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Abstract—The method of evaluating the resonant frequencies of  

multilayered resonator containing demagnetized ferrites is 

presented. The detailed solution of Maxwell's equations for such a 

structure by means of the radial modes matching method for TE0mn 

modes is given. The results of calculations using developed and 

launched computer program are given. Results of calculations are 

compared with those obtained by other method using CST 

simulator. These results are in close agreement, which proves the 

correctness of the method. The developed solution, and the 

software program can be used to measure the initial permeability 

of ferrites. 

 

Keywords—dielectric resonator; Maxwell’s equations; radial 

modes matching method; initial permeability 

I. INTRODUCTION 

HE development of materials technology makes that newly 

created materials have previously unattainable electrical 

and magnetic properties. They are very quickly adapted to the 

fabrication and construction of systems in the field of 

electronics. Materials produced and used in electronics have a 

wide range of relative permittivity and permeability. These 

parameters may vary depending on the frequency as well as a 

function of the direction (anisotropic dielectric, ferrites) and the 

applied external electric and magnetic field (ferroelectrics, 

ferrites). The use of such materials in electronics enforces the 

need for accurate knowledge of their electrical and magnetic 

parameters. It is therefore necessary to develop newer and better 

methods to measure these materials.  

At microwave frequencies, for dielectric with a relative 
permittivity greater than 10, resonant methods are most often 
used, in particular dielectric resonator method [1]. The 
advantage of this method is very good accuracy to determine 
material parameters, as well as measurements are easy. The 
resonant frequency and the Q-factor of structure, which includes 

sample test material are measured at once [2]. The material 
parameters are determined from the equations describing the 
resonance conditions of the test structure. There are many ways 
to derive these equations, however, most accurate appear to be 
mode matching methods, either radial or axial. 

There are numerous of studies to enable the calculation of the 

resonant frequency of the structure used in the measurement, but 
most commonly they involve simple structure composed of a 
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small number of layers of material [3]-[6]. The most advanced 
solution relates to a multilayer dielectric resonator which can 
contain up to 10 regions and 10 layers in each of them, but 
dielectrics included in the system are described by scalar 
relative permittivity [7]. In [8] you can find a solution for a 

structure consisting of 20 regions and 20 layers of dielectrics in 
each of them determined by tensor electric permittivity. The 
structure containing ferrite materials was analyzed in [9] and 
was composed of three regions and 10 layers in each. 

You can use any electromagnetic simulator, e.g. CST [10], 
HFFS [11], QuickWave [12], to calculate the resonance 

frequency of a complex structure. However, each of these 
simulators use approximations of partial differential equations, 
so the accuracy of the calculations is limited. In the 3D 
simulators the structure is meshed and accuracy of the 
computations depends on the mesh size. Thus the accuracy 
depends on the quantization of space. It can also depends on the 

quantization of time (in FDTD), dispersion, round-off errors etc. 
The computation time in some simulators may be much longer 
than in the presented solution. The price of commercial 
electromagnetic simulators is also an important factor but it 
must be added that the 3D electromagnetic simulators can be 
used to any type of structures, which is their main advantage. 

In this paper, a solution employing the radial modes matching 
method for the multilayered resonator containing dielectric and 
magnetic materials (ferrites), is presented. Although studies on 
the structure containing ferrites are presented in the literature, 
they are related to simple structures [3], [9]. In this work, a 
solution of the Maxwell equations for the multilayered 

resonator, which may contain up to 40 regions and 40 layers of 
each of them, which is more than exhaustive demand is 
presented. 

The simplified general structure of the multilayered 
dielectric-ferrite resonator is shown in Fig. 1. 

It consists of three regions I, II and III with axial symmetry. 

