
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2024, VOL. 70, NO. 1, PP. 219–228
Manuscript received October 1, 2023; revised March, 2024. DOI: 10.24425/ijet.2024.149534

Low-cost ANS encoder for lossless data
compression in FPGAs

Magdalena Pastuła, Paweł Russek, and Kazimierz Wiatr

Abstract—We present the implementation of the hardware
ANS compressor in FPGAs. The main goal of the design was
to propose a solution suitable to low-cost, low-energy embedded
systems. We propose the streaming-rANS algorithm of the ANS
family as a target for the implementation. Also, we propose a
set of algorithm parameters that substantially reduce the use
of FPGA resources, and we examine what is the influence of
the chosen parameters on compression performance. Further,
we compare our design to the lossless codecs found in literature,
and to the streaming-rANS codecs with arbitrary parameters.

Keywords—Lossless compression; Asymmetric Numeral Sys-
tems (ANS); Hardware codecs; FPGA

I. INTRODUCTION

NOWADAYS, information is increasingly valuable asset.
Everyone is aware that large data sets are used by AI

systems for new model development, but huge data volumes
are also analysed in the traditional way to find new patterns of
behaviour. Storage of this amount of data is expensive both in
terms of hardware resources and energy consumption. More-
over, transferring such a massive collection of data between
devices requires sufficient bandwidth available. In short, the
more data is sent, the more time it takes, and more power
(electrics and computing) is required to process it on the way.

The common solution to mitigate the big data handling
problem is data compression of course. Data can be stored
and transferred in compressed form and decompressed when
analysis is required. These scenarios create demand for effi-
cient, cheap, and fast compressing methods. Simultaneously,
the hardware codecs can be necessary to make sure that
compression and decompression are quick enough to pace up
with the data read/write bandwidth.

Unlike image compression, data analytics requires lossless
data compression algorithms. There are three main types of
lossless compression methods: Huffman coding, arithmetic
coding, and Asymmetric Numeral Systems (ANS).

Huffman coding uses prefix codes, i.e. every symbol has
its unique code that is not a prefix of any other symbol
code. This makes this algorithm relatively simple and fast.
It can be executed in parallel, as symbols can be encoded
simultaneously. However, Huffman coding is inefficient, as we
cannot use the fractional number of bits per symbol and the
average width of the encoded symbol grows drastically with
the increase of the number of unique symbols [1].

Authors are with AGH University of Krakow, Krakow, Poland (e-mail:
pastulamagdalena@gmail.com, russek@agh.edu.pl, wiatr@agh.edu.pl).

Arithmetic coding does not work with static symbols. It
uses two numbers that represent a range to store the encoded
data. When a new symbol has to be encoded, these two
numbers are changed based on the probability of this symbol
in the data. Consequently, the encoding of the next symbol is
dependent on the result of the encoding of the previous ones.
Thus, arithmetic encoding cannot be executed concurrently.
Moreover, arithmetic coding is relatively complex and slow,
but it offers a better compression ratio than Huffman encoding
[2].

The method examined in our work, i.e. the ANS compres-
sion algorithm is a trade-off of the former ones. It has a speed
and simplicity comparable to Huffman coding, and it offers
compression performance comparable to arithmetic coding
[3]. Similarly to the arithmetic algorithm, ANS outputs a big
natural number. Additionally, some ANS variants produce a
bitstream as an additional encoding result.

II. MOTIVATION AND GOAL

Currently, the ANS is an important and widely used algo-
rithm. Thanks to the good complexity-to-efficiency ratio, it is
used in numerous applications: in JPEG XL image file format
[4], or compression software used by companies: Facebook’s
ZSTD [4], [5], Apple’s LZFSE [4], [6], or Google’s Draco
compression library for 3D graphic [4], [7] for example. There
are many more implementations and usages and what is worth
noting, ANS still has not reached its peak popularity yet.
It is a subject of a growing number of articles and its new
applications are still being developed.

However, implementing the ANS algorithm in energy-
optimised embedded systems might be quite problematic.
Although it is less complex than arithmetic encoding, it
still requires processing that can use most of the resources
of a small microcontroller, especially when working with
substantial data size with dynamic probability distributions of
symbols. In that case, the hardware codec that is customised
for the algorithm is a solution. It requires reduced hardware
resources that fit the algorithm needs, consumes less energy,
and additionally, off-loads the CPU from the computationally
exhaustive tasks. Custom codecs for the algorithm requires the
design of dedicated hardware that is customized to execute
such an algorithm. Usually, hardware implementations of an
algorithm operate at lower clock frequencies than the main
processing unit, but they are optimized to complete their task
within as few clock cycles as possible, which leads to a lower
overall execution time.

