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article presents a computer model considering two caterpillars, resting on elastic-plastic sub-soil, with
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1. Introduction

The assessment of the stability of heavy working machines operating on various soils is
a significant problem that often occurs in geotechnical engineering. When using the term
“stability”, it should be emphasised that in this case it concerns the loss of balance of a heavy
tracked machine moving on the ground caused by insufficient bearing capacity of the subsoil.
Stability is considered in two aspects: the scientific aspect and the aspect related to the
safety of the immediate surroundings of the heavy machinery. In practical terms, the research
problem concerns disasters related to the overturning of construction machines on construction
sites, while in theoretical terms it is considered as an interaction problem of a construction
machine – a working platform – weak subsoil. The working platform is an earth structure
prepared and verified in terms of load capacity, temporary or permanent, made on the native
soil base of coarse-grained or stabilized aggregates, constituting a surface for setting up and
operating heavy construction equipment, machines and devices in a safe manner. Computer
simulations of the load-bearing capacity of sand layers lying above the clay subsoil when
the sand layer thickness H is comparable with the foundation width B (equal to the track
width of a construction machine) were discussed by Burd and Frydman [1]. In the work [2]
by Michałowski and Shi, the bearing capacity of a two-layer (the upper layer consisting of
sand and the lower layer consisting of clay) of the subsoil on which the direct foundation is
placed was taken into account. Considerations regarding the failure mechanism characteristic
of a two-layer soil, where the upper layer is medium or dense sand, and the lower layer is soft
clay (weak subsoil), are presented in [3, 4] and [5]. In these studies, the spatial variability
of the subsoil strength parameters is considered only in soft clay. It was assumed that the
strength parameters of the upper layer (sand layer) are constant. This scenario is adequate to
the problem of working platforms. Numerical studies on the multilayer subsoil have been the
subject of numerous studies [6–18]. Thus, in the authors opinion, the basic result of these
works, the bearing capacity of a strip foundation q [force/length2], is well recognized, and can
be adopted as a fundamental entry parameter to be used in the analytical models developed in
this research. The proposed models are limited only to the estimation of the bearing capacity
and are not devoted to the serviceability limit states, which are found in the works of other
researchers [19, 20].

Recent work is the continuation of the previous work of the authors [21–23] dealing with
some partial problems. Here, a final solution of the problem of achieving limit state of loss
of stability for a system machine-subsoil is given (analytical and numerical approach). The
original elements are listed in final conclusion (point 5)

In the works [21–23] on the interaction of heavy caterpillar tracks system – subsoil, the
following models were made: 3D FEM model ½(simulation of only one caterpillar, using
symmetry of the system), Approximation Model (approximation of results of 3D FEM model
½using the approximating equations), Analytical Model (closed solution without the use of
time-consuming computer simulations). In the further part of the work, studies of a computer
model including full simulations of the crawler construction machine – subsoil interaction
are presented. In each of the studies to date (in the 3D FEM model as well as analytical
models), the parameters for the calculations (geometrical data, dead weight of the machine)
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were characteristic of the Bauer BG20H / BT60 piling machine, often used on construction
sites [24].

Basing assumptions made for both classes of mechanical models (analytical and numerical)
of the analysed machine-subsoil system are the following:

– The machine is moving on a caterpillar tracks system (exclusively). Machines moving
on wheels are not considered in this article.

– The whole machine, including its two caterpillar tracks, is treated as a perfectly rigid
body.

– The distribution of all individual masses of the components of the construction machine
(chassis, body, mast, etc.) is known. This means that it is possible to at least approximately
calculate the coordinates of each center of mass of the individual elements and the
corresponding moments of inertia.

– The subsoil is treated as an elastic perfectly plastic continuum in which Mohr-Coulomb
(M-C) yield criterion is used. It is characterised by two strength parameters i.e. friction
angle φ and cohesion c for fully drained conditions; in case of impermeable soils it
can be reduced to the Tresca model in which undrained shear strength su is used as an
unique strength parameter. This is the simplest choice, recommended by majority of
design standards (i.e. Eurocode EC 7) for the limit state of bearing capacity of a subsoil.