The amount of these regions can be equal to a maximum of 40 
in the developed program. The first region thus has a cylindrical 
shape, the next ones are rings. In each region there is a number 
of layers of material having different relative complex 
permittivity and permeability. The structure is enclosed by a 
metal cylinder whose radius R3 may be infinite. The structure 

does not affect constant or slowly varying external magnetic 
field. In this case, the magnetic properties of ferrites can be 
described by the initial permeability in the form of a scalar. 
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Fig. 1. The multilayered dielectric-ferrite resonator 

II. THE SOLUTION OF BOUNDARY VALUE PROBLEM FOR THE 

RESONATOR WITH MAGNETIC MEDIA 

Stated problem boils down to solve Maxwell's equations for 
such a structure. Due to the rotational symmetry of the analyzed 
structure the Maxwell equations will be solved in a cylindrical 

coordinate system. 
Maxwell's equations in each layer of each region can be 

written as (given the absence of charges and currents sources): 

 

                                        

{
 
 

 
 ∇ ×�⃗� = 𝑗𝜔�⃗� 

∇ ×�⃗⃗� = 𝑗𝜔�⃗⃗� 

∇ ∙�⃗⃗� = 0

∇ ∙�⃗� = 0

                                            

         (1)
         (2)

         
(3)

(4)

 

Taking into account the linearity and isotropy of the media 

belonging to the resonator the following are obtained: 

 

       

{
 
 

 
 ∇ ×�⃗� = 𝑗𝜔𝜇�⃗⃗� 

∇ ×�⃗⃗� = 𝑗𝜔𝜀�⃗� 
 

∇ ∙�⃗� = 0

∇ ∙�⃗⃗� = 0

                                      

        (5)

        (6)

         
(7)
(8)

 

  

where: 𝜇 = 𝜇𝑑𝜇0  , and 𝜇𝑑  is a permeability for magnetic field 

equal to zero. 

For TE0mn modes, the electric field �⃗�  and magnetic field �⃗⃗�  

vectors take the following form: �⃗� = [0,0, 𝐸𝜑], �⃗⃗� = [𝐻𝑟 , 𝐻𝑧 , 0]. 

It was also assumed that the non-zero components of these 

vectors are independent of the angle φ. 

Now, we transform (5) using vector calculus and taking into 

account material properties we obtain (9): 

 
𝑖𝑧
𝑟

𝜕

𝜕𝑟
[𝑟𝐸𝜑] −

𝑖𝑧
𝑟

𝜕𝐸𝑟
𝜕𝜑

+ 𝑖𝜑
𝜕𝐸𝑟
𝜕𝑧

− 𝑖𝜑
𝜕𝐸𝑧
𝜕𝑟

+
𝑖𝑟
𝑟

𝜕𝐸𝑧
𝜕𝜑

−
𝑖𝑟
𝑟

𝜕

𝜕𝑧
[𝑟𝐸𝜑]

= −𝑗𝜔𝜇[𝑖𝑧𝐻𝑧 + 𝑖𝜑𝐻𝜑 + 𝑖𝑟𝐻𝑟]                            (9) 

 

and taking into account the form of vectors �⃗�  and �⃗⃗�  we obtain 

(10): 

 

         
𝑖𝑧
𝑟

𝜕

𝜕𝑟
[𝑟𝐸𝜑] −

𝑖𝑟
𝑟

𝜕

𝜕𝑧
[𝑟𝐸𝜑] = −𝑗𝜔𝜇[𝑖𝑧𝐻𝑧 + 𝑖𝑟𝐻𝑟]       (10) 

 

And finally, two independent equations (11, 12): 
 

                             {

1

𝑟

𝜕

𝜕𝑟
[𝑟𝐸𝜑] = −𝑗𝜔𝜇𝐻𝑧                                              (11)

𝜕𝐸𝜑

𝜕𝑧
= 𝑗𝜔𝜇𝐻𝑟                                                              (12)

 

 

The same applies to (6). 
 