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,
https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/


220 M. PASTULA, P. RUSSEK, K. WIATR

Another motivation to focus on the algorithm’s hardware
implementation is the better final performance of the system.
As was also mentioned at the beginning, in the case of data
transfer, the compression process should be fast enough to
pace up with transmission speed, so that sending compressed
data does not take longer than sending the original data. To
ensure that the compressing process takes as little time as
possible, one can accelerate its execution by running it in
parallel. However, the ANS algorithm cannot be executed
concurrently, because the encoding of the next symbol depends
on the encoding of the previous symbol. Although data can be
divided into several parts which can be encoded separately, it
is less effective in terms of compression ratio.

The main purpose of this thesis is to propose and imple-
ment an efficient hardware architecture for one of the most
common variants of the ANS algorithm i.e. Streaming-rANS.
Streaming-rANS is introduced in Section III-B. As a good
hardware-oriented algorithm should avoid certain operations
that are unfortunately a part ANS (i.e. division and modulo
operations), we will propose some constraints that are a
solution to this obstacle. Consequently, it will be examined
what is the impact of the constraints on the compression ratio
and whether there are any other trade-offs of the proposed
solution.

The design will be prepared in a hardware description
language and validated in an FPGA-based Programmable SoC
(AMD’s ZYNQ PSoC). Required FPGA resources use will be
presented for the different algorithm parameters, and they will
be compared to other existing solutions reported in literature.

The paper structure is as follows. Section III describes
briefly the most common variants of ANS - particularly the
streaming-rANS which is chosen for designing a hardware
implementation. Section IV reviews the found articles and
depicts the current state of the topic. Mainly, it presents
other existing hardware implementations of ANS. Section
V describes the development of the hardware and presents
assumptions that were made to design the codec. Section VI
contains the experiment results and analysis of the impact of
the design constraints on compression ratio. Lastly, Section
VII summarizes the paper with a discussion of possible
further research and development. Further modifications to the
proposed design are also considered.

III. ANS FAMILY OF ALGORITHMS

The Asymmetric Numeral Systems (ANS) is an algorithm
of lossless compression, and it was first published by Jarosław
Duda in 2009 [8]. There are a few variants of this algorithm,
but the common idea behind them is to create a finite-state
machine whose next state depends on the previous state and
a current symbol to encode. The states are enumerated by big
positive integer numbers, and the final state of the FSM, after
encoding all symbols, represents the encoded data.

The definitions should be presented first to formally intro-
duce ANS coding.

• Symbol – the smallest element of data to encode. For
text, a symbol is a letter for example. It is denoted as st.

• Alphabet – a set of all symbols that occur in data to
encode. For text, it is the ASCII character set for example.

• Frequency of a symbol – number of occurrences of a
symbol in data to encode. It is marked as Fst in equations.

• Cumulative frequency for a symbol – a sum of frequen-
cies of all symbols that preceded st in the alphabet [9].
It is denoted as Cst and described by equation

Csi =

i−1∑
j=1

Fsj . (1)

• Size of data to encode – number of symbols in data to
encode. It can be calculated as a sum of all frequencies.
It will be represented by M in equations.

• State – a big integer number representing data encoded
so far. After encoding of all symbols, it is a result of
compression.

• Bitstream – an additional part of the compression result
for the streaming-rANS and tabled-ANS variants of ANS.

The execution of each ANS variant consist of two phases:
the initial phase when the symbol frequencies (Fst and Cst )
are calculated, and the encoding phase when consecutive
symbols of data are encoded.

The most popular variants of ANS are range-ANS,
streaming-rANS, and tabled-ANS.

A. Range-ANS

Range ANS (rANS) encodes consecutive symbols in ranges,
which is similar to arithmetic coding [9]. When encoding a
symbol, the next state is calculated with the formula

Xt =

⌊
Xt−1

Fst

⌋
∗M + Cst +mod(Xt−1, Fst), (2)

where mod() stands for the modulo operation.
To decode, the previous symbol and state can be calculated

thanks to the formulas:

Xt−1 =

⌊
Xt

M

⌋
∗ Fst + slot− Cst , (3)

st = CINV (slot), (4)

slot = mod(Xt,M), (5)

where

CINV (y) = ai, if Cai < y < Cai+1 (6)

stands for inverse cumulative frequency.
As one can see, every compression step increases the bit size

of the state’s value. Unfortunately, the state’s value increases
exponentially with the size of the data to encode, as in every
step it is multiplied by a factor proportional to M . This is
the major disadvantage of rANS, as coding of big data sets
requires a large bit-width of registers and operators to execute
the algorithm and store the state value.



