WARSAW UNIVERSITY OF TECHNOLOGY	Index 351733	DC	DI: 10.24425/ace.2024.148897		
FACULTY OF CIVIL ENGINEERING COMMITTEE FOR CIVIL AND WATER ENGINEERING		ARCHIVES OF CIVIL ENGINEERING			
POLISH ACADEMY OF SCIENCES	ISSN 1230-2945	Vol. LXX	ISSUE 1	2024	
© 2024. Krzysztof Trojnar.				рр. 5– <mark>18</mark>	
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (CC BY-NC-ND 4.0, https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited, the use is non-commercial, and no modifications or adaptations are made.					

Research paper

New hybrid foundation solutions for offshore wind turbines

Krzysztof Trojnar¹

Abstract: This paper reviews latest developments of substructures for offshore wind turbines focusing on investigations and applications of hybrid foundations. Model tests and numerical analyses were used to simulate the loading of hybrid piles in sand. The results of pile-soil interaction were investigated to confirm the changes in soil stiffness around the hybrid monopile head. The mechanism and factors affecting the change in lateral stiffness of the hybrid foundation were explained by analysing p-y curves for M+H loading conditions in sand. Based on this research, a new shape of p-y curves for hybrid monopiles was established and a method for determining key parameters was proposed. The effectiveness of new p-y curves was verified by comparing back-calculated results with those from numerical simulations. The conducted tests confirmed that the hybrid monopile displacement is 30–50% smaller when compared to a standard monopile with similar dimensions. The gained experiences can be useful for designers and researchers to enhance the design of foundations for offshore wind turbines.

Keywords: hybrid foundations, offshore wind turbines, lateral load, model tests, numerical analyses

¹DSc., PhD., Eng., Assoc. Prof., Rzeszów University of Technology, Faculty of Civil and Environmental Engineering and Architecture, al. Powstańców Warszawy 12, 00-959 Rzeszów, Poland, e-mail: ktrojnar@prz.edu.pl, ORCID: 0000-0002-4550-4670

1. Introduction

Development of wind energy has a major impact on a sustainable, long-term energy balance and on an increasing technological potential. It can be achieved, in short term, through faster development of offshore wind energy. Currently, offshore wind contributes to 45% of the total wind capacity installed in Europe. In 2019, 3.6 GW of new capacity was connected to the grid, which is a 1.3-fold increase in capacity comparing to 2018 [1].

Notably, energy obtained from offshore wind shows promise due to higher wind speed and lower disturbance to human lives. Comparing to onshore counterparts, offshore wind has 1.2–2 times higher wind speed. In open sea areas, electrical output is expected to be 1.7 times for the same wind turbine, and the energy field tends to be more efficient by going further from coastlines. Fig. 1 shows an evolution of offshore wind turbines sizes. Increasing diameters of rotors transfer increasingly higher loads to turbine foundations.

Fig. 1. Evolution of offshore wind turbine sizes

Additionally, a distance to land for newly installed offshore wind turbines (OWTs) to increase from 30 km to 60 km, which is more than 2 times. Therefore, solid and more stable support structures for new OWTs are needed. There are ambitious plans to increase the share of renewable energy sources by almost 30% in the total energy balance all over Europe.

As a result, up to several hundred new OWTs are planned to be built in Poland between 2027 and 2035 in the southern Baltic Sea. Today, an important challenge for offshore wind energy is to design efficient and reliable offshore wind turbines. The cost of offshore wind support structures (design, construction, and installation) accounts for as much as 35% of the investment cost. The installation cost of tower support structures is 60% of the total cost for installing a whole wind turbine [2, 3]. Meanwhile, foundation parts have a great role in reductions of the total cost, with the potential of being 6% less by introducing innovative monopile techniques. Therefore, reliable and efficient foundations are preferable for the offshore wind industry, and a uniform design of new foundations with the potential of mass production is necessary.

