to-order/make-to-
stock production systems. They developed a shop job
scheduling approach that enabled both to select jobs to
be produced with the help of a make-to-stock strategy.
Kuthambalayan and Bera (2020) investigated the

integrated firm’s capacity for decision-making. They
also worked with the factors that favor semi-finished
goods substitution and the mixed MTS/MTO strategy
over MTO and MTS strategies. The authors proposed
a two-stage stochastic MINLP model that incorporated
decisions regarding marketing about guaranteed lead-
time and the product-wise mode of manufacturing and
inventory level of semi-finished/finished items. The
market demands were fulfilled in the second phase.
Various scheduling problems could be solved with

constraint programming (Sadeh and Fox, 1996; Da Col
and Teppan, 2019, Czerniachowska et al., 2023c).

Problem definition

We consider the following order-picking problem. In
the logistics center (warehouse or DC), there is a given
number of orders that must be completed by pickers
among racks with shelves allocated in different buffers.
The container leaves the depot with a list of products
that must be picked from different racks situated in
different places in the logistics center. The pickers are
assigned to the buffers. One picker can be assigned to
one buffer, and one picker can be assigned to more
than one buffer nearby. Several pickers can also be
assigned to one buffer.

The orders are known in advance, and no new orders
can be added after they are batched. It is assumed that
the logistics center has enough products to complete
all orders, and that out-of-stock does not occur. When
a container is coming to the buffer, the worker picks up
the specified number of products, measures, cuts the
product if needed, temporarily packs, and puts it into
the container. The packing at this stage is temporal
because later, the quality control team will open all
packed products, count, and check them before packing
to shipment to the client. If the picker is busy, the
container may wait in the buffer waiting area near the
rack. When all specified products are collected in the
container, the container returns to the depot via the
conveyor. Only one conveyor exists, which moves the
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containers in one direction around the logistics center.
The stops of the container are possible only in buffers.

Products are stored on racks, and the racks are
assigned to buffers. Generally, the product is stored
in one buffer. But in some situations, it is possible to
store the same product in several buffers. For example,
if the product from different deliveries may differ by
color, even if it is the same color (for example, paints,
knitting, or serving thread), it is suggested to store
new delivery in another location with the goal of not
allowing the picker to place product from different
deliveries in the same order. Sometimes, when large
deliveries occur, there is not enough space to store the
product in one location; therefore, such product could
also be stored in another buffer.

The sequence in which the products must be added
to the containers is required. This requirement is based
on the product types where, for example, big products
should be added to the container first, or the prod-
ucts with the valid period should be added as late as
possible.

The time that the picker spends moving between the
locations in the same or different buffers is not taken
into account, as it is assumed that in the responsibility
of one picker, the buffers are close enough, and the
racks in the same buffers are short enough. Therefore,
the moving time of pickers is neglected. However, the
time of the container moving between buffers via the
conveyor is taken into account. In order to get to the
previous buffer, the container must execute round-
trip without exiting from the final depot because the
conveyor is one-directional.

After the orders are picked, they need to be checked
by quality control, packed, and shipped to the cus-
tomers. There are other stages of the picking process

in the logistics center that are not investigated in this
study. Only the order-picking step is modeled and
investigated.
The time the container spends traveling from one

buffer to another is the makespan time for the task.
When all products in the orders are assigned to be
picked, the longest cumulated traveling time of the
container becomes the maximum makespan time for
the OPP. The goal of the OPP is to find how to assign
orders to be picked from the racks in the logistics
center repeatedly and how to travel in the logistics
center from one buffer to another so as to minimize
the maximum makespan time.
In this research, we examine three layouts of a dis-

tribution center. An example with 6 buffers (B1-B6)
is shown in Figures 1, 2, and 3. B0 is the start buffer,
B7 is the final depot. The direction of moving the
containers via the conveyor is from B0 to B7. There
are 120 locations allocated in 6 buffers per 20 main
locations in each buffer. There are also 8 additional
locations in each buffer for the products which are
stored in several buffers. In Figure 1, a picker com-
pletes orders in a single buffer. In Figure 2, a picker
completes orders in several buffers; for example, Picker
4 moves between buffers B4 and B5. In Figure 3, sev-
eral pickers complete orders in one buffer; for example,
pickers 1, 2, and 5, 6 manage orders in buffers B1 and
B6, respectively.

Problem formulation

Next, we present the mathematical model for the
described problem. The following notation is used in
the model.

B0 B7

start out

1 2 3 4 5 6 7 8 9 10 115 50 46 83 93 55 4 30 61 62 63 64 65 66 67 68 69 70

B1 B6

11 12 13 14 15 16 17 18 19 20 105 52 82 93 46 99 22 24 71 72 73 74 75 76 77 78 79 80

21 22 23 24 25 26 27 28 29 30 110 88 45 94 2 118 1 38 81 82 83 84 85 86 87 88 89 90

B2 B5

31 32 33 34 35 36 37 38 39 40 97 1 48 70 70 3 35 16 91 92 93 94 95 96 97 98 99 100

41 42 43 44 45 46 47 48 49 50 80 22 3 75 28 75 8 30 101 102 103 104 105 106 107 108 109 110

B3 B4

51 52 53 54 55 56 57 58 59 60 82 18 16 8 50 45 17 11 111 112 113 114 115 116 117 118 119 120

Picker 6 Picker 6Picker 3 Picker 4 Picker 4 Picker 5 Picker 5Picker 1 Picker 1 Picker 2 Picker 2 Picker 3

Fig. 1. The layout of a distribution center in which a picker completes orders in a single buffer: B0 – start buffer; B7 –
out buffer; B1-B6 – order picking buffers; Dark colors in buffers B1-B6 – regular buffer products; Light colors in buffers

B1-B6 – products also allocated in other buffers

144 Volume 15 • Number 1 • March 2024



Management and Production Engineering Review

B0 B7

start out

1 2 3 4 5 6 7 8 9 10 115 50 46 83 93 55 4 30 61 62 63 64 65 66 67 68 69 70

B1 B6

11 12 13 14 15 16 17 18 19 20 105 52 82 93 46 99 22 24 71 72 73 74 75 76 77 78 79 80