  
𝑖𝑧
𝑟

𝜕

𝜕𝑟
[𝑟𝐻𝜑] −

𝑖𝑧
𝑟

𝜕𝐻𝑟
𝜕𝜑

+ 𝑖𝜑
𝜕𝐻𝑟
𝜕𝑧

− 𝑖𝜑
𝜕𝐻𝑧
𝜕𝑟

+
𝑖𝑟
𝑟

𝜕𝐻𝑧
𝜕𝜑

+ 

−
𝑖𝑟
𝑟

𝜕

𝜕𝑧
[𝑟𝐻𝜑] = −𝑗𝜔𝜀[𝑖𝑧𝐸𝑧 + 𝑖𝜑𝐸𝜑 + 𝑖𝑟𝐸𝑟]                                     (13) 

 

and, finally we obtain (14) 
 

                                   
𝜕𝐻𝑟
𝜕𝑧

−
𝜕𝐻𝑧
𝜕𝑟

= 𝑗𝜔𝜀𝐸𝜑                                            (14) 

 

Together with (11) and (12), the system of equations (15-17) is 

obtained. 
 

                              

{
 
 

 
 
𝜕𝐻𝑟
𝜕𝑧

−
𝜕𝐻𝑧
𝜕𝑟

= 𝑗𝜔𝜀𝐸𝜑                                              (15)

1

𝑟

𝜕

𝜕𝑟
[𝑟𝐸𝜑] = −𝑗𝜔𝜇𝐻𝑧                                            (16)

𝜕𝐸𝜑

𝜕𝑧
= 𝑗𝜔𝜇𝐻𝑟                                                           (17)

 

 

Equations (15-17) describe the electromagnetic field in each 

layer with constant values ε and μ, and taking into account 

changes ε and μ in the "z" function will be made later. 

From (16), 𝐻𝑧 = −
1

𝑗𝜔𝜇

1

𝑟

𝜕

𝜕𝑟
(𝑟𝐸𝜑) is calculated, and from (17), 

𝐻𝑟 =
1

𝑗𝜔𝜇

𝜕𝐸𝜑

𝜕𝑧
  is calculated and substituted into 15. 

After, we obtain (18). 
 

                  
𝜕2𝐸𝜑

𝜕𝑧2
+
𝜕

𝜕𝑟
[
1

𝑟

𝜕

𝜕𝑟
(𝑟𝐸𝜑)] + 𝑘0

2𝜀𝑟𝜇𝑟𝐸𝜑 = 0                      (18) 

 

where: 𝑘0 = 𝜔0√𝜀0𝜇0 =
2𝜋

𝜆0
. 

The equation (18) is  solved separately in each layer of each 

of the region by using the method of separation of variables, and 

then the solutions are "stitched" on the borders of regions (r = 

R1, R2, R3…), ensuring continuity of tangential components.  

Assuming that in (18) 𝐸𝜑(𝑟, 𝑧) = 𝑈(𝑟) ∗ Φ(𝑧) , a system of 

two equations of a single variable is obtained: 
 

        

{
 

 
𝑑2Φ(𝑧)

𝑑𝑧2
+ [𝑘0

2𝜀𝑟𝜇𝑟 − 𝜆𝑚]Φ(𝑧) = 0                                        (19)

𝑟2
𝑑2U(𝑟)

𝑑𝑟2
+ 𝑟

dU(𝑟)

𝑑𝑟
+ (𝜆𝑚𝑟

2 − 1)U(𝑟) = 0                      (20)

 

 

where: 𝑘0
2 = 𝜔2𝜀0𝜇0 , 𝜀𝑟.- relative permittivity and 𝜇𝑑.- relative 

initial permeability. 