– The impact of local unevenness in the distribution of contact stress under the caterpillar
is ignored.

Numerical analysis of the problem requires a solution of unilateral contact problem. Basic
theory and algorithms of this problem may be found in references [25–27].

2. Analytical models
The Analytical Model in its basic version was presented in the work [21]. The following

modifications are made to specify the basic Analytical Model due to:
– variable length of the contact zone in the limit state,
– independent mechanism of the loss of stability due to rotation only in the YZ plane,
– unequal ground bearing capacity under each of the caterpillar.

2.1. Limit state for the two caterpillar tracks system

The equations for the displacement of the track center and the angle of rotation based on
the force distribution were derived in detail in the earlier work [21]. They lead to the shape
of contact stresses in the ultimate state accompanying loss of stability by the rotation of the
machine which are shown in Fig. 2 and Fig. 3. The following basic relations of simple statics
of the system and also symbolics are given in a manner similar to this given in works [21–23].
Due to the possibility of uneven load transmitted by the tracked undercarriage to the ground,
the dimensionless load distribution coefficient was introduced ξi =

Qi

Q
, i = 1, 2.

The equilibrium of a system of two tracks loaded with vertical forces Q1 = ξ · Q is
considered and Q2 = (1 − ξ) · Q where Q is the total weight of the machine. The MX , MY
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moments acting on the machine correspond to the Mi moments acting on individual caterpillars.

Introduced are dimensionless eccentricities ei =
2 · Mi

Qi · L
, i = 1, 2, eX =

2·MX

Q ·L and eY =
2 · MY

Q · D
,

where: D – track spacing [m], L – track length [m] and B – track width [m]. Following
relationships result from the equivalence of force systems: (Q, MX, MY ) ≡ (Q1,Q2)

eX (ξ) = ξ · e1 + (1 − ξ) · e2(2.1)
eY (ξ) = 2 · ξ − 1(2.2)

The static scheme (loads) is shown in Fig. 1.

Fig. 1. Static scheme of a heavy caterpillar tracks system

The relationship between eccentricities ei and load capacity indicator for the single
caterpillar track pi (0 < pi < 1): pi = Qi/N , i = 1, 2, where N is the bearing capacity of the
subsoil designated for a single track takes the form, coming from limit state equilibrium is:

(2.3) pi = 1 − ei

By introducing a factor of utilisation of the total bearing capacity of the system subsoil:

(2.4) η =
Q

2N
=

Q
2q̂ · BL

, η ∈ (0, 1) ,

where q̂ is limit load capacity of the subsoil, see Eq. (2.8), we can create a system of equations:

(2.5)
{

(1 − e1) − 2ξη = 0,
(1 − e2) − 2 (1 − ξ) η = 0.

from which, after eliminating ξ and using relations (2.1), (2.2) we obtain the basic formula for
determining the interaction curves

(2.6) eX = 1 −
(
1 + e2

Y

)
· η

assuming the same bearing capacity of the subsoil under both tracks.
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2.2. Variable length of the contact zone in the limit state

New research on the Analytical Model, which was not presented in the work [22], concerns
dependence of the bearing capacity on the variable length of the contact zone in the limit state.
In the case of increasing value of the eccentricity of the force loading the track, the track is
detached from the subsoil, which reduces the length of the contact zone (L ′) in relation to the
unreduced (basic) track length (L). Evidence of the formula (2.7) resulting from the balance of
forces acting on one caterpillar track in a limit state is shown in Fig. 2.