2.1. Types of foundations

The offshore wind turbine foundations can be divided into main categories depending on the depth of the seabed. Gravity foundations are the right solution for shallow waters 10–30 m. Tripod and jacket foundations are recommended in intermediate waters 30–40 m. Mainwhile, monopile foundations can be installed in waters 40–50 m deep. The concept of floating foundations is the best for deep waters 50–200 m. Floating foundations are not often used for commercial OWTs purposes. Currently, the most widely used support structures for OWTs are monopile foundations. They have the largest market share of OWTs in Europe, over 80%. It is anticipated that by 2030, the standard location of wind farms in the seea will be at a depth of 60 m and 60 km from the mainland. It should be noted that while most of operating turbines are supported by monopile foundations, future deployment further offshore in deeper waters may require more stable structures. Gravity foundations now accounts for only 5% of the market share in Europe. The gravity base provides resistances by its self-weight, and it is fabricated by reinforced concrete with ballasts. Although these materials and construction are less expensive than monopile foundation, the installation cost is a significant concern. Suction buckets are another popular solution of shallow foundations. They are inserted into the seabed using its self-weight and suction, which significantly accelerates the installation process, saving time and costs. However, the application of gravity base foundations is significantly limited by the water depth and soil conditions. Tripod foundations are structures with a wider base and anchor piles driven to the seabed to hold the foundation firm. Jacket foundations are designed with a lattice truss that is supported with three or four tubular steel legs. These foundations have high resistance of dynamic responses. They are used in relatively deeper water however, its high construction and installation cost is the main limitation for wider practical applications. Monopile foundations are made of large-diameter pipe piles. Limited lateral stiffness and installation cost are disadvantages of this type of foundation. All the presented foundations for offshore wind turbines have their advantages and limitations. Taking this into account, in different research centers new innovative types of foundations with better technical parameters and wider adaptability have been investigated [4-5].

2.2. Hybrid foundation concept

The novel substructure named "hybrid monopole" is a new type of foundation proposed to reduce the length of a pile, increase its lateral stiffness and ease construction in marine conditions [6–9]. Fig. 2 presents various ways to shape hybrid foundations.

The main objective of this concept is a reduction in the cost of obtaining wind energy, as turbine sizes get larger, standard monopiles become uneconomical, and hus there is a need for an alternative new solution. Hybrid monopiles are reliable up to a depth of 45 m. The support structure consists of a vertical pile and a horizontal plate which provides extra stiffness against lateral load resistance. The horizontal bearing plate is a circular rigid collar or an element showing the appearance of a bucket. The main benefits of this solution are a shorter pile length

Fig. 2. Various ways to shape hybrid foundations for offshore wind turbines

and greater lateral stiffness of the foundation. The horizontal plate provides an additional restoring moment in the pile shaft and friction under the plate can reduce the lateral movement of the pile foundation. The vertical pressure of the plate acting on the soil in front of the pile provides extra lateral pile resistance. Additionally, the relative scour depth around of the pile is reduced since the plate enlarges the contact area between the foundation and the seabed soil. It helps minimizing the scour failure [10–14]. After the wind turbine's service life, the plate and pile can easily be removed and decommissioned. There are no codes of practice for designing metodology of hybrid monopile foundations. In 2020 the first novel hybrid foundation has been successfully used for supporting an offshore wind turbine located at Putian Pinghai Phase II site on the southeast coast in the Fujian province in China, as shown in Fig. 3a.

The hybrid foundation consisted of a large diameter monopile and a wide shallow bucket. For installation, the monopile was first embedded into the seabed and become a guideline for locating a bucket. The bucket was then installed through the centre of the monopile by pumping out the water inside the bucket. High-strength grouting materials were then filled in the gap between the monopile and the bucket to connect these two components. The bucket had a diameter of 14 m and a height of 6.4 m. The pile was cylindrical and open-ended. Its geometric dimensions were as follows: diameter 6 m, wall thickness 0.05 m and embedding depth 60 m. Although the hybrid monopile-bucket foundation has been used in practice, the

