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Research paper

Design optimization of obstacle avoidance of intelligent
building the steel bar by integrating reinforcement learning

and BIM technology

Hong Chai1, Junchao Guo2

Abstract: In promoting the construction of prefabricated residential buildings in Yunnan villages and towns,
the use of precast concrete elements is unstoppable. Due to the dense arrangement of steel bars at the joints
of precast concrete elements, collisions are prone to occur, which can affect the stress of the components
and even pose certain safety hazards for the entire construction project. Because the commonly used the
steel bar obstacle avoidance method based on building information modeling has low adaptation rate and
cannot change the trajectory of the steel bar to avoid collision, a multi-agent reinforcement learning-based
model integrating building information modeling is proposed to solve the steel bar collision in reinforced
concrete frame. The experimental results show that the probability of obstacle avoidance of the proposed
model in three typical beam-column joints is 98.45%, 98.62% and 98.39% respectively, which is 5.16%,
12.81% and 17.50% higher than that of the building information modeling. In the collision-free path design
of the same object, the research on the path design of different types of precast concrete elements takes
about 3–4 minutes, which is far less than the time spent by experienced structural engineers on collision-free
path modeling. The experimental results indicate that the model constructed by the research institute has
good performance and has certain reference significance.
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1. Introduction

The steel bar can greatly affect the bearing capacity of prefabricated buildings, and the
building structure collapse loss caused by the defect of the steel bar component is huge.
Therefore, the planning and design of the steel bar route is an indispensable part in reinforced
concrete structure and prefabricated component building placement. Due to the quantity and
placement requirements of the steel bars in precast concrete elements (PCE), even if steel bars
are arranged according to regulations, there may still be collisions and crowding problems
between steel bars. However, most of the existing solutions to the steel bar conflict are based
on building information modeling (BIM). However, algorithms based on BIM models can only
match PCE with conventional shapes, and cannot adjust the position of steel bars to avoid
obstacles [1]. To overcome the limitations of traditional design codes and construction, and
realize the automatic arrangement and adjustment of the steel bar in a certain number of PCE
in complex environments. The automatic steel bar obstacle avoidance (OA) model based on
multi-agent reinforcement learning (MARL) and BIM is proposed, to complete the OA design
of the steel bars. This research is divided into four parts. The first part is a description of
relevant work in recent years. The second part is a collision-free framework based on MARL
fusion of BIM. The third part is to test the model proposed by the research. The fourth part
summarizes the results and draws conclusions and formulates future research directions.

2. Related words

Research on the design of OA using the MARL method has developed maturely. To
solve the poor control rate and portability of traditional multi-agent formation OA algorithm,
JI et al. proposed a method based on deep reinforcement learning (DRL), and proved the
effectiveness of the proposed algorithm through simulation experiments [2]. Ang et al.
proposed a game combination multi-agent depth determination strategy gradient method to
optimize the trajectories of multiple unmanned aerial vehicles to solve the problem of uneven
distribution of data size between ground users due to the heterogeneity of mobile tasks [3].
Through experiments, it was proven that the proposed algorithm can minimize unloading
delay and improve the energy efficiency of unmanned aerial vehicles. Su et al. proposed
a multi-agent modeling method to obtain an efficient cost strategy for serial production
lines with multi-level design preventive maintenance actions, and verified its effectiveness
through experiments [4]. Kaiwen et al. proposed a new distributed framework for multi-cell
collaboration or competitive beamforming, designing limited information exchange schemes
to improve global performance [5]. Yan et al. studied the problem of self-propelled fish
swarm OA maneuver under intelligent control through numerical simulation, and proposed
a hydrodynamic simulation method based on DRL and artificial intelligence control to help the
potential application of bionic robot swarm in engineering [6]. Zhu et al. proposed a real-time
robot anti-collision method to improve the overall quality and speed of human-machine
cooperation engineering, learned direct control commands from the original depth image
through the self-supervised reinforcement learning algorithm, and verified the effectiveness of
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its algorithm through experiments [7]. Cheng et al. proposed an algorithm of state feedback
and output feedback control protocol to improve the robustness of the agent system to external
interference, obtained inclusive conditions and conducted convergence analysis [8]. Nicholas
et al. proposed an improved DRL controller model for decentralized anti-collision problem,
and the effectiveness of the proposed model was proved through experiments in the 3D UAV
environment [9]. Zhu et al. proposed a multi behavior critic reinforcement learning algorithm
for autonomous underwater vehicle path-planning to solve the too slow rate of convergence of
the model caused by the coupling of multiple behaviors in reinforcement learning, to overcome
the problems of early training amplitude oscillation and low learning efficiency common in
traditional actor critic algorithms [10]. Chen et al. proposed a robot dynamic OA path-planning
algorithm based on DRL algorithm to avoid moving obstacles in the actual environment,
and conducted real-time planning on the robot’s formal path according to the comprehensive
reward function of dynamic OA and target approaching, and verified the effectiveness of the
algorithm in subsequent experiments [11]. Ejaz et al. proposed a collision-free autonomous
navigation model based on DRL to achieve safe autonomous steering of tracked robots in
various transformed environments, and verified the performance of the model in subsequent
experiments [12]. Qingrui et al. proposed an algorithm model based on DRL to solve the
intelligent tracking control of uncertain autonomous surface vehicles with anti-collision
function, and verified the performance of the proposed model by comparing the constructed
model with the traditional algorithm model [13].