Equation (20) is the first-order Bessel equation for 𝜆𝑚 > 0, 

and the first-order modified Bessel equation for 𝜆𝑚 < 0. Its 

solutions for 𝜆𝑚 > 0 are Bessel functions of the first kind - 

𝐽1(√𝜆𝑚𝑟) and Neuman functions (Bessel functions of the 

second kind) - 𝑁1(√𝜆𝑚𝑟). And for 𝜆𝑚 < 0. solutions of (20) 

are modified Bessel functions of the first kind - 𝐼1(√𝜆𝑚𝑟) and 

the second kind - 𝐾1(√𝜆𝑚𝑟). It should be noticed that for the I-

st region taking into account the Neuman function is not 

justified physically. 

 

  

R1 

R2 

R3 

L’ 

h1 

h1 h1 

h2 

h2 
h2 

h3 

hk 
hi hj 

z 

εi, µi 

ε3, µ3 

ε2, µ2 

ε1, µ1 

εj, µj 

ε2, µ2 

ε1, µ1 

εk, µk 

ε2, µ2 

ε1, µ1 

I II III 
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In each layer of a given region, the permittivity and 

permeability are constant and equal to 𝜀𝑟𝑖 and 𝜇𝑟𝑖, respectively, 

and the solutions of (19) are the functions Φ𝑚(𝑧) which are a 

linear combination of trigonometric functions of the 

type sin(𝑣𝑚𝑖
𝑧)  and cos(𝑣𝑚𝑖

𝑧). Where:  𝑣𝑚𝑖
2 = 𝑘0

2𝜀𝑟𝑖𝜇𝑟𝑖 − 𝜆𝑚: 

If 𝑣𝑚𝑖
2 < 0, the trigonometric functions should be replaced 

with appropriate hyperbolic functions, i.e. sinh(𝑣𝑚𝑖
𝑧) and 

cosh(𝑣𝑚𝑖
𝑧).  

Since the Φ𝑚(𝑧) functions must be defined over the entire 

height of a given region, appropriate continuity conditions must 

be ensured on the electrical walls and on the separation planes 

of individual layers. These conditions are identical to the 

conditions for the 𝐸𝜑 component of the electromagnetic field.  

The 𝐸𝜑 and 𝐻𝑧 field components in each region are a linear 

combination of waveguide modes, so the relationships for the 

electromagnetic field components can be written (assuming that 

the radius of the third area extends to infinity): 
 

𝐸𝜑
𝐼 (𝑟, 𝑧) =∑

𝑎𝑚

√𝜆𝑚
𝐼
𝐽1 (√𝜆𝑖

𝐼𝑟)Φ𝑚
𝐼 (𝑧)

∞

𝑖=0

                                               (21) 

 

𝐸𝜑
𝐼𝐼(𝑟, 𝑧) =∑[

𝑏𝑚

√𝜆𝑚
𝐼𝐼
𝐽1 (√𝜆𝑖

𝐼𝐼𝑟)

∞

𝑖=0

+
𝑐𝑚

√𝜆𝑚
𝐼𝐼
𝑁1 (√𝜆𝑖

𝐼𝐼𝑟)]Φ𝑚
𝐼𝐼 (𝑧)                               (22) 

 

𝐸𝜑
𝐼𝐼𝐼(𝑟, 𝑧) =  ∑

𝑑𝑚

√𝜆𝑚
𝐼𝐼𝐼
𝐾1 (√𝜆𝑖

𝐼𝐼𝐼𝑟)Φ𝑚
𝐼𝐼𝐼(𝑧)

∞

𝑖=0

                                       (23) 

 

𝐻𝑧
𝐼(𝑟, 𝑧) =  

𝑗

𝜔𝜇0𝜇𝑟
𝐼 ∑𝑎𝑚𝐽0 (√𝜆𝑖

𝐼𝑟)Φ𝑚
𝐼 (𝑧)

∞

𝑖=0

                                     (24) 

 

𝐻𝑧
𝐼𝐼(𝑟, 𝑧) =

𝑗

𝜔𝜇0𝜇𝑟
𝐼 ∑[𝑏𝑚𝐽0 (√𝜆𝑖

𝐼𝐼𝑟)