Fig. 3. First applications of hybrid foundations in the world: a) monopile-bucket hybrid foundation [Source: www.offshore-energy.biz], b) hybrid collared monopile [Source: www.rwe.com]

existing reported studies on the lateral bearing capacity of these solution are extremely limited [15, 16]. Wang [17] performed a series of numerical analyses on hybrid monopile-bucket foundations to investigate its lateral static and dynamic responses. The results of analysis showed that the addition of the bucket to the pile foundation effectively restrain the rotation and lateral displacement. In 2022 a steel hybrid monopile technology premiered at Kaskasi offshore wind farm on the North Sea in Germany, as shown in Fig. 3b. For the first time ever in the renewable energy industry special collars were installed around monopiles at the seabed level around three wind turbines [18]. Each wind turbine has a capacity of up to 9 MW. The innovative foundation collars were successfully embedded into the seabed, each 7 meters high, weighting 170 tons. The installation was carried out up to 25 meters deep into the water. The space between the collar and the monopile foundation was filled with grout material, firmly connecting these construction elements. The new technology provided additional support for the pile lateral loading, increased the bearing capacity and improved the structural integrity of this OWT foundation.

3. Research on hybrid foundations

3.1. Scope and purpose

The lateral load bearing capacity of hybrid pile foundations depends mainly on soil stiffness. The requirements for designing OWTs foundations are now more SLS- than ULS-oriented [19-20]. The serviceability of OWTs may get lost due to excessive tilting or horizontal displacement of the tower at the mudline level. Considering strict operational requirements of turbines a maximum rotating angle of 0.5° and horizontal displacement of the pile head are often limited. Based on the author's studies and analyses, a practical method of calculating hybrid monopiles for OWTs was developed. The proposed solution was improved with regards to the pile-soil interaction in the initial phase of increasing displacements. By using the proposed

method calculations for the hybrid monopile allows the impact of a horizontal plate on the monopile to be initially assessed, which generally improves the pile lateral stiffness by 30–50%. The geometry and the lateral load scheme for hybrid foundations are show in Fig. 4.

Fig. 4. Load scheme and geometry of hybrid foundation for OWTs

3.2. Methodology

In this study, the self-developed monotonic load test loading system was adopted to carry out a series of model tests for a monopile foundation. The theoretical calculation results of lateral load were adopted for the pile-soil interaction analyses and were analysed accordance with the model tests results. The laboratory model tests were treated as a qualitative assessment of the research problem. The small-scale experiments were conducted at the Rzeszow University of Technology, Poland. Fine silica sand was used for testing. A general view of the test stand and the hybrid pile model are shown in Fig. 5a,b.

The box was filled with sand using the curtain method, from the container moving at a constant height to provide uniform compaction conditions. The layers of the sand placed in the box were of diffrent colours for better observation of both models of foundations and soil through the transparent box wall. The soil parameters are summarised in Table 1.

The aim of these tests was to qualitatively assess the behavior of the soil under the plate, in front of the hybrid pile laterally loaded. The lateral load scheme was adopted for M/H ratio

Fig. 5. Model tests of piles under lateral load M/H = 4: a), b) test stand and hybryd pile model; c), d) deformation zones near of tested pile models; e), f) assumptions of the calculation metod for hybrid pile

Fine sand parameters	Unit	Value
Unit weight, γ	[g/cm ³]	1.60
Internal friction angle, Φ	[°]	30
Soil moisture content, w	[%]	12
Effective particle size, D_{10}	[mm]	0.15
Effective particle size, D_{50}	[mm]	0.30

Table 1. Soil characteristics in model tests

= 4. The foundation model was subjected to horizontal force on a reduced scale $1/N^2 = 100$. The model tests, confirmed that standard piles interact with the soil in a different way than hybrid piles. Significant differences in shapes of the active soil zones in the vicinity of two pile models are shown in Fig. 5c (standard pile) and Fig. 5d (hybrid pile). It was observed that sand movement starts already at the beginning of the pile load and continues throughout the load duration. A resistance zone appeared under the plate, which divided the soil area into a convective zone and a wedge zone (ABC). The wedge area is shown in Fig. 5e.