To sum up, MARL method and BIM have been applied to path-planning problem more
maturely, but there is less research on the steel bar collision problem. Based on this, a BIM-
based on MARL is proposed to design the collision-free path of the steel bar in reinforcement
components.

3. The steel bar OA path design based on MARL and BIM

This research mainly takes MARL as the framework, regards the steel bar as multi-agent,
fuses BIM to construct barrier-free path and conduct three-dimensional display, and further
solves the collision problem caused by the inability of the steel bar to adjust the track under
traditional BIM.

3.1. The steel bar OA distribution design based on MARL structure

PCE, as the material foundation of building industrialization, are building components
pre-made in factories using concrete as the basic material. General PCE includes beams,
slabs, columns, and building decoration accessories. Compared to traditional on-site pouring
construction methods, PCE can to some extent reduce pollution and protect the environment.
PCE is generally connected by binding, welding, mechanical and cold pressing sleeves, etc.
The structural diagram of PCE is shown in Fig. 1.

From Fig. 1, the components of PCE are divided into two types: steel bars that meet the
bearing capacity and stirrups that meet the shear strength of the inclined section. According to
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Fig. 1. Structural diagram of PCE

the practical application of steel bars and stirrups, they can be divided into categories such as
longitudinal load-bearing steel bars, late-rising steel bars, erected steel bars, open stirrups, and
closed stirrups. Research innovatively uses the steel bars as multi-agent systems, and designs
corresponding OA routes for the steel bars through multi-agent path-planning. MARL can
consider multiple goals at the same time to improve the decision, and consider the rejection
of extreme deviations on some goals. Balanced decision-making makes it more reasonable.
MARL systems are also often used in the design of path-planning problems. In the interaction
between agents and the environment, the estimated values of future feedback are gradually
derived based on the rewards or punishments of action feedback in the state [14]. The concrete
modeling in the interaction between the environment and agents can be completed using
Markov decision process (MDP), and the predicted values of expected rewards of MDP are
represented by value functions, the value function calculates the total future cumulative reward
for the behavior in the current state. Through the value function, the agent can focus more on
maximizing the overall benefits in the long run. The calculation method is shown in Eq. (3.1).

(3.1) Gt =
∑
t=1

εkRt+1+k

In Eq. (3.1), Gt represents cumulative rewards; ε means a discount factor, mainly used to
control the impact of future rewards on the current agent’s decision-making; Rt denotes the
reward obtained by the agent at the FF moment after taking action a, and at the t + 1 moment.
After exploratory learning, the agent learns the optimal behavior strategy and maximizes
the cumulative reward. When the cumulative reward no longer changes, the reward function
converges.