21 22 23 24 25 26 27 28 29 30 110 88 45 94 2 118 1 38 81 82 83 84 85 86 87 88 89 90

B2 B5

31 32 33 34 35 36 37 38 39 40 97 1 48 70 70 3 35 16 91 92 93 94 95 96 97 98 99 100

41 42 43 44 45 46 47 48 49 50 80 22 3 75 28 75 8 30 101 102 103 104 105 106 107 108 109 110

B3 B4

51 52 53 54 55 56 57 58 59 60 82 18 16 8 50 45 17 11 111 112 113 114 115 116 117 118 119 120

Picker 3 Picker 4 Picker 4Picker 1 Picker 1 Picker 2 Picker 2 Picker 3

Fig. 2. The layout of a distribution center in which a picker completes orders in several buffers: B0 – start buffer; B7 –
out buffer; B1-B6 – order picking buffers; Dark colors in buffers B1-B6 – regular buffer products; Light colors in buffers

B1-B6 – products also allocated in other buffers

B0 B7

start out

1 2 3 4 5 6 7 8 9 10 115 50 46 83 93 55 4 30 61 62 63 64 65 66 67 68 69 70

B1 B6

11 12 13 14 15 16 17 18 19 20 105 52 82 93 46 99 22 24 71 72 73 74 75 76 77 78 79 80

21 22 23 24 25 26 27 28 29 30 110 88 45 94 2 118 1 38 81 82 83 84 85 86 87 88 89 90

B2 B5

31 32 33 34 35 36 37 38 39 40 97 1 48 70 70 3 35 16 91 92 93 94 95 96 97 98 99 100

41 42 43 44 45 46 47 48 49 50 80 22 3 75 28 75 8 30 101 102 103 104 105 106 107 108 109 110

B3 B4

51 52 53 54 55 56 57 58 59 60 82 18 16 8 50 45 17 11 111 112 113 114 115 116 117 118 119 120

Picker 8 Picker 8Picker 4 Picker 4

Picker 5, 6 Picker 7 Picker 7Picker 1, 2 Picker 1, 2 Picker 3 Picker 3 Picker 5, 6

Fig. 3. The layout of a distribution center in which several pickers complete orders in one buffer: B0 – start buffer; B7 –
out buffer; B1-B6 – order picking buffers; Dark colors in buffers B1-B6 – regular buffer products; Light colors in buffers

B1-B6 – products also allocated in other buffers

Indices and sets:
N – number of orders to be completed;
H – number of products in the distribution

center;
R – number of buffers on the conveyor;
W – number of pickers working on the con-

veyors;
i,m – index for orders, i,m = 1, . . . , N ;
j, k – index for products, j, k = 1, . . . ,H;
b, g – index for buffers, b, g = 1, . . . , R;
p, l – index for pickers, p = 1, . . . ,W .

Parameters:
tij – estimated picking time of the product

j in the order i;
dij – sequence of picking operation of the

product j in the order i;

sb – container travel time from the depot to
the buffer b;

cij – ordered quantity of product j in the
order i that must be picked by pickers;

qbj – available quantity of the product j in
the buffer b;

fbg – container travel time from the buffer b
to the buffer g (because of the fact that
the conveyor is one-directional, fbg 6=
fgb);

zbj – binary parameter of availability of prod-
ucts in buffers;

zbj =


1, if the product j is located
in the buffer b
0, otherwise

 ;
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vpb – binary parameter of assignment pickers
to buffers in the distribution center;

vpb =


1, if the picker p is assigned
to the buffer b
0, otherwise

 ;

Decision variables:
xijpb – start time of the processing of the prod-

uct j in the order i processed by the
picker p in the buffer b;

yijpb – quantity of the product j in the order i
processed by the picker p in the buffer b.

Decision expressions:
tpkrp – total processing time of the picker p;
tbfrb – total time of products processing in the

buffer b.

Minimize the makespan:

min max
i=1,...,N

max
j=1,...,H
tij 6=0

max
p=1,...,W

max
b=1,...,R

(xijpb + tij) (1)

Subject to:
The picker gathers products only in the buffers to

which the picker is assigned.

∀(p)∀(i)∀(j)∀(b : vpb = 0)[yijpb = 0] (2)

The picker gathers products only in the buffers in
which the product is located.

∀(p)∀(i)∀(j)∀(b : zbj = 0)[yijpb = 0] (3)

Each product for the order is processed in one buffer
by one picker.

∀(i)∀(j)

[
W∑
p=1

R∑
b=1

min(yijpb, 1) ≤ 1

]
(4)

Enough products exist in each buffer to be gathered
by all pickers for each separate order.

∀(i)∀(j)∀(b)

[
W∑
p=1

yijpb ≤ qbj

]
(5)

Enough quantity of products are gathered.

∀(i)∀(j)

[
W∑
p=1

R∑
b=1

yijpb = cij

]
(6)

Exclude not-ordered products from calculations.

∀(i)∀(j : tij = 0)∀(p)∀(b)[xijpb = 0] (7)

Each picker works with one product, which is placed
for one order in all of the buffers to which the picker
is assigned at a time.

∀(p)∀(i,m : i 6= m)∀(b : vpb = 1)

∀(j : tij 6= 0, tmj 6= 0)

[xijpb + tij ≤ xmjpb ∨ xmjpb + tmj ≤ xijpb] (8)

Each picker in each order in all the buffers to which
the picker is assigned works with one product at a time.

∀(p)∀(i)∀(b : vpb = 1)

∀(j, k : j 6= k, tij 6= 0, tik 6= 0)

[xijpb + tij ≤ xikpb ∨ xikpb + tik ≤ xijpb] (9)

Each picker in each order for all products works with
products at one of the buffers the picker is assigned at
a time.

∀(p)∀(i)∀(j : tij 6= 0)

∀(b, g : b 6= g, vpb = 1, vpg = 1)

[xijpb + tij ≤ xijpg ∨ xijpg + tij ≤ xijpb] (10)

Each picker at each of the buffers to which the picker
is assigned works with one of the different orders and
with one of the different products at a time.