∞

𝑖=0

+ 𝑐𝑚𝑁0 (√𝜆𝑖
𝐼𝐼𝑟)]Φ𝑚

𝐼𝐼 (𝑧)                                  (25) 

 

𝐻𝑧
𝐼𝐼𝐼(𝑟, 𝑧) =

𝑗

𝜔𝜇0𝜇𝑟
𝐼 ∑

𝑑𝑚

√𝜆𝑚
𝐼𝐼𝐼
𝐾0 (√𝜆𝑖

𝐼𝐼𝐼𝑟)Φ𝑚
𝐼𝐼𝐼(𝑧)

∞

𝑖=0

                         (26) 

 

where: 𝑎𝑚, 𝑏𝑚, 𝑐𝑚 and 𝑑𝑚 are complex constants, 
 

Due to the negligibly small values of the higher components 

of the series, the summation can be limited to a finite number of 

elements N. The coefficients 𝑎𝑚, 𝑏𝑚, 𝑐𝑚 and 𝑑𝑚 should be 

selected to ensure the continuity of the electromagnetic field at 

the boundaries of the regions, i.e. to: 
 

                             𝐻𝑧
𝐼(𝑅1, 𝑧) − 𝐻𝑧

𝐼𝐼(𝑅1, 𝑧) = 0                          (27) 

                             𝐸𝜑
𝐼 (𝑅1, 𝑧) − 𝐸𝜑

𝐼𝐼(𝑅1, 𝑧) = 0                          (28) 

                             𝐻𝑧
𝐼𝐼(𝑅2, 𝑧) − 𝐻𝑧

𝐼𝐼𝐼(𝑅2, 𝑧) = 0                        (29) 

                             𝐸𝜑
𝐼𝐼(𝑅2, 𝑧) − 𝐸𝜑

𝐼𝐼𝐼(𝑅2, 𝑧) = 0                         (30) 

In the case of a finite number of terms fulfilling the conditions 

of equality is impossible for all z. Therefore, these coefficients 

are determined from the condition that the mean square error 

(functional) component of the difference on either side of the 

boundary reached the minimum value. The corresponding 

functionals have the form (here written for the three regions): 
 

                    𝐹1 = ∫|𝐻𝑧
𝐼(𝑅1, 𝑧) − 𝐻𝑧

𝐼𝐼(𝑅1, 𝑧)|
2 𝑑𝑠

𝑆

                               (31) 

                    𝐹2 = ∫|𝐸𝜑
𝐼 (𝑅1, 𝑧) − 𝐸𝜑

𝐼𝐼(𝑅1, 𝑧)|
2
𝑑𝑠

𝑆

                               (32) 

                     𝐹3 = ∫|𝐻𝑧
𝐼𝐼(𝑅2, 𝑧) − 𝐻𝑧

𝐼𝐼𝐼(𝑅2, 𝑧)|
2 𝑑𝑠

𝑆

                            (33) 

                     𝐹4 = ∫|𝐸𝜑
𝐼𝐼(𝑅2, 𝑧) − 𝐸𝜑

𝐼𝐼𝐼(𝑅2, 𝑧)|
2
𝑑𝑠

𝑆

                             (34) 

 

Functionals achieve these minimum values if and only if their 

derivatives with respect to unknown coefficients are equal to 

zero (Rayleigh-Ritz method). After differentiating 𝐹1 with 

respect to 𝑎𝑚, 𝐹2 with respect to 𝑏𝑚, 𝐹3 with respect to  𝑐𝑚 and 

𝐹4with respect to 𝑑𝑚, a system of 4N linear equations is 

obtained, allowing the determination of the unknown constants  

𝑎𝑚, 𝑏𝑚, 𝑐𝑚 and 𝑑𝑚 (35).  