TheMARL structure is divided into three levels: state, action, and reward. Let the input value
of the state layer be s = (s1, s2, ...sn), the input value of the behavior layer be a = (a1, a2, ...an),
and the input value of the reward layer be r . It uses the Q function to guide the state and action
of the agent and delimits the expected reward Q value corresponding to the state and action of
the agent in the Q-table. After random assignment, it updates the Q(s, a) with the help of the
Bellman equation. The relevant expression is shown in Eq. (3.2).

(3.2) Qt+1(st, at ) = Qt (st, at ) + η[rt+1 + γmax
at+1

Qt (st+1, at+1)| −Qt (st+1, at+1)]
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In Eq. (3.2), under the premise of selecting a action in a status, Qt+1(st, at ) means the
updated reward expectation; Qt (st, at ) indicates the corresponding original reward expectation;
r + 1 refers to the return reward;ηdenotes the Learning rate; γ stands for the decay rate;
maxat+1 Qt (st+1, at+1) indicates the max expected reward for all selectable at+1 actions in the
updated st+1 state. In the automatic OA design of steel bars, MARL utilizes multiple intelligent
agents to plan paths from one end of the beam or column to the other end, and navigate the
starting and ending points of the driving path [15]. The relevant intelligent definition operation
principle is shown in Fig. 2.

(a) (b) (c)

Start

End

Fig. 2. Principle of intelligent OA design for MARL: Obstacle identification, b) Intelligent agent detection,
c) Target detection

In Fig. 2, the five-star position is the endpoint, the circular position is the starting point,
and the target recognition environment is three-dimensional space. In the case of obstacles
surrounding, it is not possible to directly design a route from the starting point to the endpoint,
so the virtual graph line is the optimal path-planning for the intelligent agent.

3.2. Rasterisation processing of the steel bar OA distribution design
environment of BIM+MARL model

When using MALR to deal with the steel bar design path, it is necessary to convert
the PCE from the BIM to the rasterisation model, and use the geometric information and
boundary location to calculate the corresponding path [16]. Let the grid size in the rasterisation
environment be the same, and the side length calculation of each small grid is Eq. (3.3).

(3.3) Di = max(dc + dt )

In Eq. (3.3), Di denotes the length of the grid edge; dc refers to the diameter of the
longitudinal compressive the steel bar in the beam or column; dt indicates the diameter of the
longitudinal tensile the steel bar in the beam or column. Using the size of PCE and the small
grid edge length, the entire grid environment edge length is constructed [17]. The relevant
function expression is shown in Eq. (3.4).

(3.4) Sz = floor (D/Di)

Eq. (3.4), Sz refers to the side length of grid environment, D represents the side length
of reinforced concrete construction, and floor(.) denotes the Floor and ceiling functions.
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It constrains the edge length of the grid environment through the floor(.) function. When
designing PCE, it is necessary to consider the influence of three variables: the cross-sectional
area of longitudinal tensile steel bars, the cross-sectional area of longitudinal compressive
steel bars, and the cross-sectional area of stirrups on it. The longitudinal tensile steel bar is
represented by the symbol As , and the As calculation method is shown in Eq. (3.5).

(3.5) As =

Nt∑
i=1

π · d2
t,i

4

In Eq (3.5), dt,i denotes the diameter of the i longitudinal tensile steel bar in the reinforced
concrete component. Nt nindicates the total number of tensile steel bars, and the range of
values for the number of tensile steel bars is shown in Eq. (3.6).

(3.6)


Nt,min =

b − 2c
sht,max

Nt,max =
b − 2c
sht,min

In Eq. (3.6), b refers to the width of the reinforced concrete beam; c expresses the thickness
of the concrete protective layer; sht,max denotes the maximum spacing between longitudinal
tensile steel bars; sht,min indicates the minimum spacing between longitudinal tensile steel
bars. Due to the consistent calculation of the cross-sectional area of longitudinal compressive
steel bars and longitudinal tensile steel bars, the study will not repeat it. The character Asv is
used to represent the cross-sectional area of the stirrup, and its calculation method is shown in
Eq. (3.7).