(2.7) L ′ = (1 − e)L

Fig. 2. Forces decomposition in limit state

If the shape factors modifying bearing capacities qc, qγ established for infinitely long strip
included in the EC7 [28] standard are considered, the limit load capacity of the subsoil takes
the form:

(2.8) q̂ = qc · sc + qγ · sγ

with the bearing resistance factors Nc , Nγ, Nd and sc , sγ shape correction coefficients, c –
cohesion, Φ – internal friction angle and γ – unit weight.

qc = c · Nc(2.9)

qγ =
1
2
· γ · B · Nγ(2.10)

Nc = (Nd − 1) · tan−1 (Φ) , if Φ = 0⇒ Nc = 2 + π(2.11)

Nd = eπ tanϕtan2
(
π

4
+

Φ
2

)
(2.12)

Nγ = 2 (Nd − 1) · tan (Φ)(2.13)

sc = 1 +
0.2B

L ′
= 1 +

λc
1 − e

, λc = 0.2
B
L

(2.14)

sγ = 1 −
0.3B

L ′
= 1 −

λγ

1 − e
, λγ = 0.3

B
L

(2.15)



654 A. URBAŃSKI, M. RICHTER

Load capacity indicator for the single caterpillar track pidue to modified bearing capacity
of the subsoil q̂ is:

(2.16) pi =
Qi

B · L · (qc · sc + qγ · sγ)
=

Qi

N∞
[
(1 − f ) · sc + f · sγ

]
where N∞ = (qc + qγ)BL is bearing capacity determined for the infinite length of the track
(L →∞) and f is dimensionless factor:

(2.17) f =
qγ

qc + qγ
, 1 − f =

qc
qc + qγ

The system of equations describing the interaction of both tracks of the system, considering
Eq. (2.3) can be put as:

(2.18)



1 − e1 =
2 · ξ · η

(1 − f ) ·
(
1 +

λc
1 − e1

)
+ f ·

(
1 −

λγ

1 − e1

)
1 − e2 =

2 · (1 − ξ) · η

(1 − f ) ·
(
1 +

λc
1 − e2

)
+ f ·

(
1 −

λγ

1 − e2

)
After further transformations:

(2.19)
{

2 · ξ · η = 1 − e1 −
(
f ·

(
λc + λγ

)
− λc

)
2 · (1 − ξ) · η = 1 − e2 −

(
f ·

(
λc + λγ

)
− λc

)
In order to simplify the notation, we introduce a total correction factor related to the change

of the length of the track contact zone λ, equal to:

(2.20) λ = f ·
(
λc + λγ

)
− λc

After substituting equations (2.12), (2.13) to (2.17), we obtain equation (2.20) which
reduces to the expression:

(2.21) λ =

1
2
· γ · B · Nγ · λγ − Nc · c · λc

Nc · c +
1
2
· γ · B · Nγ

Finally, also inserting (2.20) into equation (2.19) we get:

(2.22)
{

e1 = 1 − 2 · ξ · η − λ
e2 = 1 − 2 · (1 − ξ) · η − λ

Proceeding analogously to deriving the final expression into the interaction curves in the
basic Analytical Model, after substituting equation (2.22) to equations (2.1), (2.2) we obtain
the following relationships:

(2.23)
{
ξ · (1 − 2 · ξ · η − λ) + (1 − ξ) · (1 − 2 · (1 − ξ) · η − λ) = eX
2 · ξ − 1 = eY



STABILITY ANALYSIS OF HEAVY MACHINERY MOVING ON WEAK SUBSOIL . . . 655

Equation (2.24) after simplification and elimination the variable ξ , leads to sought equation
describing the interaction curve taking into account the variable length of the contact zones in
the limit state:

(2.24) eX = 1 −
(
1 + e2

Y

)
· η − λ

After transformation, it allows us to obtain the coefficient η in a form:

(2.25) η =
1 − eX − λ

1 + e2
Y

EXAMPLE
In each of the examples, data such as total weight Q of the machine, geometrical parameters