LOW-COST ANS ENCODER FOR LOSSLESS DATA COMPRESSION IN FPGAS 221

B. Streaming-rANS

Streaming rANS [9] is a modification of range-ANS. The
encoding step uses the same formula, but before encoding the
previous state is adjusted to lay in an appropriate range. This
range is dependent on the frequency of the symbol to encode,
and it is described as

Ist = [lFst , 2
klFst − 1]. (7)

This adjustment causes the state to stay in the range

I = [lM, 2klM − 1], (8)

where l and k can be any positive integer numbers.
The previous state is adjusted to the range given by Equation

7 by dividing it by 2k. The remainders of this integer division
make up the bitstream, which is a part of the encoding result.
Consequently, k is equal to the number of bits of the bitstream
chunk that the encoder produces at once. Usually, k is chosen
to be 8, 16, 32, or 64, as it simplifies the process of sending
the encoded data.

Algorithms 1 and 2 show the pseudocode of streaming-
rANS for the encoding and decoding steps accordingly. The
while loops represent the state adjustment, and the remaining
are the rANS operations described by equations {2–5}.

Algorithm 1 Streaming-rANS encoding step pseudocode
while Xt−1 ≥ 2k ∗ l ∗ Fst do

bitstream← (bitstream << k) +mod(Xt−1, 2
k)

Xt−1 ← Xt−1 >> k
end while
Xt ← (Xt−1//Fst) ∗M + Cst +mod(Xt−1, Fst)

Algorithm 2 Streaming-rANS decoding step pseudocode
while Xt < l ∗M do

Xt ← (Xt << k) +mod(bitstream, 2k)
bitstream← bitstream >> k

end while
slot← mod(Xt,M)
st ← CINV (slot)
Xt−1 ← (Xt//M) ∗ Fst + slot− Cst

C. Tabled-ANS

The result of encoding is always the same for the given
symbol and previous state. Thanks to the adjustment of the
previous state to the appropriate range the number of states is
limited and reasonably big in the streaming-rANS. Therefore,
the next state can be pre-calculated and put into a lookup table.
This is the idea that lies behind tabled-ANS. The initial phase
of this algorithm includes calculating the next state for every
previous state and symbol and putting it in the lookup table.
Consequently, tabled-ANS requires a lot of pre-processing for
every distribution of symbols in data. It makes sense if the
distribution is known beforehand and does not change much
for big volumes of compressed data. Moreover, a memory of

size 2 to 16 times the size of the alphabet is required to store
the lookup table for the size of the alphabet equal to 256 [3].

Streaming-rANS was chosen for a custom hardware proces-
sor examined in this work. The reason is that some hardware
implementations of tabled-ANS are already reported in the
literature (see Section IV-B), but no implementations could be
found for streaming-rANS. There is also another advantage of
streaming-rANS for embedded systems. The streaming-rANS
and tabled-ANS encoding can be treated as an encryption algo-
rithm, where bitstream is the data being encrypted and state is
the key needed to decrypt the data [10]. This additional feature
can be an important advantage in small embedded systems,
as the same hardware can be used for data compression and
encryption.

IV. ENCODERS REPORTED IN LITERATURE

A. Entropy encoders

Numerous hardware implementations of the Huffman and
arithmetic coding are reported in the literature. For example,
hardware implementation of the tree-less Huffman encoding
is described in [11]. The main idea is to generate codes for
some symbols based on codes for other ones, as it is often
sufficient to add one or add one and shift only. This operation
is performed from the symbol of the smallest width and
does not require building the Huffman tree. However, a large
number of resources is necessary to implement this solution, as
it requires extra modules: one for counting symbol frequencies
and one for code generation. What is also worth noting, each
field of the frequencies array has a 32-bit width and the size
of the alphabet is assumed to be 256.