(3.7) Asv = ns · Asv1 = ns ·
π · d2

s,i

4

In Eq. (3.7), ns means the amount of stirrups in a certain section of the reinforced concrete
component, and ds,i denotes the diameter of the ith stirrup. The research focuses on designing
collision-free steel OA routes, and thus sets up 15 structural components in the MARL
framework. The 15 types of PCE are mainly generated by combining three variables: beam,
column, and beam nodes of different shapes. Regarding the analysis of structural forces, the
research mainly utilizes the structural calculation software PKPM for operational analysis. By
calculating the structural forces, the corresponding steel bar bending moment, shear force, axial
force, torque, and the number and type of longitudinal bars and hoops are obtained. By inte-
grating the above description, a design framework for automatic OA of steel bars using MARL
and BIM is obtained. The schematic diagram of the framework structure is shown in Fig. 3.

From Fig. 3, according to the calculated component coordinate data and geometric data
information, MARL will generate the corresponding three-dimensional coordinate information
of collision-free steel bar design, and then use the three-dimensional coordinates of BIM-built
steel bar components to represent the rasterisation data information. Q-learning is used to select
the selected action in the rasterisation environment and calculate the expectation obtained under
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Fig. 3. BIM+MARL Algorithm for intelligent the steel bar OA design model

the action, and select the action with maximum benefit according to the stored Q value [18].
The calculation method for action expectation is shown in Eq. (3.8).

(3.8) Q(s, a) ← Q(s, a) + α[r + γmax
a′

Q(s′, a′) −Q(s, a)]

In Eq. (3.8), Q(s, a) indicates the estimated income of a action taken in s state; γ means
the attenuation value of future rewards; α denotes the learning rate, and Q(s′, a′) is the actual
income of a action taken in s state.

4. The application of automatic OA design for steel bars
based on MARL+BIM in practice

Prefabricated residential buildings in villages and towns have also developed into one of
the commonly used forms of housing in rural areas. At present, prefabricated structures are
mainly divided into three types: prefabricated steel, concrete and prefabricated wood structures.
The research mainly focused on the automatic OA of steel bars under prefabricated concrete
structure residential buildings in Dali Village, Yunnan Province. The design experiment verified
the performance of MARL. In the experiment, it set the learning rate α of MARL to 0.05,
the attenuation coefficient γ to 0.7, and the initial value of Q-Table to 0. The output of visual
fitting results for the MARL model trained 3000 times is shown in Fig. 4.

In Fig. 4(a), from the starting point to the vicinity of the obstacle position, the output value
of the MARL model was always 0, and the direction of the value 0 was specified as facing
forward, which met the expected direction of the intelligent agent. From Fig. 4(b), the x-axis
also represented the location environment of the intelligent agent, while the y-axis denoted the
travel speed of the intelligent agent. From the output values of the MARL model, the intelligent
agent has basically grasped the speed of travel: at the starting point, the speed of the intelligent
agent would be faster, and near the obstacle, the speed of the intelligent agent would be slower.
At this moment, the speed representation of the intelligent agent would not show a smooth
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Fig. 4. Visualization fitting results of trained MARL model: a) Discrete actor, b) Continuous actor

curve, but would show a small range of fluctuations in the curve, where the amplitude of the
speed curve would be inversely proportional to the distance of the obstacle. By visualizing the
path and driving speed of the agent and the location of the agent, the MARL model’s handling
of obstacles could be intuitively observed, and the performance of the model could be judged.
The trained MARL model was combined with BIM to conduct the steel bar crash test. The
experimental results are shown in Fig. 5.