∀(p)∀(b : vpb = 1)∀(i,m : i 6= m)

∀(j, k : j 6= k, tij 6= 0, tmk 6= 0)

[xijpb + tij ≤ xmkpb ∨ xmkpb + tmk ≤ xijpb] (11)

Each picker works with one of the different orders,
with one of the different products, at one of the buffers
the picker is assigned at a time.

∀(p)∀(b, g : b 6= g, vpb = 1, vpg = 1)

∀(i,m : i 6= m)

∀(j, k : j 6= k, tij 6= 0, tmk 6= 0)

[xijpb + tij ≤ xmkpg ∨ xmkpg + tmk ≤ xijpb] (12)

The start of the picking operation must include the
travel time from the depot to the current buffer.

∀(b)∀(j : zbj = 1)∀(i : tij 6= 0)∀(p)
[xijpb > zbjsb] (13)
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Operations precedence in each job considering travel
time between buffers, i.e., the travel time of the con-
tainer between buffers must be enough (considering
traveling in one direction).

∀(i)∀(j, k : j 6= k, tij 6= 0, tik 6= 0, dij + 1 = dik)

∀(b, g : zbj = 1, zgk = 1)∀(p, l : vpb = 1, vlg = 1)

[xijpb + tij +min(yijpb, 1) ·min(yiklg, 1) · rbg ≤ xiklg]

(14)
Picking operations precedence in each order, exe-

cuted by all pickers in all buffers, i.e., the previous
picking operation must finish before the start of any
next picking operation for this order.

∀(i)∀(j, k : j 6= k, tij 6= 0, tik 6= 0)[
max

p=1,...,W
max

b=1,...,R
(xijpb + tij)

≤ min
p=1,...,W

min
b=1,...,R

xikpb∨

∨ max
p=1,...,W

max
b=1,...,R

(xikpb + tik)

≤ min
p=1,...,W

min
b=1,...,R

xijpb

]
(15)

Picking operations precedence according to the se-
quence of picking operations.

∀(i)∀(j, k : j 6= k, tij 6= 0, tik 6= 0, dij + 1 = dik)

∀(p)∀(b)[xijpb + tij ≤ xikpb] (16)

Decision variables:
Start time of the container processing

xijpb = {0,Z+} (17)

Quantity of the gathered products

yijpb = {0,Z+} (18)

Solving the problem with matheuristics

In the real-life world of the field of computing,
scheduling is a decision-making process. Given the
limited resources available, creating a schedule might
be challenging. One of the mainstays of contempo-
rary living is e-commerce. Order picking scheduling
plays an important role in handling high volatility in
warehouses and distribution centers.

Heuristics are a set of guidelines that help to focus
an investigation. Even if they cannot guarantee the op-
timum solution, they may typically do it fast and with
minimal effort. When more traditional methods are
ineffective, a heuristic is a technique that is intended

to solve a problem more rapidly. Various scenarios call
for particular heuristics.

Matheuristics are optimization algorithms that gen-
erate heuristic solutions while being independent of the
underlying optimization problems. Although heuristic
and mathematics algorithms are frequently easy to
set up and run quickly, they run the risk of missing
superior solutions or getting caught in local optima.
Heuristics and matheuristics can be avoided by making
decisions carefully rather than automatically.

Combining mathematical programming with heuris-
tic and metaheuristic methods is a viable form of
hybridization. Some algorithms heavily rely on fea-
tures that are obtained from the mathematical model
of the optimization issues. Heuristics with elements
of mathematical programming typically are developed
because they are effective methods that allow people
to react to decisions or challenges as well.

Regarding scheduling issues, commercial solvers can
sometimes provide the best solution or even none at
all, but not always. Various solvers optimize sched-
ules with constraints. Such an approach reduces costs
and improves service quality. Matheuristics can be
developed using solvers.

Since it would be difficult to develop a method that
could generate high-quality solutions in an acceptable
period of time while taking into account all order-
picking constraints obtained from the distribution cen-
ters and warehouses, a mathematical programming-
based approach was chosen for this research. To save
the effort, we suggest breaking the primary order pick-
ing task down into two more manageable problems
and attempting to resolve each one separately using
mathematical programming. We propose the variants
of matheuristics, each of which consists of two steps.
The first step differs depending on the matheuristics
variant (Figure 4). The second step is the same for both
variants (Figure 5). There are two variations of the
first step: the Pickers free time minimization problem
and the Buffers free time minimization problem.
Figure 4 presents the first step of the main order

picking makespan minimization problem decomposi-
tion and solving Pickers and Buffers free time mini-

Fig. 4. The 1st step of the 2 variants of matheuristics
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Fig. 5. The 2nd step of both matheuristics

mization problems using the same set of constraints
(2)-(6) and the same decision variable (18). The result
of the solution Pickers and Buffers free time minimiza-
tion problems is product quantity. We next use it as
input for the second step and solve the primary Order
picking makespan minimization problem (Figure 5).
Here also, for both matheuristics we have the same set
of constraints (7)-(16) and the same decision variable
(17). We transform the mentioned constraints set into
the (21)-(31), in which we exclude products with zero
quantities achieved in the previous step. This method
significantly simplifies calculations. The decision vari-
able (32) is the same as (17). The result of the solution
is the container’s start time.

Let’s provide additional decision expressions.
Decision expressions:

tpkrp =

N∑
i=1

H∑
j=1

R∑
b=1

min(yijpb, 1) · tij

tbfrb =

N∑
i=1

H∑
j=1

W∑
p=1

min(yijpb, 1) · tij

The criteria function for matheuristics are:
Matheuristics 1: Minimize the pickers’ free time.

min

W∑
p=1

(
max

l=1,...,W
tpkrl − tpkrp

)
(19)

Matheuristics 2: Minimize the buffers’ free time.

min

R∑
b=1

(
max

g=1,...,R
tbfrg − tbfrb

)
(20)

Subject to:
Exclude not-ordered products from calculations.