Another hardware implementation of the Huffman encoder
is given in [12]. This design, based on Canonical Huffman
Coding, builds the static Huffman tree and reads the length
of each encoding. Then, the longest encodings are changed
to zeros and the next encodings are calculated by adding
one to the previous ones. When encoding length changes to
smaller, additional shifting is performed. This design does
not include frequency counting. Additionally to the proposed
codec resources, the article reports resources needed for the
implementation of the original Huffman encoder. Unfortu-
nately, the authors did not specify for what size of the alphabet
the system was implemented.

TABLE I
RESOURCES OF THE ENCODERS REPORTED IN LITERATURE

Design [11] [12]-oryg. [12]-prop. [13]

Slices 13,853 - - 7,862

4-LUTs 25,224 - - 13,781

LUTs - 6,266 1,654 -

LUTRAMs - 5 8 -

Flip-Flops 15,791 464 850 6,848

BRAMs - 0 50 -

Implementation of arithmetic coding is described in [13].
It consists of two parts: a modeller – a part responsible
for estimating symbols’ probabilities, and a coder – a part



222 M. PASTULA, P. RUSSEK, K. WIATR

responsible for symbols coding. The proposed design features
a modeller that stores symbols’ frequencies as leaf nodes
in a binary tree, and cumulated frequencies stored in the
intermediate nodes. When any of the frequencies change, a
specific procedure is performed to update the binary tree.
The coding part is composed of binary encoders that take
intermediate node and interval as arguments. The design was
implemented for the alphabet size of 256.

Table I contains hardware resources needed for the imple-
mentation of the codecs reported in [11]–[13]. Parameters that
are not specified in the publications are marked as ’-’ in the
table.

B. ANS encoders

The authors did not find any paper related to streaming-
rANS or rANS hardware codec implementation. However,
three implementations of tabled-ANS were found.

The first implementation is described in [14]. The method
proposed in this article is to calculate the width of the bitstream
in the initial phase, when the encoding table is generated,
instead of calculating it when encoding a symbol. As a result,
two encoding tables are in use: the width of the bitstream
table and next state’s value table. Both tables are indexed by
the address created of the current state and symbol to encode.
Such a solution requires bigger memory but it runs with a
higher frequency clock.

The second implementation is given in [15]. However, the
ANS coding is only a part of this work. It regards an image
compressor of the LOCO-ANS algorithm, meaning that the
ANS encoding is accompanied by the pixel decorrelator and
quantizer modules.

The third design of the tabled-ANS encoder is described in
[16]. This solution splits the new state table into two parts:
the first table of equal width and the second table of equal
width but greater by one than the first one. To be able to split
the encoding table this way, it is required to renormalize the
number of occurrences of symbols so that their sum is a power
of two. After this encoding process is changed to replace
only part of the bits of the state, not all. Unfortunately, this
article does not specify used hardware resources. It specifies
a throughput for four input files only.

Table II shows resources used for the implementation of
encoders given in [14], [15]. Resources given for [14] are for
the alphabet of size 256, and resources given for [15] are for
the implementation of the state’s bit-width of 7 bits.

TABLE II
THE ANS CODERS’ RESOURCES REPORTED IN LITERATURE

Design [14] [15]

Slices 192 -

4-LUTs 403 -

LUTs - 4,572

Flip-Flops 105 4,373

BRAMs 3 29

DSP Blocks - 2

Compared to other entropy encoders, it can be seen that
ANS encoders generally need much fewer resources. Even the
design proposed in [15], where the encoder is only a part of
the solution, needs fewer resources than the original Huffman
encoder presented in [12]. However, there are many hardware
implementations of the Huffman coding, meaning that versions
that require fewer resources can exist.

V. CUSTOM ANS CODER DEVELOPMENT

For any processor design, design constraints must be con-
sidered before the system architecture is created. For example,
assumptions about the codec’s input data representation, vol-
ume and possible statistical distribution have to be taken. But
first and foremost, the designer should consider how to deal
with operations problematic in hardware implementations.

A. Avoiding division and modulo operations

The energy-efficient and fast custom processors should
avoid computationally expensive operations. In the case of
streaming-rANS, division and modulo are undoubtedly the
most resource-consuming and execution-time-hungry opera-
tions. Their optimisation was requested and possible. Looking
closely at the formulas 7 and 8, we can see that for l and k
equal to one the equations simplify as follows:

Ist = [Fst , 2Fst − 1], (9)

I = [M, 2M − 1], (10)

and Equation 2 can be simplified to

Xt = M + Cst +Xt−1 − Fst . (11)

The reason for that is because
⌊

Xt

Fst

⌋
is always one, as the

previous state Xt is always in the range given in Equation 9.
Consequently, mod(Xt, Fst) can be calculated as Xt − Fst ,
as modulo operation can be defined as mod(Xt, Fst) = Xt−⌊

Xt

Fst

⌋
∗ Fst .