 

                                             �̃� [

𝑎1
𝑎2…
𝑑𝑚

] = 0                                                  (35) 

 

This system has a non-zero solution if and only if its 

determinant is equal to zero  

 

                                              𝑑𝑒𝑡�̃� = 0                                                     (36) 
 

The matrix �̃�  with dimensions 4Nx4N, for three regions, has 

the form (37), and its elements are presented in Table I. 
 

                               �̃� = [
𝑈1 𝑈2 𝑈3 𝑈4
𝑈5 𝑈6 𝑈7 𝑈8

]                                        (37) 

 

where: U4 and U5 are matrices with zero elements, and the 

remaining matrices have the form of 𝑈𝑖 = [𝑣𝑖1 𝑣𝑖2]𝑇 . 

 

TABLE I 

ELEMENTS OF W MATRIX FOR THREE REGIONS 

i 𝑣𝑞𝑘
𝑖1 (𝑞, 𝑘 = 1,2,…𝑁) 𝑣𝑞𝑘

𝑖2 (𝑞, 𝑘 = 1,2,…𝑁) 

1 𝐽0(ℎ𝑖
𝐼𝑅1) 〈

Φ𝑘
𝐼 (𝑧)Φ𝑞

𝐼∗(𝑧)

𝜇𝑟
𝐼

〉 
𝐽1(ℎ𝑖

𝐼𝑅1)

ℎ𝑖
𝐼

〈Φ𝑘
𝐼 (𝑧)Φ𝑞

𝐼𝐼∗(𝑧)〉 

2 𝐽0(ℎ𝑖
𝐼𝐼𝑅1) 〈

Φ𝑘
𝐼𝐼(𝑧)Φ𝑞

𝐼∗(𝑧)

𝜇𝑟
𝐼𝐼

〉 
𝐽1(ℎ𝑖

𝐼𝐼𝑅1)

ℎ𝑖
𝐼𝐼

〈Φ𝑘
𝐼𝐼(𝑧)Φ𝑞

𝐼𝐼∗(𝑧)〉 

3 𝑁0(ℎ𝑖
𝐼𝐼𝑅1) 〈

Φ𝑘
𝐼𝐼(𝑧)Φ𝑞

𝐼∗(𝑧)

𝜇𝑟
𝐼𝐼

〉 
𝑁1(ℎ𝑖

𝐼𝐼𝑅1)

ℎ𝑖
𝐼𝐼

〈Φ𝑘
𝐼𝐼(𝑧)Φ𝑞

𝐼𝐼∗(𝑧)〉 

6 𝐽0(ℎ𝑖
𝐼𝐼𝑅2) 〈

Φ𝑘
𝐼𝐼(𝑧)Φ𝑞

𝐼𝐼∗(𝑧)

𝜇𝑟
𝐼𝐼

〉 
𝐽1(ℎ𝑖

𝐼𝐼𝑅2)

ℎ𝑖
𝐼𝐼

〈Φ𝑘
𝐼𝐼(𝑧)Φ𝑞

𝐼𝐼𝐼∗(𝑧)〉 

7 𝑁0(ℎ𝑖
𝐼𝐼𝑅2) 〈

Φ𝑘
𝐼𝐼(𝑧)Φ𝑞

𝐼𝐼∗(𝑧)

𝜇𝑟
𝐼𝐼

〉 
𝑁1(ℎ𝑖

𝐼𝐼𝑅2)

ℎ𝑖
𝐼𝐼

〈Φ𝑘
𝐼𝐼(𝑧)Φ𝑞

𝐼𝐼𝐼∗(𝑧)〉 

8 𝐾0(ℎ𝑖
𝐼𝐼𝐼𝑅2) 〈

Φ𝑘
𝐼𝐼𝐼(𝑧)Φ𝑞

𝐼𝐼∗(𝑧)

𝜇𝑟
𝐼𝐼

〉 
−𝐾1(ℎ𝑖

𝐼𝐼𝐼𝑅2)