From Fig. 5, the BIM+MARL model was capable of reinforcing the y-axis stacked beam,
raising it to a certain distance, and interleaving it with the X-axis stacked beam while ensuring
the original direction. This ensured that the bottom steel bar with added concrete protection
layer could avoid all obstacles after a single bend. After testing the OA performance of the
model for beam-shaped steel bars, it designed experiments to verify the OA performance
of the model under different types of steel bars. Three typical beam-column nodes, namely
the cross-shaped node with bent bottom the steel bar node area, the T-shaped node, and the
cross-shaped node with bent the steel bar end, were selected as the research objects to verify
the performance of the three-dimensional beam-column node the steel bar OA route generated
by the BIM+MACL model proposed by the research institute. The performance of BIM on the
steel bar OA routes on three typical beam-column nodes was compared. The experimental
results are shown in Table 1.

From Table 1, the average probability of non-reinforced collision in the BIM+MARL
model constructed by the research institute was 98.45%. It suggested that the model constructed
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Fig. 5. Crash test results of the steel bar

Table 1. Comparison of two models on collision-free behavior of the steel bar in PCE

Non collision rate
of steel bars (%)

Beam-column
joints

MARL+BIM BIM

Cross shaped node
with bent bottom

the steel bar node area

Type I Cross 1 98.32 82.54

Type I Cross 2 98.26 83.63

Type I Cross 3 97.54 81.29

Type I Cross4 99.33 83.34

Type I Cross5 98.78 85.62

Cross shaped nodes
with bent ends
of steel bars

Type II cross1 97.95 83.27

Type II cross2 98.26 86.34

Type II cross3 98.82 85.62

Type II cross4 98.69 84.29

Type II cross5 98.22 88.37

T-shaped cross

T-shaped cross1 98.77 79.68

T-shaped cross2 97.68 82.34

T-shaped cross3 99.36 81.15

T-shaped cross4 98.26 80.34

T-shaped cross5 99.02 82.09
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by the research institute could increase the probability of the steel bar avoidance by 15.16% on
the basis of the BIM model. In the cross-shaped beam-column node with bent steel bars at
the end, the average collision probability without steel bars in the BIM+MARL model was
98.39%, and the minimum collision avoidance probability of steel bars in the cross-shaped
beam-column node with bent steel bars at the end was 97.95%. However, the average collision
avoidance rate of steel bars in the BIM model was 85.58%, which was 12.81% lower than the
steel bar avoidance rate in the BIM+MARL model. Similarly, in the T-shaped cross-beam
column node, the average probability of the steel bar collision avoidance for BIM+MARL was
98.62%, and the BIM model was 81.12%. Compared with the time spent on manual modeling
by 40 experienced structural engineers, the experimental results are shown in Fig. 6.
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Fig. 6. Comparison of collision-free path generation time: a) The path time of BIM+MARL model on
different types, b) Modeling time of 40 structural engineer

From Figs. 6(a) and 6(b), as the complexity of node structure types increased, the time
required for both the model and manual processing of nodes would increase. Among them, the
BIM+MARL model took an average time of 1.64 min to generate the barrier-free path of the
column, which was 3.48 min less than the average time of structural engineers modeling the
same column node. In terms of beam detection time, the average time for BIM+MARL model
Generative model was 1.64 min, and the average time for manual modeling was 7.2 min. On
the same index, the average modeling time of structural engineers was 12.52 min, 13.56 min,
and 13.20 min more than that of BIM+MARL model. After checking the OA path design time
of the model for relatively simple beam-column joints, further design experiments verified the
time consumed by the BIM+MARL model for the OA path design of complex beam-column
joints and compared the time consumed by structural engineers for collision-free modeling of
the same complex nodes. The experimental results are shown in Fig. 7.