B, D, L of the track system were used as for the Bauer BG20H/BT60 piling machine.
Assuming that the track width – B = 0.7 m, track length – L = 4.7 m partial correction

factor λC , λγ take the form: λC = 0.2 ·
0.7 m
4.7 m

= 0.03 [–], λγ = 0.3 ·
0.7 m
4.7 m

= 0.045 [–].
Based on research work [22], we follow the idea presented in Bowles [26], of taking the

weighted average of parameters cav , Φav, γav of the full set of layers up to the depth H = 2B,
with its thickness hi being the corresponding weighting factors. Szypcio and Dołżyk [30] used
the method from [29] to determine the ultimate bearing capacity of the layered subsoil. An
“indirect” formula is recommended in [29], [30] for averaging friction angle, i.e. for tan(Φav),
instead of Φav alone. For the “weak” case it gives:

γav =
0.5 · 18 + 0.6 · 17 + 0.3 · 18

1.4
= 17.57

kN
m3

cav =
0.5 · 5 + 0.6 · 30 + 0.3 · 5

1.4
= 15.7 [kPa]

tanΦav =
0.5 · tan 32◦ + 0.6 · 0 + 0.3 · tan 32◦

1.4
→ Φav = 19.65◦


.

Bearing capacity factors take values:

Nd = eπ ·tan(19.65) · tan2
(
45 +

19.65
2

)
= 6.18 [−] , Nc = (Nd − 1) · tan−1 (19.65) = 14.511 [−]

Nγ = 2 · (Nd − 1) · tan (19.65) = 3.7 [−]
Using EC7 [28] standard equation q̂∞ = q∞c + q∞γ = Nc ·c + 0.5NγγB we get:

q̂weak = 14.511 · 15.7 + 0.5 · 3.7 · 17.57 · 0.7 = 250 kPa. Using equation (2.4) for total weight

of heavy machine Q = 725 kN and “weak” subsoil we get: ηweak =
725

2 · 250 · 0.7 · 4.7
= 0.44

[–] Total correction factor λ for “weak” subsoil takes the form:

λ =

1
2
· 17.57 · 0.7 · 3.7 · 0.045 − 14.511 · 15.7 · 0.03

14.511 · 15.7 + 1
2 · 17.57 · 0.7 · 3.7

= −0.023 [−]

Summarising, the data for the Analytical Models (with total correction factor λ) are given
in Table 1.

The results of calculations with correction factor λ are shown in Fig. 9.
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Table 1. Parameters of the Analytical Model (with total correction factor λ)

Parameter Units Model 1 – “Weak” Model 2 – “Strong”
λC [–] 0.03 0.03
λγ [–] 0.045 0.045

γav
kN
m3 17.57 18

cav [kPa] 15.7 0
Φav [deg] 19.65 32
Nc [–] 14.511 35.49
Nγ [–] 3.7 27.715
Nd [–] 6.181 23.177
q̂∞ [kPa] 250 352
η [–] 0.441 0.314
λ [–] –0.023 0.045

2.3. Second, independent failure mechanism
(rotation only in the YZ plane)

Considering the particular case of eX = 0 in the Analytical Model, description of the
mechanism of failure due to deformation of the subsoil under only one track, leading to rotation
exclusively around the X axis (in the YZ plane) appears. Assuming that in the first equation of
the system (2.5) e1 = 0 (eX = 0), it takes the form:

(2.26) 1 −
ξ · Q

N
= 0

which after substituting equation (2.4) and using expression ξ =
1 + eY

2
leads to the equation:

(2.27) 1 − 2 ·

(
1 + elim

Y

2

)
· η = 0

and allows to evaluate limiting value of the eccentricity eY in the ultimate limit state:

(2.28) elim
Y =

1
η
− 1

The conclusion is that the limit values of the eccentricity elim
Y appear for the value of

η > 0.5, and this failure mechanism would be predominant if eY ≥ elim
Y .