ℎ𝑖
𝐼𝐼𝐼

〈Φ𝑘
𝐼𝐼𝐼(𝑧)Φ𝑞

𝐼𝐼𝐼∗(𝑧)〉 
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where: 〈Φ𝑘
(𝛼)(𝑧)Φ𝑞

(𝛽)(𝑧)〉 = ∫ Φ𝑘
(𝛼)(𝑧)Φ𝑞

(𝛽)(𝑧)
𝐿′

0
𝑑𝑧, and ℎ𝑖

(𝛼) =

√𝜆𝑖
(𝛼)

. 

III. RESULTS AND DISCUSSION 

This section presents the results of the calculations of the 

resonant frequency of the dielectric-ferrite resonator in the form 

of a cylinder and a sphere. The simulations started with 

determining the resonant frequencies of various TE0mn modes 

for a cylindrical resonator placed in a metal cavity with a height 

equal to the height of the resonator and a radius much larger than 

the radius of the cylinder. The diameter of the cylinder was 

equal to its height and equal to 8.89 mm. The analyzed ferrite 

had a permittivity of 15.66, and the permeability was varied 

from 0.35 to 1 [3]. For such a structure, determining the 

resonance frequency is very simple and does not require 

advanced methods. The results of calculations are shown in Fig. 

2. The calculated values of the resonant frequency for the first 

three TE0mn modes as a function of initial permeability are 

shown. 

 

 

 
Fig. 2. Resonant frequency as a function of initial permeability obtain by 

means of radial modes matching 

For comparison, Fig. 3 shows the results obtained using the 

CST electromagnetic simulator. As you can see, the results are 

almost identical, which is clear from Fig. 4, which shows the 

relative difference of calculations with both programs Rf. The 

relative difference of resonant frequencies was defined as (38): 

 

𝑅𝑓 =
𝑓𝐶𝑆𝑇−𝑓𝑅𝑀𝑀

𝑓𝑅𝑀𝑀
∙ 100 [%]           (38) 

 
where: Rf – the relative difference of frequencies, fRMM – the 

resonant frequency obtained by means of the radial modes 

matching method, fCST – the resonant frequency obtained by 

means of the CST electromagnetic simulator. 

 

 
Fig. 3. Resonant frequency as a function of initial permeability by means of 

CST simulator 

 
Fig. 4. The relative difference of resonant frequencies Rf  as a function of 

initial permeability 

As can be seen from Fig. 4, Rf  ranges from -0.6 to 0.4 percent. 
This is a very good agreement of the obtained results, especially 

when taking into account the relationship between the resonant 
frequency calculated by the CST simulator and the place of 
resonator excitation. 

The cylinder with a diameter equal to its height can be 
considered a very rough approximation of a sphere. In the radial 
modes matching method, a complex structure can be obtained 

by dividing it into regions and layers that are cylinders and rings. 
This division for a sphere is shown in Fig. 5. 

 
Fig. 5. The sphere divided in a radial modes matching method 
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To calculate the subsequent outer radii of the regions, proceed 

as follows:  

- the diameter of the sphere R is divided into K equal sections 

with the value hk,  

- the height of the next region hi is calculated from the formula:  
 

ℎ𝑖 = 2𝑅 − 2ℎ𝑘(𝑖 − 1) 
 

- the radius of the next region 𝑅𝑖 is obtained from the formula: 
 

𝑅𝑖 = √𝑅
2 − [𝑅 (

𝐾 − 1

𝐾
)]
2

 

 

An example of the values of the heights and radii of the regions 

of the approximated sphere divided into 20 regions is presented 

in Table II. 
TABLE II 

AN APPROXIMATION OF A SPHERE IN PRESENTED METHOD 

i Radius [mm] Height [mm] 