From Fig. 7(a), for the middle layer single beam and single column nodes, the overall
time fluctuation of the BIM+MARL model constructed by the research institute was relatively
small, and the average time for designing the steel bar OA path was 3.64 minutes. For structural
engineers, the time required for designing collision-free the steel bar path modeling fluctuates
greatly, among which the shortest time required for modeling was 23.2 min, the longest time
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Fig. 7. Comparison of generation time for collision-free paths of complex nodes: a) Time consuming
comparison between model and structural engineer on single beam and single column joints in the middle
floor, b) Time consuming comparison between model and structural engineer for L-shaped beam column

joints in the middle floor

was 28.1 min, and the average time required for modeling was 25.8 min. The average modeling
time of BIM+MARL model was 22.16 min lower than that of structural engineers. Fig. 7(b)
shows the comparison of the design time consumption of OA path for L-shaped beam-column
joints in the middle layer. The average time consumption of BIM+MARL model was 5.32 min,
and the average time required for structural engineers to model was 37 min, which was
31.68 min higher than that of BIM+MARL model. The design experiment verified the time
required for OA path-planning of the middle layer reverse beam-column joints, middle layer
T-shaped beam-column joints and middle layer cross-shaped beam-column joints composed
of 32, 44, and 44 longitudinal the steel bar in the model, and also compared the time required
for structural engineers to model OA under the same experimental object. The experimental
results are shown in Fig. 8.
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From Fig. 8, the modeling time of the model was significantly lower than that of engineers.
For the OA path design of the reverse beam-column node in the middle layer, the BIM+RACL
model took an average of 3.52 minutes, while the engineer modeling took an average of
35.5 minutes.In the design of OA paths for cross-shaped beam-column nodes in the middle
layer, the BIM+RACL model took 39.38 minutes less than the engineer’s modeling time, with
an average OA path design time of 15.38 minutes. The experimental results indicated that the
BIM+RACL model constructed by the research institute had good performance in designing
OA paths for different types of reinforced component beam-column nodes.

5. Conclusions

When the traditional manual method or BIM method is used to deal with the problem of
the steel bar collision in PCE, it can only adapt to specific objects and is limited to the actual
construction situation. To achieve the requirement of adjusting the position of the steel bar
to avoid obstacles, a MARL algorithm framework based on BIM was proposed. By treating
the steel bar as an agent of reinforcement learning, the steel bar OA design was converted
into a path-planning problem, to solve the problem of the steel bar collision in PCE. The
experimental results showed that the MARL model fused with BIM could efficiently design
OA routes for column shaped beam the steel bar. The OA rates for the design of typical three
types of beam-column node the steel bar components were 98.45%, 98.62%, and 98.39%,
respectively. In the comparison of the design time consumption of OA path for different types
of the steel bar nodes, the average time consumption of the BIM+MARL model for column
and column collision-free path design was 1.64 min, which was 3.48 min and 5.56 min lower
than the modeling time of structural engineers, respectively. The time for the model to generate
collision-free paths on L-shaped beam nodes, T-shaped beam nodes, and cross-shaped beam
nodes was 2.62, 3.82, and 3.92 minutes, respectively. Compared with the design time of the
collision-free modeling path of the structural engineer, the average time of the BIM+MARL
model in the design of the OA path of the reverse beam-column node in the middle layer
was 32 min lower than the average time of the engineer in modeling, 48.38 min lower than
the design time of the OA path of the T-shaped beam-column node in the middle layer, and
39.38 min lower than the design time of the OA path of the cross-shaped beam-column node
in the middle layer.

6. Future work

The results of this study are: 1. The problem of collision at steel joints in precast concrete
members was solved. 2. The path designed by the constructed BIM + MARL model could
effectively reduce the reinforcement collisions in PCE. 3. The BIM +MARLmodel constructed
by the institute could greatly shorten the generation time of the OA path. 4. In the generation
of accessible path of complex beam and column joints, the performance of BIM + MARL
model was overall better than the traditional model.
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Research shortcomings: This study only considered cast-in-place reinforced concrete
components under regular geometry, and did not involve other cast-in-place components, so
the comprehensiveness of the experiment needs to be improved.

Future expectations: (1) In the experimental test link, the feasibility of the experimental test
is improved by adding the standard requirements of reinforcement. (2) In the experimental test,
it needs to add the stress test and OA path generation test for different pouring components. (3)
In the actual production and application, the research results should be appropriately combined
to provide a scientific basis for the construction and production.
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