2.4. Ultimate state in the case of uneven bearing capacities of subsoil

The aim of this section is to derive interaction curves in the (eX , eY ) space analogously to
the manner of sections 2.1–2.2, for the case when each of the caterpillars rests on the subsoil
with different values of the ultimate bearing capacity. Force distribution accompanying limit
state is shown in Fig. 3.
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Fig. 3. Force distribution in the limit state with uneven bearing capacities of subsoil
for each of the caterpillars

The basic system of equilibrium equations takes the form:

(2.29)

(2.30)

(2.31)



p1 · µq · L + p2 · q · L = Q

p1 · µq · L ·
(

L − L · p1
2

)
+ p2 · q · L ·

(
L − L · p2

2

)
= MX

p1 · µq · L ·
D
2
− p2 · q · L ·

D
2
= MY

In it, coefficient 0 < µ < 1 is the ratio between the bearing capacities of the subsoil
under individual tracks. Using the relations: MX = eX ·

QL
2

, MY = eY ·
QD

2
, then multiplying

equation (2.30) by
2

L2 · q
, multiplying equation (2.31) by

2
L · D · q

and noting that temporary

factor of utilisation of the total bearing capacity of the system η =
Q

2 · L · q
is taken as if it is

related to the subsoil with greater bearing capacity, the equilibrium equations are rewritten in
dimensionless form:

(2.32)

(2.33)

(2.34)


µ · p1 + p2 = 2η

µ · p1 · (1 − p1) + p2 · (1 − p2) = 2eX · η

µ · p1 − p2 = 2eY · η

Eliminating load capacity indicators p1, p2, gives equation (2.35), which, after conversion,
leads to the sought formula (2.36) for the interaction curve in a case of uneven bearing capacities
of subsoil:

µ ·

(
η · (1 + eY )

2 · µ

)
·

(
1 −

(
η · (1 + eY )

µ

))
+

(
1
2
η · (1 − eY )

)
· (1 − (η · (1 − eY ))) = eX · η

(2.35)
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eX = 1 − η
[
(1 + eY )2 + (1 − eY )2 µ

]
2µ

(2.36)

The interaction curve for an exemplary case of uneven soil capacities, corresponding to the
cases “weak” and “strong” as in section 2.2, is shown in Fig. 4b, while Fig. 4a shows it for
both cases, separately.

(a) (b)

Fig. 4. Comparison of interaction curves for a case of uneven bearing capacity treated: a) separately, as
for two cases b) as one, accordingly to Eq. (2.36)

3. 3D FEM model

3.1. Introductory information

To verify results of the Analytical Model from section 2.4, a three-dimensional FE model
was created in the ZSoil.PC v.20 software system [28]. It is capable to fully simulate the
interaction of the caterpillar track machine with the subsoil until achieving the ultimate limit
state. By performing computations using the 3D FEM model, it is possible to consider the
overlapping of the impact zones of individual caterpillars on the subsoil (omitted in the 3D
FEMModel ½ [22] and in the Analytical Model). The 3D FEM model contains layered subsoil
(Mohr-Coulomb elastic-plastic) and two caterpillar tracks (elastic continuum). EAS 8 node
brick elements (with two extra strain modes) were used to discretize subsoil. These elements
are known as locking free (have optimal constraint to free degrees of freedom ratio) and
therefore can be used to carry out limit state analyses, see [31] for details.
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Additionally, high-rigidity beam elements were used to connect the two tracks. Each track
is modelled as a stiff beam plus stiff elastic element (with Young’s modulus significantly
higher compared to other elements). On the contact surface of the track with the ground,
“contact interface” elements were used. In ZSoil contact interface element may be placed only
between continuum elements, that is why adding continuum el. was necessary. To increase
the accuracy of the ZSoil model, directly under the tracks FE mesh is densified and a “mesh
tying” interface [31] is used between zones of grids of different densities. Again, in each of the
analysed models, the data (total weight, geometry of the track system) were used as for the
Bauer BG20H/BT60 piling machine. Due to the universality of the computer modelling, there
are no contraindications for their use in the case of other tracked construction machines (e.g.
drilling rigs, construction cranes, excavators, etc.).