When the standard pile was loaded, the entire active area in front of the pile was significantly smaller compared to the hybrid pile with the same displacement. The pivot point z_o of the hybrid pile model was found to be in sand approx 1/3 above than that of the standard pile model. Based on the model tests, it was determined that the active soil area formed under the bearing plate in front of the hybrid pile is always wedge-shaped. It was assumed on the basis of other studies [21, 22]. The depth of the wedge increases with the hybrid pile loading, as show in Fig. 5f. Based on the previous analyses of hybrid piles, it was found that the change of depth of the wedge under the bearing plate occurs only in a limited range of the pile displacement [5, 6]. In this case, the lateral pressure of the pile on the soil is due to the stress wedle. It was assumed that the reaction force R in front of the hybrid pile resulting from stresses in the wedge impact zone depends on the vertical plate pressure and changes with the pile rotation.

3.3. Results

The numerical FE analysis was used to quantify the soil behaviour around the hybrid pile with a flexible shaft and to develop a method for calculating its wide displacement range. Numerical modelling was carried out using the FE method and Plaxis 3D software, as show in Fig. 6. The non-linear elastic–plastic Mohr–Coulomb type soil model was used.

The analysis was carried out using homogeneous sand with parameters: angle of internal friction 30° , Young's modulus 80 MPa increased 1.5z with depth (z), cohesion 1 kPa, Poisson's ratio 0.3, and dilatation angle 5°. The numerical model was validated for the behaviour of the standard pile and the experimental data of field test for a 10 m-long, 1.2 m-diameter pile. The presented results of 3D FE calculations are applicable for loads causing the same pile head displacement of 20 mm. In this case, the horizontal force was 400 kN and 1000 kN for the standard and hybrid piles, respectively. Figure 7 shows the stress–displacement curves of the hybrid and standard pile calculated for different depths.

It can be seen that in the displacement range (y) 10–50 mm, the stress (p) increases significantly for the hybrid pile compared to the standard pile. At depths greater than 2 m, the curves in both diagrams have a similar shape. The changes of stresses in the soil zone in front of the pile are observable only up to the depth of 2 m, and their values depend on the displacement of the pile at a given depth. The FE analysis shows that the type of p-y curves for depths up to 2 m is crucial for calculating the hybrid pile. The forms of p-y functions for different depths in the active zone of the soil in front of the hybrid pile can be written by fifth-degree polynomials, as shown in Table 2.

Depth		P v function	
Normalized	m		
0.50 D	0.6	$p = 7 \cdot 10^7 y^5 - 3 \cdot 10^7 y^4 + 4 \cdot 10^6 y^3 - 31611 y^2 + 13828 y$	
1.00 D	1.0	$p = 5 \cdot 10^8 y^5 - 2 \cdot 10^8 y^4 + 2 \cdot 10^7 y^3 - 10^6 y^2 + 37962y$	
1.25 D	1.5	$p = 7 \cdot 10^8 y^5 - 2 \cdot 10^8 y^4 + 2 \cdot 10^7 y^3 - 10^6 y^2 + 46555 y$	
1.67 D	2.0	$p = 10^9 y^5 - 3 \cdot 10^8 y^4 + 3 \cdot 10^7 y^3 - 10^6 y^2 + 47374 y$	

Table 2. P-y functions for a hybrid pile in sand

Fig. 6. Results of the 3D FE analysis: a) numerical model; b) soil wedge range as stress difference for hybrid and standard piles; c), d) impact zones around two types of piles for the same pile head displacement of 20 mm

Fig. 7. P-y curves for the 10 m-long pile based on FE analysis: red line – hybrid, blue line – standard

4. Discussion

In engineering practice, special attention should be paid to the actual lateral response of bending hybrid piles in the soil in the zone below the seabed level. For this purpose, a modification of the p-y curves with 2 meters of depth below the plate has been proposed. The new shape of p-y curves is particularly important in the initial range of pile displacements up to 50 mm. Figure 8 shows control calculations for the analysed standard and hybryd piles.