∀(i)∀(j : tij = 0)∀(p)∀(b)[xijpb = 0] (21)

Exclude products that do not exist in buffer from
calculations.

∀(i)∀(j)∀(p)∀(b : yijpb = 0)[xijpb = 0] (22)

Each picker works with one product, which is placed
for one order in all of the buffers to which the picker
is assigned at a time.

∀(p)∀(i,m : i 6= m)∀(b : vpb = 1)

∀(j : tij 6= 0, tmj 6= 0, yijpb 6= 0, ymjpb 6= 0)

[xijpb + tij ≤ xmjpb ∨ xmjpb + tmj ≤ xijpb] (23)

Each picker in each order in all the buffers to which
the picker is assigned works with one product at a time.

∀(p)∀(i)∀(b : vpb = 1)

∀(j, k : j 6= k, tij 6= 0, tik 6= 0,

yijpb 6= 0, yikpb 6= 0)

[xijpb + tij ≤ xikpb ∨ xikpb + tik ≤ xijpb] (24)

Each picker in each order for all products works with
products at one of the buffers the picker is assigned at
a time.

∀(p)∀(i)∀(j : tij 6= 0)

∀(b, g : b 6= g, vpb = 1, vpg = 1,

yijpb 6= 0, yijpg 6= 0)

[xijpb + tij ≤ xijpg ∨ xijpg + tij ≤ xijpb] (25)

Each picker at each of the buffers to which the picker
is assigned works with one of the different orders and
with one of the different products at a time.

∀(p)∀(b : vpb = 1)∀(i,m : i 6= m)

∀(j, k : j 6= k, tij 6= 0, tmk 6= 0,

yijpb 6= 0, ymkpb 6= 0)

[xijpb + tij ≤ xmkpb ∨ xmkpb + tmk ≤ xijpb] (26)
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Each picker works with one of the different orders,
with one of the different products, at one of the buffers
the picker is assigned at a time.

∀(p)∀(b, g : b 6= g, vpb = 1, vpg = 1)

∀(i,m : i 6= m)

∀(j, k : j 6= k, tij 6= 0, tmk 6= 0,

yijpb 6= 0, ymkpg 6= 0, yijpg 6= 0, ymkpb 6= 0)

[xijpb + tij ≤ xmkpg ∨ xmkpg + tmk ≤ xijpb] (27)

The start of the picking operation must include the
travel time from the depot to the current buffer.

∀(b)∀(j : zbj = 1)∀(i : tij 6= 0)

∀(p : yijpb 6= 0)[xijpb > zbjsb] (28)

Operations precedence in each job considering travel
time between buffers, i.e., the travel time of the con-
tainer between buffers must be enough (considering
traveling in one direction).

∀(i)∀(j, k : j 6= k, tij 6= 0, tik 6= 0, dij + 1 = dik)

∀(b, g : zbj = 1, zgk = 1)

∀(p, l : vpb = 1, vlg = 1, yijpb 6= 0, yiklg 6= 0)

[xijpb + tij + rbg ≤ xiklg] (29)

Picking operations precedence in each order, exe-
cuted by all pickers in all buffers, i.e., the previous
picking operation must finish before the start of any
next picking operation for this order.

∀(i)∀(j, k : j 6= k, tij 6= 0, tik 6= 0)

[ max
p=1,...,W

max
b=1,...,R,
yijpb 6=0

(xijpb + tij)

≤ min
p=1,...,W

min
b=1,...,R,
yikpb 6=0

xikpb

∨ max
p=1,...,W

max
b=1,...,R,
yikpb 6=0

(xikpb + tik)

≤ min
p=1,...,W

min
b=1,...,R,
yijpb 6=0

xijpb]

(30)

Picking operations precedence according to the se-
quence of picking operations.

∀(i)∀(j, k : j 6= k, tij 6= 0, tik 6= 0, dij + 1 = dik)

∀(p)∀(b : yijpb 6= 0, yikpb 6= 0)

[xijpb + tij ≤ xikpb] (31)

Decision variable:
Start time of the container processing

xijpb = {0,Z+} (32)

Experiment

The computational experiment simulates the DC
realities and presents the quality of the solution ob-
tained by the developed matheuristics. The results ob-
tained during the experiment will provide evidence of
matheuristics applicability to solve real order-picking
problems in the DC. During the experiment, we also
tested the effectiveness of the developed model, pro-
viding variants of the DC layout.

The experiments were performed using the commer-
cial solver IBM ILOG CPLEX Optimization Studio
Version: 12.10.0.0. The computer parameters were:
Processor: AMD Ryzen 5 1600 Six-Core Processor
3.20 GHz; System type: 64-bit Operation System, x64-
based processor; RAM: 16 GB; Operation system: Win-
dows 10.

For the experiment, 120 instances were generated –
10 tests for each setting set. There were 3 DC layouts
with 6 buffers in each one. There was a different num-
ber of pickers in each layout: 6 pickers in the 1st layout,
4 pickers in the 2nd layout, 8 pickers in the 3rd layout.
There were 5, 10, 15, 20 orders for each of the layouts.
In each order, the container might visit from 1 to 5
locations to pick items in the logistics center layout. In
the buffers on each layout, there were 120 locations for
regular products and 48 locations for repeated inside
other buffers products in the logistics center.
The picking time varied from 1 to 30 minutes. A

number of products that might be picked in the order
and picking time were selected randomly. Order picking
is the longest operation while completing the order.
The picker must find the product on the shelf, count an
appropriate number of items of product, measure and
cut the appropriate length of material, temporarily
pack it, and put it into the container. Therefore, the
picking time is so varied.

The product is stored in the DC in 1, 2, or 3 locations.
70.83% of products (85 items) are stored only in one
location. 18.33% of products (22 items) are stored in
two locations. 10.83% of products (13 items) are stored
in three locations. The time limit for CPLEX was set
to 5 minutes.
Figure 6 presents the comparison of the 2-step

matheuristics and Full model solution for 5 orders
where 2-step matheuristics were better than Full
model solution. For the 1st layout L1, both Pickers
and Buffers matheuristics found the same solutions.
Matheuristics were better in 2 of 10 instances on aver-
age at 11.61% compared to the Full model solution.