It was assumed that the track system was loaded initially with a constant vertical force Q
being the total weight of the machine acting at the center of the system. Then, the simulation
process is carried out incrementally by imposing rotations, i.e. pair of rotational D.o.F (φX ,
φY ) at a central nodal point of the almost infinitely stiff beam connecting two tracks. Kinematic
control, for the each case of prescribed angle θi (θ1 = 0◦; θ2 = 15◦; θ3 = 30◦; θ4 = 45◦;
θ5 = 60◦; θ6 = 75◦; θ7 = 90◦), indicating inclination direction, was as follows:

φX = φ · cos θ, φY = φ · sin θ,

where φ is a gradually increasing rotation multiplier.

For each step, reactions at the constrained D.o.F, being a pair of moments (MX , MY )
are noted. Each simulation is continued incrementally until the moments in which reactions
stabilize, reaching the values MX.max, MY .max. This corresponds to the loss of stability of the
system. N.B., this effect was obtained smoothly under described kinematic control, while it
was hardly feasible with applied static control, i.e. loading by moments MX , MY . Two models
with assumed soil parameters are shown in Fig. 5 and Fig. 6.

Fig. 5. General view of the 3D FEM Model
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(a)

(b)

Fig. 6. 3D FEM models: a) Model 1 – “weak”, b) Model 2 – “strong”

3.2. Results

The most important result of the simulation obtained from the 3D FEM model are paths
(φX , MX ) and (φY , MY ) as well pair of moments MX.max,θ, MY .max,θ at the moment of the
stability loss of the subsoil, read for each path θ. Examples of graphs of these are shown in
Fig. 7.

A view of rescaled deformations together with plasticization zones at a final stage of the
3D FEM modelling for the subsoil of “weak” case are shown in Fig. 8.
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(a) (b)

Fig. 7. Results of 3D FEM model. Example of “weak” subsoil: a) ϕX (MX ) for θ2 = 15◦, b) ϕY (MY ) for
θ2 = 15◦

(a) (b)

(c) (d)

Fig. 8. Deformation (rescaled) for the 3D FEM model with the designation of plastic zones (Model 1 –
“weak”): a) θ1 = 0◦, b) θ3 = 30◦, c) θ5 = 60◦, d) θ7 = 90◦

4. Comparison of the interaction curves
For each of loading paths with different θ dimensionless eccentricities corresponding

to the pair of ultimate moments MX.max,θ , MY .max,θ obtained from the 3D FEM model are
evaluated as:

eX.max,θ =
2 · MX.max .θ

Q · L
(4.1)

eY .max,θ =
2 · MY .max .θ

Q · D
(4.2)
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They consist the points of interaction curves in space (eX , eY ) obtained numerically.
Figure 9 shows a comparison of these interaction curves with those obtained on the basis of
the results obtained from the different variants of Analytical Model.

Fig. 9. Interaction curves for different dimensionless eccentricities eX , eY and the two subsoil cases
“weak” and “strong”

In the analysed cases, the Analytical Model based on the 2D estimation of the bearing
capacity corresponds qualitatively to the results of the 3D FEM model. Some quantitative
discrepancies are due to differences in the failure mechanism. In the 3D FEM model, in
simple terms, the destruction takes place by pressing a rotating stamp. On the other hand, the
Analytical Model assumes even pressing (without rotation) of the stamp into the soil substrate.
The second reason is the simplified distribution of contact stresses assumed in the Analytical
Model (Fig. 1), neglecting the increase in stress at the end of the caterpillar. However, it should
be acknowledged that the presented Analytical Model gives more conservative results (on the
safety side) than those derived from the 3D FEM model (elastic-plastic model of the subsoil
loaded with a rigid track).