Fig. 8. P-y curves for piles D = 1.2 m, L = 10 m; a) standard, b) hybrid

The assumptions on the shape of new p-y curves for hybrid piles were based on two main considerations. First, numerical analyses show that for the standard piles, soil failure occurs at a displacement of 10 mm; in the p-y diagram, this corresponds to the value of D/100. Thus, this value can be taken as the upper limit of the range in which the pile is still elastic in the soil. Second, the shape of p-y curves for the hybrid pile is different from that of the standard pile. The main difference is that above the displacement D/100, the hybrid pile is still stable, unlike the standard pile whose behaviour in the ground is clearly non-linear. The modification consists in providing new p-stress values for the curves in the range of normalized displacements y in the range from 10 mm (D/100) to 50 mm (3D/80). The p-y curves for the standard and hybryd piles were used in control calculations. According to Fig. 9 and Fig. 10, the displacement and bending moments of the hybrid pile are smaller than the standard pile.

Fig. 9. Calculation results of the standard pile: a) displacement; b) bending moment

Fig. 10. Calculation results of the hybrid pile: a) displacement; b) bending moment

In both cases, pile displacements and soil response distributions were in a satisfactory agreement with previous FE simulations. Calculations with the modifed p-y curves for the hybryd pile allowed for accurate determination of the plate effect Ep. The Ep value described as a ratio of the standard pile displacement to the hybrid pile displacement under the same lateral load, was assumed as a measure of the plate effect. The Ep values obtained are consistent with the results of other tests in sand [4, 5]. With an increase in the lateral load of the hybrid pile,

the distribution of the maximum bendig moment and soil reaction occurs at the same depth. A comparison of the parametric results in Fig. 11 shows that the lateral stiffness of the analysed hybrid pile increases with deflection.

Fig. 11. Comparison of lateral stiffness calculation results of hybrid monopiles in sand

When the pile is loaded with a force of 400 kN and a bending moment of 1600 kN• m, in control calculations, the value of the plate influence coefficient E_p is 1.45. The use of the proposed modifed p-y curves affects the horizontal stress distribution in the soil in front of the hybrid pile. As a result of calculations, lower deflections of the hybryd pile were obtained, which is consistent with the results of the field tests. No significant changes were found in the bending moment distribution in the pile. Calculations also showed a smaller depth of the pivot point of the hybryd pile in the soil. Analysing the changes in the lateral pressure of the pile on the ground, it can be seen that at a rotation of 0.002 rd, there is no failure of the soil under the plate. This proves the beneficial effect of the plate on the stability of the hybrid pile. The hybrid pile can carry a higher lateral load at the same displacement as the standard pile. The proposed method for calculating hybrid piles is a simplified solution. Nevertheless, the calculated displacement values are generally consistent with the results of accurate numerical calculations. Increasing the accuracy of the proposed method is still possible, but it requires further correction of p-y curves by taking into account to a greater extent the contribution of lateral zones around piles. A similar problem was analysed in proposal for the calculating hybrid piles with rigid and flexible shafts. Details are available in previous studies [7, 23].

5. Conclusions

Currently, solid and more stable support structures are needed for new OWTs. An innovative foundation named "hybrid" is a new type of support proposed to reduce the length of a standard monopile, increase its lateral stiffness and ease construction in offshore conditions. The hybrid

monopiles have been analysed by means of model tests and numerical calculations. The following conclusions are drawn from this study.

- 1. The stiffness of the hybrid monopile increases with its deflection under lateral loading.
- 2. The analysis showed that the pile-soil interaction for depths up to 2 m is crucial for the hybrid monopile.
- 3. Modified forms of p-y functions for the hybrid monopile can be proposed for the range of displacements up to 50 mm.
- 4. The conducted studies confirmed that displacements of hybrid monopiles are 30–50% smaller compared to displacement of standard monopiles with similar dimensions.