1 1.387951 8.89 

2 1.937531 8.4455 

3 2.341549 8.001 

4 2.667000 7.5565 

5 2.940091 7.112 

6 3.174365 6.6675 

7 3.377908 6.223 

8 3.556000 5.7785 

9 3.712307 5.334 

10 3.849483 4.8895 

11 3.969512 4.445 

12 4.073910 4.0005 

13 4.163852 3.556 

14 4.240260 3.1115 

15 4.303853 2.667 

16 4.355193 2.2225 

17 4.394709 1.778 

18 4.422719 1.3335 

19 4.439440 0.889 

20 4.445000 0.4445 
 

The accuracy of mapping the sphere by such division depends 
on the number of regions. Therefore, calculations were carried 
out for various numbers of regions in order to determine the 
number of ones enabling a sufficient approximation of the 
sphere. The results of these calculations are presented in Fig. 6 
and 7. 

 

 
Fig. 6. Resonant frequencies of TE0mn modes as a function of numbers of 

regions for different permeability (TE0mn-1 – μ=1, TE0mn-0.75 – μ=0.75, TE0mn-

0.5 – μ=0.5) 

 
Fig. 7. Resonant frequencies of TE0mn modes as a function of numbers of 

regions for different permeability (TE0mn-1 – μ=1, TE0mn-0.75 – μ=0.75, TE0mn-

0.5 – μ=0.5) 

Rk values defined as the relative difference in the resonant 

frequency for a specific value of the number of regions in 

relation to the maximum number of these regions (40) are 

described by the formula (39): 
 

     𝑅𝑓 =
𝑓𝑖−𝑓𝑚𝑎𝑥

𝑓𝑚𝑎𝑥
∙ 100 [%]            (39) 

 

where: Rf – the relative difference of frequencies, fmax – the 

resonant frequency obtained for maximum number of regions, fi 

– the resonant frequency obtained for i regions. 

 

As can be seen from Fig. 6, as the number of areas increases, 

the values of the calculated resonant frequencies stabilize 

towards the asymptotic value. This is clearly visible in Fig. 7, 

where for the number of regions above 30, changes in resonant 

frequencies do not exceed 0.2 percent. 

Similarly to the cylinder, calculations were made for a sphere 

(K = 30) as a function of initial permeability for three TE0mn 

modes. The results are presented in Fig. 8. Calculations were 

also made using the CST simulator. The results are presented in 

Fig. 9 along with calculations using the radial modes matching 

method.  

 

 

 
Fig. 8. Resonant frequency as a function of initial permeability obtain by 

means of radial modes matching. 
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Fig. 9. Resonant frequency as a function of initial permeability obtain by 

means of radial modes matching and CST simulator. 

 
Fig. 10. The relative difference of resonant frequencies Rf  as a function of 

initial permeability for analyzed sphere. 

The differences in the resonant frequencies calculated by both 

methods are greater than for the cylinder, which is clearly 

visible in Fig. 10. This is probably due to not carefully selected 

excitation points in the CST simulator. It may also result from 

taking into account too few waveguide modes, which probably 

resulted in a not very smooth curve for the TE021 mode (see Fig. 

8). 

CONCLUSION 

The paper presents the application of the radial modes 

matching method to determine the resonant frequencies of 

TE0mn species in a multilayer resonance structure containing 

dielectric and ferrite materials. The solution of Mawell's 

equations for TE0mm modes is presented. A computer program 

was developed and launched enabling the analysis of structures 

composed of a maximum of 40 regions and 40 layers in each. 

This allows you to analyze complex structures such as a cone, a 

sphere, etc. The work deals with a sphere as an example 

structure. The results of calculations as a function of the initial 

permeability are presented, comparing them with the results 

obtained using the CST electromagnetic simulator. An analysis 

of the influence of the number of regions on the accuracy of 

calculations of resonant frequencies in the sphere was carried 

out. The obtained results allow the conclusion that the radial 

type matching method can be successfully used to analyze 

axisymmetric structures with complex shapes. 
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