5. Final conclusions

This paper compares the two possible approaches (Analytical Model and 3D FEM model)
to determine the stability of a heavy construction machine considering the interaction of
a heavy construction machine – working platform – weak soil foundation.
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In the recent work the Analytical Model has been enhanced with taking into account the
dependency of subsoil load capacity with a length of loaded zone, furthermore of different soil
condition under each track and consideration of the second failure mechanism in 3D space.

The main disadvantage of the three-dimensional computer models is that their execution
and analysis necessary to create interaction curves (eX , eY ), requires tracing a full path until
reaching the ultimate limit state. This, in all cases, is extremely time consuming, what makes the
use of three-dimensional models (e.g., the 3D FEMModel ½ [21–23] presented in earlier works
by researchers or the currently presented 3D FEM model) difficult to accept in engineering
practice. Therefore, one of the elements of the research carried out by the authors of this article
was to create an approximate but equivalent method of analysis (Analytical Model), which
in the future may be the basis for a design procedure based on readily available data such
as load capacity subsoil in a state of 2D plane strain deformation. The application of basic
Analytical Model in design algorithm was described in detail in the work [22]. According to
the authors, the presented Analytical Models, with or without enhancements contained in this
article, have a chance to find application in design practice due to the presentation of a complex
problem by means of a synthetic combination of several theories known for years. In addition,
the Analytical Models do not require complex and long-term computer modelling as hand
calculation yields results instantly. The results obtained from the full 3D computer simulation
were compared with the Analytical Models developed by the researchers, demonstrating
quantitative and qualitative compliance, which ultimately confirms their correctness. In authors
opinion, this issue, provides similar level of accordance with reality as in the other practical
geotechnical problems (load capacity of foundation or pressure on retaining structures). Of
course experimental investigation, for example real scale in-situ tests can be also useful in
confirmation of the theory, but first of all they would require very thorough identification of
given subsoil data.

The authors hope that the results presented in this paper, mainly easy obtainable interaction
curves, may be used as a reference point in solving the problem of stability analysis of heavy
tracked machines operating on weak ground. However, it must be said that in the proposed
Analytical Model and referential 3D FEM model only the mechanical framework of the
analysed issue is given. It should not be considered in the context of exhausting the research
topic, as some kind of reliability analysis leading to establishing proper safety factors is needed.
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Analiza stateczności ciężkich maszyn budowlanych poruszających się
po podłożu słabonośnym. Model 3D MES vs. modele analityczne

Słowa kluczowe: inżynieria geotechniczna, krzywe interakcji, interakcja podłoże gruntowe –maszyna
budowlana, model 3D MES, modele analityczne, platforma robocza

Streszczenie:

W artykule autorzy przedstawiają rozszerzenie zakresu dotychczas przeprowadzonych badań o pełną
trójwymiarową symulację komputerową (metodą elementów skończonych), która uwzględnia interakcję
między: gąsienicowym układem jezdnym – platformą roboczą – podłożem gruntowym. W artykule
przedstawiono model komputerowy uwzględniający układ jezdny dwóch gąsienic maszyny budowlanej
znajdujących się na podłożu gruntowym, sprężysto-plastycznym, przy warunkach plastyczności Mohra-
Coulomba, pozwalający na komputerową symulację zachowania się układu aż do osiągnięcia stanu
granicznego nośności. Wyniki powyższego modelu komputerowego traktuje się jako odniesienie dla
uproszczonych Modeli Analitycznych szacowania stanu granicznego, które mogą być wykorzystane
w procedurach projektowych. Najważniejszymi wynikami wynikającymi z Modelu Analitycznego są
proste krzywe interakcji, w przestrzeni momentów działających na układ gąsienicowa maszyna budowlana
– podłoże gruntowe, ograniczające zakres działania przy danych parametrach podłoża gruntowego.
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