References

- [1] WindEurope, "Offshore Wind in Europe, key trends and statistics", 2021. [Online]. Available: https://wind europe.org/. [Accessed: 15 Feb. 2022].
- [2] T. Asim, S.Z. Islam, A. Hemmati, and M.S. Khalid, "A review of recent advancements in offshore wind turbine technology", *Energies*, vol. 15, no. 2, 2022, doi: 10.3390/en15020579.
- [3] M. Aleem, S. Bhattacharya, L. Cui, S. Amani, A.R. Salem, and S. Jalbi, "Load utilisation ratio of monopiles supporting offshore wind turbines: Formulation and examples from European wind farms", *Ocean Engineering*, vol. 248, 2022, doi: 10.1016/j.oceaneng.2022.110798.
- [4] X. Wang, X. Zeng, X. Yang, and J. Li, "Feasibility study of offshore wind turbines with hybrid monopile foundation based on centrifuge modeling", *Applied Energy*, vol. 209, pp. 127–139, 2018, doi: 10.1016/j.apenergy. 2017.10.107.
- [5] K. Trojnar, "Lateral stiffness of hybrid foundations: field investigations and 3D FEM analysis", *Geotechnique*, vol. 63, no. 5, pp. 355–367, 2013, doi: 10.1680/geot.9.P.0778.
- [6] K. Trojnar, "Multi scale studies of the new hybrid foundations for offshore wind turbines", *Ocean Engineering*, vol. 192, 2019, doi: 10.1016/j.oceaneng.2019.106506.
- [7] K. Trojnar, "Simplified design of new hybrid monopile foundations for offshore wind turbines", Ocean Engineering, vol. 219, 2021, doi: 10.1016/j.oceaneng.2020.108046.
- [8] K.B.M. Lehane, B. Pedram, J.A. Doherty, and W. Powrie, "Improved performance of monopiles when combined with footings for tower foundations in Sand", *Journal of Geotechechnic and Geoenvironment Engineering*, vol. 140, no. 7, 2014, doi: 10.1061/(ASCE)GT.1943-5606.0001109.
- [9] D. Chen, P. Gao, S. Huang, C. Li, and X. Yu, "Static and dynamic loading behavior of a hybrid foundation for offshore wind turbines", *Marine Structures*, vol. 71, 2020, doi: 10.1016/j.marstruc.2020.102727.
- [10] F. Liang, C. Wang, and X. Yu, "Widths, types, and configurations: influences on scour behaviors of bridge foundations in non-cohesive soils", *Marine Georesources & Geotechnology*, vol. 37, no. 5, 2019, doi: 1080/ 1064119X.2018.1460644.
- [11] W.G. Qi, F. Gao, M. F. Randolph, and B. M. Lehane, "Scour effects on *p*-*y* curves for shallowly embedded piles in sand", *Geotechnique*, vol. 66, no. 8, pp. 648–660, 2016, doi: 10.1680/jgeot.15.P.157.
- [12] Z. Wang, R. Hu, H. Leng, H. Liu, Y. Bai, and W. Lu, "Deformation analysis of large diameter monopiles of offshore wind turbines under scour", *Applied Sciences*, vol. 10, no. 21, 2020, doi: 10.3390/app10217579.
- [13] H. Ma and C. Chen, "Scour protection assessment of monopile foundation design for offshore wind turbines", *Ocean Engineering*, vol. 231, 2021, doi: 10.1016/j.oceaneng.2021.109083.
- [14] S. Bajkowski, M. Kiraga, and J. Urbański, "Engineering forecasting of the local scour around the circular bridge pier on the basis of experiments", *Archives of Civil Engineering*, vol. 67, no. 3, pp. 469–488, 2021, doi: 10.24425/ace.2021.138066.
- [15] A. Buljan, "First monopile-caisson hybrid foundation installed at Chinese offshore wind farm", Offshore Energy Project News, 2020. [Online]. Available: https://www.offshore-energy.biz/first-monopile-caisson-hybridfoundation-installed-at-chinese-offshore-wind-farm/. [Accessed: 15 Jul. 2020].