Similarly to the encoding, the decoding formulas can be
simplified to formulas:

slot = Xt −M, (12)

st = CINV (slot), (13)

Xt−1 = Fst + slot− Cst , (14)

because the previous state is always within the range given by
Equation 10 before executing equations 3, 4, and 5.

Those observations were used to create efficient hardware
for streaming-rANS. Parameters k and l are fixed to one in
our design, and the expensive division and modulo operations
could be replaced by the cheap subtraction operations.



LOW-COST ANS ENCODER FOR LOSSLESS DATA COMPRESSION IN FPGAS 223

B. Input data-related assumptions

Looking at pseudocodes given in listings 1 and 2, the
single step of the streaming-rANS algorithm requires five input
variables:

• symbol code,
• previous state’s value,
• frequency of the symbol,
• cumulative frequency of the symbol,
• size of data to encode – M.

The resulting output of the algorithm is the last state value
and the bitstream.

Symbols’ frequencies Fst have to be known before encoding
starts, but the size of data M and cumulative frequency Cst

can be calculated based on them. For this reason, the operation
of the designed codec was divided into two phases: the initial
phase – when the frequencies are transferred to the codec and
cumulative frequencies are calculated, and the encoding phase
– when the codec reads and encodes consecutive symbols of
data.

In the process of the codec processor design, the number
and size of the internal registers have to be determined, along
with the bit-width of all the processor’s input and output ports.
It was assumed that the alphabet size is smaller than 256, and
it is sufficient for ASCII text encoding as well as for selected
image compression algorithms. In practice, data of any format
can be compressed, as long as it can be read byte by byte.
The bit-width of the symbol is set to 8 bits.

An important constraint to be made was the maximum
size of data Mmax to encode. According to Equation 10, the
maximum value of the state is equal to 2 ∗Mmax − 1, as the
maximum size of the data is equal to half of the maximum
state’s value. However, we prefer to control the bit-width of
the state directly, not through the size of the data, to simplify
the transfer or storage of encoded data – for example, internal
system bus size can be a constraint. For this reason, we set up
an internal bit-width of the state first, and the size of the data
is its derivative in our design. Let the bit-width of the state be
m, and the data size bit-width is m-1 accordingly.

The assumption about the state register bit-width propagates
to the frequency and cumulative frequency bit-widths – as in
the borderline case they are equal to the size of the data.

When it comes to the state bit-width, it was decided that it
is a constant parameter in the design, so that it is fixed for the
given hardware codec architecture, no matter the data size.

Another assumption had to be made about the bitstream
output and how it is transferred to the output of the hardware
codec. Because the number of steps while adjusting the
previous state to a new range can vary, it was decided that
new bits of bitstream are not transferred to output bit-by-bit,
but rather all at once. As a result, the maximum bit-width of
bitstream output is also dependent on the bit-width of the state.
In the worst-case scenario, the previous state would have to be
aligned to the range [1, 2]. In that case, it has to be divided by
2m−1, so the bit-width of the bitstream output has to be equal
to m-1, where m is the bit-width of the state. Additionally,
another output port is required to keep the number of valid

bits on the bitstream output port. Its bit-width is equal to
⌈log2(state width)⌉.

Although transferring all new bits of bitstream at once
requires additional input and output ports, it will allow to
encode one symbol per clock cycle.

C. Implementation
A Verilog description of the final solution was created. All

the source code can be found in a public repository [17]. The
codec was validated using a hardware description language,
Verilog. Synthesis and implementation were performed for the
Zybo development board that hosts the XC7Z020 chip from
AMD’s Zynq-7000 PSoC family.

The designed codec module has the following inputs:
• clk – codec’s clock,
• reset – active high reset signal,
• start – flag indicating the encoder start working,
• freq – frequency of occurrence of one symbol,
• symbol – next symbol from sequence to encode.