For the 2nd layout L2, Pickers and Buffers matheuris-
tics found the same solutions for 5 of 10 instances. Pick-
ers matheuristics were better than Buffers matheuris-
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Fig. 6. Comparison of the 2-step Pickers, Buffers matheuristics and Full model solution for 5 orders: L{1,2,3} – layouts,
O5–5 orders, I {1..10, 41..50, 81–90} – instances

tics in 3 instances, on average at 20.86%, while Buffers
matheuristics were better than Pickers matheuristics
in 2 instances, on average at 44.15%. Compared to
the Full model solution, matheuristics were better in
9 of 10 instances. Pickers matheuristics were better on
average at 29.47%. Buffers matheuristics were better
on average at 30.09%.

For the 3rd layout L3, Pickers and Buffers matheuris-
tics found the same solutions for 6 of 10 instances. Pick-
ers matheuristics were better than Buffers matheuris-
tics only in 1 instance at 30.69%, while Buffers
matheuristics were better than Pickers matheuristics
in 3 instances on average at 9.92%. Compared to the
Full model solution, matheuristics were better only in
1 instance at 4.28%. Therefore, matheuristics could be
mostly applicable for the 2nd layout L2.

Figure 7 presents the comparison of the 2-step
matheuristics and Full model solution for 10 orders.
For the 1st layout L1, Pickers and Buffers matheuristics
found the same solutions for 9 of 10 instances. Buffers
matheuristics were better than Pickers matheuristics
in 1 instance at 1.67%. Compared to the Full model
solution, matheuristics were better in 1 of 10 instances
at 2.08%.

For the 2nd layout L2, Pickers and Buffers matheuris-
tics found the same solutions for 9 of 10 in-
stances. Buffers matheuristics were better than Pickers
matheuristics in 1 instance at 6.41%. Compared to
the Full model solution, matheuristics were better in
all 10 instances. Pickers matheuristics were better on
average at 36.33%. Buffers matheuristics were better
on average at 36.80%.

Fig. 7. Comparison of the 2-step Pickers, Buffers matheuristics and Full model solution for 10 orders: L{1,2,3} – layouts,
O10–10 orders, I {11..20, 51..60, 91–100} – instances
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For the 3rd layout L3, Pickers and Buffers matheuris-
tics found the same solutions for 9 of 10 instances. Pick-
ers matheuristics were better than Buffers matheuris-
tics only in 1 instance at 20.78%. Compared to the
Full model solution, matheuristics were better in 2 in-
stances on average at 5.95%. Therefore, matheuristics
could be mostly applicable for the 2nd layout L2.
Figure 8 presents the comparison of the 2-step

matheuristics and Full model solution for 15 orders.
For the 1st layout L1, Pickers and Buffers matheuristics
found the same solutions for 8 of 10 instances. Buffers
matheuristics were better than Pickers matheuristics
in 2 instances on average at 11.76%. Compared to
the Full model solution, matheuristics were better in
all 10 instances. Pickers matheuristics were better on
average at 45.33%. Buffers matheuristics were better
on average at 46.57%. There were no cases where the
Full model solution was better than matheuristics.

For the 2nd layout L2, Pickers and Buffers matheuris-
tics found the same solutions only for 2 of 10 in-
stances. Pickers matheuristics were better than Buffers
matheuristics in 6 instances on average at 9.40%,
while Buffers matheuristics were better than Pick-

ers matheuristics in 2 instances on average at 14.06%.
Compared to the Full model solution, matheuristics
were better in all 10 instances. Pickers matheuristics
were better on average at 69.13%. Buffers matheuris-
tics were better on average at 68.18%. There were no
cases where the Full model solution was better than
matheuristics.

For the 3rd layout L3, Pickers and Buffers matheuris-
tics found the same solutions for 5 of 10 in-
stances. Pickers matheuristics were better than Buffers
matheuristics only in 2 instances on average at 8.37%,
while Buffers matheuristics were better than Pickers
matheuristics in 3 instances on average at 22.31%.
Compared to the Full model solution, matheuristics
were better in all 10 instances. Pickers matheuristics
were better on average at 31.73%. Buffers matheuris-
tics were better on average at 34.64%. There were no
cases where the Full model solution was better than
matheuristics.

Therefore, matheuristics could be successfully appli-
cable for all layouts.
Figure 9 presents the comparison of the 2-step

matheuristics and Full model solution for 20 orders.

Fig. 8. Comparison of the 2-step Pickers, Buffers matheuristics and Full model solution for 15 orders: L{1,2,3} – layouts,
O15–15 orders, I {21..30, 61..70, 101–110} – instances

Fig. 9. Comparison of the 2-step Pickers, Buffers matheuristics and Full model solution for 20 orders: L{1,2,3} – layouts,
O20–20 orders, I {31..40, 71..80, 111–120} – instances

Volume 15 • Number 1 • March 2024 151



K. Czerniachowska, R. Wichniarek, K. Żywicki: Matheuristics for the Order-picking Problem with Sequence . . .

For the 1st layout L1, Pickers and Buffers matheuris-
tics found the same solutions for 5 of 10 instances. Pick-
ers matheuristics were better than Buffers matheuris-
tics only in 1 instance at 19.34%. Buffers matheuristics
were better than Pickers matheuristics in 4 instances
on average at 9.36%. Compared to the Full model
solution, matheuristics were better in all 10 instances.
Pickers matheuristics were better on average at 54.48%.
Buffers matheuristics were better on average at 55.10%.
There were no cases where the Full model solution was
better than matheuristics.

For the 2nd layout L2, Pickers and Buffers matheuris-
tics found the same solutions for 5 of 10 instances. Pick-
ers matheuristics were better than Buffers matheuris-
tics in 2 instances on average at 12.13%, while Buffers
matheuristics were better than Pickers matheuristics
in 3 instances on average at 6.28%. Compared with
the Full model solution, matheuristics were better in
all 10 instances. Pickers matheuristics were better on
average at 74.28%. Buffers matheuristics were better
on average at 74.15%. There were no cases where the
Full model solution was better than matheuristics.