- [16] L.X. Xiong, H.J. Chen, Z.Y. Xu, and C.H. Yang, "Numerical simulations of horizontal bearing performances of step-tapered piles", *Archives of Civil Engineering*, vol. 67, no. 3, pp. 43–60, 2021, doi: 10.24425/ace.2021. 138042.
- [17] J. Wang, G. Sun, G. Chen, and X. Yang, "Finite element analyses of improved lateral performance of monopile when combined with bucket foundation for offshore wind turbines", *Applied Ocean Research*, vol. 111, 2021, doi: 10.1016/j.apor.2021.102647.
- [18] S. Knauber, "World's first: Innovative steel collars installed at RWE's Kaskasi wind farm in German North Sea", RWE Renewables. [Online]. Available: https://www.rwe.com/en/press/rwe-renewables/2022-06-08-innovativesteel-collars-installed-at-rwes-kaskasi-wind-farm. [Accessed: 18. Jan. 2023].
- [19] API, "Recommended Practice 2A. Planning, Designing, and Constructing Fixed Offshore", 2014. [Online]. Available: https://api.org/pubs/. [Accessed: 18. Jan. 2023].
- [20] DNVGL, "Support Structures for Wind Turbines", 2018. [Online]. Available: https://rules.dnvgl.com/. [Accessed: 18. Jan. 2023].
- [21] B. Yuan, M. Sun, Y. Wang, and L. Zhai, "Full 3D Displacement measuring system for 3D displacement field of soil around a laterally loaded pile in transparent soil", *International Journal of Geomechanics*, vol. 19, no. 5, 2019, doi: 10.1061/(ASCE)GM.1943-5622.0001409.
- [22] L. Li, X. Liu, H. Liu, W. Wu, B. M. Lehane, G. Jiang, and M. Xu, "Experimental and numerical study on the static lateral performance of monopile and hybrid pile foundation", *Ocean Engineering*, vol. 255, 2022, doi: 10.1016/j.oceaneng.2022.111461.
- [23] K. Trojnar, "Experimental and numerical investigation of lateral loaded flexible hybrid piles in sand", *International Journal of Civil Engineering*, vol. 21, no. 1, pp. 1–18, 2023, doi: 10.1007/s40999-022-00736-x.

Nowe rozwiązania fundamentów hybrydowych dla morskich turbin wiatrowych

Słowa kluczowe: fundamenty hybrydowe, morskie turbiny wiatrowe, obciążenie boczne, badania modelowe, analizy numeryczne

Streszczenie:

W artykule dokonano przeglądu osiągnięć w zakresie posadaowień morskich turbin wiatrowych koncentrując się na najnowszych rozwiązaniach fundamentów hybrydowych. Przedstawiono badania modelowe i analizy numeryczne wykorzystywane do symulacji obciążeń i oceny zachowania się pali hybrydowych w piasku. Analiza interakcji pala z gruntem wykazała korzystny efekt zmiany sztywności gruntu w strefie wokółgłowicy monopala hybrydowego. Mechanizm i czynniki wpływające na zwiększenie sztywności poprzecznej fundamentu hybrydowego zostały wyjaśnione poprzez analizę krzywych p-y dla warunków obciążenia M+H dla monopala zagłębionego w piasku. Na podstawie badań ustalono nowy kształt krzywych p-y dla pali hybrydowych oraz zaproponowano metodę wyznaczania kluczowych parametrów. Skuteczność nowych krzywych p-y zweryfikowano przez wsteczne porównanie wyników przeprowadzonych badań oraz symulacji na modelach numerycznych. Wykonane analizy wykazały, że przemieszczenia monopali hybrydowych są o 30–50% mniejsze w porównaniu z przemieszczeniami standardowych monopali o podobnych wymiarach, poddanych takim samym obciążeniom bocznym. Zdobyte doświadczenia mogą być przydatne dla projektantów i naukowców w ramach doskonalenia metod projektowania fundamentów morskich turbin wiatrowych.