It also has the following outputs:
• output ready – flag indicating the output state is valid,
• state – during the encoding bitstream bits for given input

symbol, after the encoding the final value of ANS state,
• bitstream width – indicating how many bits of the bit-

stream are valid. Counted from the least significant bit.
Finally, it has the following internal registers:

• M – the size of data, counted as a sum of frequencies
values read from freq input,

• freqs – array with frequency values,
• C – array with cumulative frequency values,
• alphabet size – the size of the alphabet,
• ans state – state of the ANS algorithm that holds data

encoded so far. Its initial value is equal to M,
• state – variable holding encoder’s state number,
• index – index for loop operations.
For the purpose of verification, the working was run on

the Zybo board by running a small program on Zynq’s ARM
processor that communicates with the ANS encoder uploaded
to the FPGA part of the Zynq SoC.

For this purpose, the design was adjusted to communicate
via AXI4 Stream. The AXI Stream FIFO was used as an
interface between the encoder and the microprocessor. Addi-
tionally, a small program was written for the ARM Cortex-A9.
The program initializes the encoder by resetting it and sends
information about a string to encode, which is the size of the
alphabet and frequencies of symbols, and then the string itself.

Table III shows resources used for the implementation of the
validation design, where the first row is for the ANS encoder
solely, and the second is for all modules that were a part of
the FPGA programming configuration, including fifo and other
modules needed to communicate with the microprocessor. The
validation implementation was performed for an encoder with
a state of 8-bit width.

D. Estimation of hardware resources
To better examine the hardware resources needed for the

proposed design, synthesis was run for state bit-widths of



224 M. PASTULA, P. RUSSEK, K. WIATR

TABLE III
POST-IMPLEMENTATION RESOURCES OF THE PROPOSED DESIGN

FOR A STATE OF 8-BIT WIDTH

Resource Use Percent

Slices 921 20.9%

LUTs 1,709 9.7%

LUTRAMs 48 0.8%

Flip-Flops 2,131 6.05%

BRAMs 0 0 %

8, 16, 32, and 64 bits. The first three can encode data sets
of maximum size of 128 bytes, 32 768 bytes, and 2 GB,
accordingly. Table IV shows how many resources were used
and Table V shows the percentage of used resources of ZYNQ
XC7Z010 PSoC. The numbers presented in these tables are
the ones obtained after the synthesis of the codec. As it can
be seen, along with increasing the width of the state and
therefore the maximum size of data to encode, the number
of hardware resources needed increases as well. This happens
mainly because the bit-width of frequencies and cumulative
frequencies stored in the tables depend on the bit-width of the
data size. At the same time, those tables are the most hardware
resource-consuming part of the encoder.

TABLE IV
RESOURCES USED TO IMPLEMENT THE DESIGN FOR THE

DIFFERENT BIT-WIDTHS OF THE STATE ACCORDING TO THE
POST-SYNTHESIS REPORT

Resource 8-bit 16-bit 32-bit 64-bit 128-bit

LUT 1,569 2,934 6,178 14,273 36,471

LUTRAM 40 80 168 336 680

Flip Flops 1,850 3,942 8,115 16,483 33,016

BRAM 0 0 0 0 0

DSP 0 0 0 0 0

TABLE V
UTILIZATION OF ZYNQ XC7Z010 RESOURCES FOR THE

DIFFERENT WIDTHS OF THE STATE ACCORDING TO
POST-SYNTHESIS REPORT

Resource 8-bit 16-bit 32-bit 64-bit 128-bit

LUT 8.91% 16.67% 35.10% 81.10% 207.22%

LUTRAM 0.67% 1.33% 2.80% 5.60% 11.33%

Flip Flops 5.26% 11.20% 23.05% 46.83% 93.80%

BRAM 0% 0% 0% 0% 0%

DSP 0% 0% 0% 0% 0%

E. Comparison to other implementations

Table VI contains resources needed for the implementa-
tion of encoders described in Section IV as a percentage
of resources needed for the implementation of the proposed
design. Additionally, what is not given in the table, the design
proposed in [12] uses 50 more blocks of RAM, the design
given in [14] uses 3 more blocks of RAM, the design from

[15] uses 29 more blocks of RAM, and design from [15] uses
two more DSP units. The number of RAM blocks is not listed
in Table VI, because RAM blocks are not used by the proposed
design. Also, 4-LUT usage in the other designs was compared
to the 6-LUT usage in the proposed design.