For the 3rd layout L3, Pickers and Buffers matheuris-
tics found the same solutions for 7 of 10 instances. Pick-
ers matheuristics were better than Buffers matheuris-
tics only in 2 instances on average at 25.09%,
while Buffers matheuristics were better than Pickers
matheuristics only in 1 instance at 6.49%. Compared
to the Full model solution, matheuristics were better in
all 10 instances. Pickers matheuristics were better on
average at 53.78%. Buffers matheuristics were better
on average at 51.73%. There were no cases where the
Full model solution was better than matheuristics.

Therefore, matheuristics could be successfully appli-
cable for all layouts.

Figure 10 presents the comparison of the Full model
solution and 2-step matheuristics for 5 orders where the

Full model solution was better than 2-step matheuris-
tics. For the 1st layout L1, the Full model solution
was better in 2 of 10 instances on average at 15.51%.
For the 2nd layout L2, there were no cases where the
Full model solution was better than matheuristics.
For the 3rd layout L3, the Full model solution was
better than Pickers matheuristics in 7 instances on
average at 14.41%. The Full model solution was better
than Buffers matheuristics in 6 instances on average
at 15.77%.
Figure 11 presents the comparison of the Full

model solution and2-step matheuristics for 10 orders
where the Full model solution was better than 2-
step matheuristics. For the 1st layout L1, the Full
model solution was better than matheuristics in 6
instances. The Full model solution was better than
Pickers matheuristics on average at 10.63%. The Full
model solution was better than Buffers matheuristics
on average at 10.36%.For the 2nd layout L2, there
were no cases where the Full model solution was better
than matheuristics. For the 3rd layout L3, the Full
model solution was better than Pickers matheuristics
in 3 instances on average at 16.33%. The Full model
solution was better than Buffers matheuristics in 4
instances on average at 16.55%.
There is no comparison of the Full model solution

and 2-step matheuristics for 15 and 20 orders because,
for all cases, the Full model solution was worse than
2-step matheuristics. As it could be observed, with an
increasing number of orders, the quality of the Full
model solution is decreased, and matheuristics should
be applied.
Figure 12 presents the 2-step matheuristics execu-

tion speed comparison for 5 orders. For the 1st layout
L1, Pickers matheuristics were faster than Buffers
matheuristics in 4 instances on average at 8.82%,
while Buffers matheuristics were faster than Pickers

Fig. 10. Full model solution compared to 2-step Pickers, Buffers matheuristics where Full model solution was better for
5 orders: L{1,2,3} – layouts, O5–5 orders, I {1..10, 41..50, 81–90} – instances
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Fig. 11. Full model solution compared to 2-step Pickers, Buffers matheuristics where Full model solution was better for
10 orders: L{1,2,3} – layouts, O10–10 orders, I {11..20, 51..60, 91–100} – instances

Fig. 12. 2-step Pickers, Buffers matheuristics execution speed comparison for 5 orders: L{1,2,3} – layouts, O5–5 orders, I
{1..10, 41..50, 81–90} – instances

matheuristics in 5 instances on average at 4.44%. For
the 2nd layout L2, Pickers matheuristics were faster
than Buffers matheuristics in 4 instances on average
at 7.62%, while Buffers matheuristics were faster than
Pickers matheuristics in 5 instances on average at
4.59%. For the 3rd layout L3, Pickers matheuristics
were faster than Buffers matheuristics in 6 instances
on average at 6.75%, while Buffers matheuristics were
faster than Pickers matheuristics in 4 instances on
average at 2.25%.

For the 1st layout, the solution time for Pickers
matheuristics was, on average, 0.83 seconds. For the
1st layout, the solution time for Buffers matheuristics
was, on average, 0.85 seconds. For the 2nd layout, the
solution time for Pickers matheuristics was, on av-
erage, 0.63 seconds. For the 2nd layout, the solution
time for Buffers matheuristics was, on average, 0.64
seconds. For the 3rd layout, the solution time for Pick-
ers matheuristics was, on average, 1.09 seconds. For the
3rd layout, the solution time for Buffers matheuristics
was, on average, 1.13 seconds.

Figure 13 presents the 2-step matheuristics execu-
tion speed comparison for 10 orders. For the 1st layout
L1, Pickers matheuristics were faster than Buffers
matheuristics in 5 instances on average at 4.69%,
while Buffers matheuristics were faster than Pickers
matheuristics in 5 instances on average at 5.11%. For
the 2nd layout L2, Pickers matheuristics were faster
than Buffers matheuristics in 5 instances on average
at 3.45%, while Buffers matheuristics were faster than
Pickers matheuristics in 5 instances on average at
5.98%.For the 3rd layout L3, Pickers matheuristics
were faster than Buffers matheuristics in 6 instances
on average at 8.20%, while Buffers matheuristics were
faster than Pickers matheuristics in 4 instances on
average at 2.88%.

For the 1st layout, the solution time for Pickers
matheuristics was, on average, 1.83 seconds. For the
1st layout, the solution time for Buffers matheuristics
was, on average, 1.82 seconds. For the 2nd layout, the
solution time for Pickers matheuristics was, on av-
erage, 1.53 seconds. For the 2nd layout, the solution
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Fig. 13. 2-step Pickers, Buffers matheuristics execution speed comparison for 10 orders: L{1,2,3} – layouts, O10–10
orders, I {11..20, 51..60, 91–100} – instances

time for Buffers matheuristics was, on average, 1.51
seconds. For the 3rd layout, the solution time for Pick-
ers matheuristics was, on average, 2.32 seconds. For the
3rd layout, the solution time for Buffers matheuristics
was, on average, 2.43 seconds.

Figure 14 presents the 2-step matheuristics execu-
tion speed comparison for 15 orders. For the 1st layout
L1, Pickers matheuristics were faster than Buffers
matheuristics in 6 instances on average at 9.15%,
while Buffers matheuristics were faster than Pickers
matheuristics in 4 instances on average at 8.90%. For
the 2nd layout L2, Pickers matheuristics were faster
than Buffers matheuristics in 2 instances on average

at 6.54%, while Buffers matheuristics were faster than
Pickers matheuristics in 8 instances on average at
23.69%. For the 3rd layout L3, Pickers matheuristics
were faster than Buffers matheuristics in 6 instances on
average at 10.04%, while Buffers matheuristics were
faster than Pickers matheuristics in 3 instances on
average at 2.20%.

For the 1st layout, the solution time for Pickers
matheuristics was, on average, 3.51 seconds. For the
1st layout, the solution time for Buffers matheuristics
was, on average, 3.58 seconds. For the 2nd layout, the
solution time for Pickers matheuristics was, on average,
30.16 seconds. For the 2nd layout, the solution time

Fig. 14. 2-step Pickers, Buffers matheuristics execution speed comparison for 15 orders: L{1,2,3} – layouts, O15–15
orders, I {21..30, 61..70, 101–110} – instances
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for Buffers matheuristics was, on average, 3.09 sec-
onds. For the 3rd layout, the solution time for Pickers
matheuristics was, on average, 4.21 seconds. For the
3rd layout, the solution time for Buffers matheuristics
was, on average, 4.46 seconds.

Figure 15 presents the 2-step matheuristics execu-
tion speed comparison for 20 orders. For the 1st layout
L1, Pickers matheuristics were faster than Buffers
matheuristics in 5 instances on average at 8.76%,
while Buffers matheuristics were faster than Pickers
matheuristics in 5 instances on average at 22.27%. For
the 2nd layout L2, Pickers matheuristics were faster
than Buffers matheuristics in 2 instances on average at
34.93%, while Buffers matheuristics were faster than
Pickers matheuristics in 8 instances on average at
7.25%. For the 3rd layout L3, Pickers matheuristics
were faster than Buffers matheuristics in 6 instances on
average at 11.26%, while Buffers matheuristics were
faster than Pickers matheuristics in 4 instances on
average at 11.67%.
For the 1st layout, the solution time for Pickers

matheuristics was, on average, 7.71 seconds. For the
1st layout, the solution time for Buffers matheuristics
was, on average, 5.18 seconds. For the 2nd layout, the
solution time for Pickers matheuristics was, on av-
erage, 4.42 seconds. For the 2nd layout, the solution
time for Buffers matheuristics was, on average, 4.45
seconds. For the 3rd layout, the solution time for Pick-
ers matheuristics was, on average, 6.65 seconds. For the
3rd layout, the solution time for Buffers matheuristics
was, on average, 6.79 seconds.

Figure 16 shows the distance to the lower bound
(LB) of the Full model solution for 5 orders. For the
1st layout L1, an optimal solution for all 10 instances
was found. For the 2nd layout L2, an optimal solution
only for 1 instance was found. The other 9 instances
were far from LB on average at 33.88%, with minimal
and maximal values at 11.81% and 59.14%. For the
3rd layout L3, an optimal solution for 8 instances was
found. The other 2 instances were far from LB on
average at 11.19%.
Figure 17 shows the distance to LB of the Full

model solution for 10 orders. For the 1st layout L1,
an optimal solution for 6 instances was found. The
remaining 4 instances were far from LB on average
at 15.07%. For the 2nd layout L2, an optimal solution
only for 1 instance was found. The other 9 instances
were far from LB on average at 49.43%, with minimal
and maximal values of 29.46% and 60.10%. For the
3rd layout L3, an optimal solution for 8 instances was
found. The other 2 instances were far from LB on
average at 9.08%.

Figure 18 shows the distance to LB of the Full model
solution for 15 orders. For the 1st layout L1, an optimal
solution was not found for any instances. All instances
were far from LB on average at 50.69%, with minimal
and maximal values of 35.96% and 61.79%. For the 2nd
layout L2, an optimal solution was not found for any
instances. All instances were far from LB on average at
71.31%, with minimal and maximal values at 54.92%
and 78.73%. For the 3rd layout L3, an optimal solution
was not found for any instances. All instances were

Fig. 15. 2-step Pickers, Buffers matheuristics execution speed comparison for 20 orders: L{1,2,3} – layouts, O20–20
orders, I {31..40, 71..80, 111–120} – instances
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Fig. 16. Distance to LB of the Full model solution for 5 orders: L{1,2,3} – layouts, O5–5 orders, I {1..10, 41..50, 81–90} –
instances

Fig. 17. Distance to LB of the Full model solution for 10 orders: L{1,2,3} – layouts, O10–10 orders, I {11..20, 51..60,
91–100} – instances

Fig. 18. Distance to LB of the Full model solution for 15 orders: L{1,2,3} – layouts, O15–15 orders, I {21..30, 61..70,
101–110} – instances
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far from LB on average at 45.77%, with minimal and
maximal values at 11.16% and 61.54%.

Figure 19 shows the distance to LB of the Full model
solution for 20 orders. For the 1st layout L1, an optimal
solution was not found for any instances. All instances
were far from LB on average at 59.47%, with minimal
and maximal values of 52.99% and 69.72%. For the 2nd
layout L2, an optimal solution was not found for any
instances. All instances were far from LB on average at
74.93%, with minimal and maximal values of 70.21%
and 81.27%. For the 3rd layout L3, an optimal solution
was not found for any instances. All instances were
far from LB on average at 63.13%, with minimal and
maximal values of 52.69% and 70.24%.
Computational experiments performed by the au-

thors have shown the performance of the developed
2-step Pickers, Buffers matheuristics. Success or fail-
ure may depend on one’s ability to assess and control
algorithmic efficiency. It is preferable to use as few
resources as possible for optimal effectiveness.
Pickers and Buffers matheuristics found the same

solutions for 80 of 120 instances. Pickers matheuristics
were better than Buffers matheuristics in 18 of 120
instances (or of 40 instances for which the solution
differed) on average at 15.61%. Buffers matheuristics
were better than Pickers matheuristics in 22 of 120
instances (or of 40 instances for which the solution
differed) on average at 13.98%.

Compared to the Full model solution, matheuristics
were better in 85 of 120 instances. Pickers matheuris-
tics were better than the Full model solution in 85 of
120 instances on average at 46.56%. Buffers matheuris-

tics were better than the Full model solution in 85 of
120 instances on average at 46.87%.

Compared to both matheuristics the Full model
solution was better in 19 of 120 instances. The Full
model solution was better than Pickers matheuristics
in 18 instances on average at 13.59%. The Full model
solution was better than Buffers matheuristics in 18
instances on average at 14.11%.
Pickers matheuristics were faster than Buffers

matheuristics in 57 instances of 120 instances on aver-
age at 8.87%, while Buffers matheuristics were faster
than Pickers matheuristics in 60 instances on average
at 9.48%. The solution time for Pickers matheuristics
was, on average, 5.41 seconds and varied from 0.57
seconds to 4.47 minutes. The solution time for Buffers
matheuristics was, on average, 2.99 seconds and varied
from 0.56 seconds to 8.17 seconds.
The optimal solution was found by the Full model

solution for 34 of 120 instances. The remaining 86
instances were far from LB on average at 52.76%, with
minimal and maximal values at 2.08% and 81.27%,
respectively.

Conclusion

In this research, we model the logistics order-picking
problem with sequence-dependant constraints and
a one-directional conveyor with two decision variables:
container start time and product quantity. We pro-
pose the two variants of the 2-step matheuristics in

Fig. 19. Distance to LB of the Full model solution for 20 orders: L{1,2,3} – layouts, O20–20 orders, I {31..40, 71..80,
111–120} – instances
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which the first step is the Pickers or Buffers free time
minimization problem and finding the value of the
product quantity; the second step is order picking
makespan minimization problem and finding the con-
tainer start time using the product quantity achieved
on the first step. Both steps were solved using mathe-
matical programming. In the second step, we included
several simplification approaches, which significantly
reduced the solution time, they are: excluding not-
ordered products, excluding not-in-buffers products,
excluding products without quantities found in the
first step of matheuristics.

Heuristics and matheuristics are effective functions
that can be used consciously or unconsciously and
ignore some information. We use this method to split
the main problem with two decision variables into
two steps, where in each step, we are looking for one
decision variable. We delivered a workable method
for solving the order picking problem that anyone
can implement in the logistics center. The developed
matheuristics result in good decision-making for order-
picking scenarios in various DC layouts.
Matheuristics are versatile and can be tailored to

the specific characteristics of optimization problems.
The combination of mathematical programming and
heuristic methods provides a powerful framework for
solving complex problems in various domains.
In this study, we performed computational experi-

ments for 3 versions of the DC layouts, which differ
with pickers to buffers assignment: a picker completes
orders in a single buffer, a picker completes orders in
several buffers, and several pickers complete orders
in one buffer. The results of the matheuristics were
compared between themselves and the mathematical
programming of the Full model solution. For 80 of
120 instances, Pickers and Buffers matheuristics found
identical results. On the one hand, Pickers matheuris-
tics were better than Buffers matheuristics in 18 of
120 instances (or of 40 instances with unique results)
on average at 15.61%. On the other hand, Buffers
matheuristics were better than Pickers matheuristics
in 22 of 120 instances (or of 40 instances with unique
results) on average at 13.98%. Compared to the Full
model solution, Pickers and Buffers matheuristics were
better in 85 of 120 instances. Pickers matheuristics
were better than the Full model solution on average
at 46.56%, while Buffers matheuristics were better on
average at 46.87%.
The computational experiment results suggest

several key findings regarding the performance of
matheuristics compared to the Full model for different
scenarios.
• The results indicate that as the number of or-
ders increases, the quality of the Full model so-

lution decreases. Specifically, for 15 and 20 orders,
matheuristics consistently outperformed the Full
model across all instances.

• This highlights the scalability and efficiency of
matheuristics in handling larger problem instances.
The ability of matheuristics to provide better solu-
tions with an increasing number of orders makes
them a favorable choice for real-world scenarios
with dynamic demand.
• The 2nd layout L2 was identified as the most compli-

cated for the Full model solution on small instances.
Matheuristics consistently delivered higher-quality
solutions for this layout in such cases. This high-
lights the fact that matheuristics are very useful
for handling complex layouts. Compared to conven-
tional Full models, they are better able to handle
complex configurations because of their flexibility
and adaptability.

• The findings from the study support the proposal
to use matheuristics, particularly for cases with
increased order numbers and complex layouts.

• Because heuristics consistently found better solu-
tions across all layouts, they are recommended for
both small and large cases. This wide range of ap-
plications highlights matheuristics’ adaptability in
solving various optimization problems.

• Knowledge of the matheuristics’ possibilities can
help businesses to stay competitive.
Although there are advantages and disadvantages

to utilizing heuristics and matheuristics in decision-
making, they are not naturally positive or negative.
They might speed up the process of issue-solving, but
they can also result in incorrect evaluations of third
parties or circumstances.

Matheuristics are effective in this way, which is a key
factor in why they should be used in the DC. As there
is no certainty of their veracity, the distributor should
be cautious about how much he relies on them.
The developed matheuristics enable DC planners

to schedule orders without much effort while having
differing justifications. They obtained solutions fast
and didn’t take up much of the available resources.
This work provides a foundation for a variety of

future research opportunities. For instance, it is useful
to allow the storage of products in one location, as in
this research, some kinds of products were stored in
several locations in different buffers. This complicated
the problem because the container must go to the next
round if the next product is located in the previous
buffer. In this research, because the products were
stored in several buffers, the container could travel
to the second location where the product is stored,
especially if it is on the way of the conveyor moving
direction.
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Moreover, we propose to add differentiation based
on the product type. In this research, the product
could be picked only from one location (buffer) because
the distributor cannot guarantee the identity of, for
example, colors in different deliveries. So we propose
to add into the model the case if the product is totally
identical in different deliveries and some items of it
could be taken from one buffer and the rest parts could
be taken from another buffer and placed into the same
order.

In future research, the proposed matheuristics could
be utilized by artificial intelligence and machine learn-
ing programs to guide their output.
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