TABLE VI
RESOURCES USED TO IMPLEMENT REPORTED IN LITERATURE

IMPLEMENTATIONS OF ENTROPY ENCODERS AS A PERCENTAGE
OF RESOURCES USED TO IMPLEMENT THE PROPOSED DESIGN

Design Slices LUT LUTRAM Flip Flops

[11] 1,504.13% 1,475.95% - 741.01%

[12] prop - 96.78% 16.67% 39.89%

[12] orig - 366.65% 10.42% 21.77%

[13] 853.64% 806.38% - 321.35%

[14] 20.85% 23.58% - 4.93%

[15] - 267.52% - 205.21%

The use of resources varies between the implementations.
The higher use is observed in [11], [13], and [15]. However, as
mentioned in Section IV, those values include more function-
alities than just compression – they include the part responsible
for data pre-processing also, thus, the outcome is as expected.

On the other hand, The Huffman encoder proposed in [12]
and the tANS encoder from [14] require fewer resources. The
first one needs a similar number of LUTs, the second one
requires much fewer resources in general.

The original Huffman encoder from [12] is positioned in the
middle of the rank. It does take more than three times more
LUTs than the proposed design, but at the same time, it takes
much fewer flip-flops.

VI. CODEC PERFORMANCE

This section presents an important discussion of the influ-
ence of the hardware design-related assumptions that regard l
and k values on compression rate and resource uses. Basically,
we want to know what is the trade-off between the two. It is
worth mentioning, that the provided repository [17] includes
also the implementation codes for the arbitrary l and k values.

A. Compression rate

As mentioned in Section V-A, the l and k were assumed
to be equal to one in the proposed design. However, this
assumption can impact coding efficiency, thus, the l and k
impact on the compression rate was examined. The analysis
was conducted on artificially generated text data of various
sizes: 128 bytes, 32,768 bytes (32 kB), and 2,147,483,648
bytes (2 GB). The data size values were chosen to match the
maximum data size to encode codec state with 8-bit, 16-bit
and 32-bit registers accordingly, as described in Section V-B.
The probability distribution of symbols in the text was based
on statistics of the Alice in Wonderland book.

Figures 1, 3, 5 show the number of bits per symbol (BPS)
used to compress the data as a function of k for fixed values of
l=1, 2, 4. Figures 2, 4, 6 show the number of bits per symbol
used to compress the data as a function of k for values of l=1,
32, 64, 128. The examination was performed for 128 bytes



LOW-COST ANS ENCODER FOR LOSSLESS DATA COMPRESSION IN FPGAS 225

(Figs. 1 and 2), 32 kB (Figs. 3 and 4), and 2 GB (Figs. 5 and
6). For better comparison, some figures for greater values of
l have results for l equal to one also.

Similarly, Figures 7, 9, and 11 show the number of bits per
symbol used to compress the data as a function of l for k=1,
2, 4; and Figures 8, 10, and 12 for k=32, 64, 128.

Fig. 1. BPS to encode 128 bytes for k and l={1, 2, 4}

Fig. 2. BPS to encode 128 bytes for k and l={1, 32, 64, 128}

Fig. 3. BPS to encode 32 KB for k and l={1, 2, 4}

In general, one can notice, that for a small data set, here
data size equal to 128 bytes, the compression ratio generally
worsens with the increase of l and k values. Opposite can
be noticed for a data set of size 32 kB. The increase of
the parameters makes the compression ratio better. However,
Figures 4 and 10 show that for greater values of parameters,
the trend has its minimum for average parameters value.
Lastly, for a data set of 2 GB, the relation is the opposite

Fig. 4. BPS to encode 32 KB for k and l={4, 8, 64, 128}

Fig. 5. BPS to encode 2 GB for k and l={1, 2, 4}

than for the 128 bytes of data set: the increase of parameter
values causes a better compression ratio.

For data size equal to 128 bytes, the best compression ratio
was obtained for l= to 1 and k equal to 2, or l=2 and k=1. For
data size over 32 KB, l=16 and k=8 give the best ratio. For
data size of 2 GB, l and k should be equal to 128 for optimal
compression results. The compression ratio for these optimal
parameters, calculated as a ratio of the size of compressed data
to the size of uncompressed data, is equal to 51.66%, 56.43%,
and 56.41% accordingly, whereas the compression ratios for l
and k equal to 1 are 52.05%, 58.19%, and 57.16% for data size
equal to 128 bytes, over 32 KB, and over 2 GB accordingly.

This means that one degrades the compression ratio no more
than 2% if, for the hardware simplification reason, sets l and
k to ones.

Based on the analysis, the bigger the data size, the greater
values should be assigned to the l and k parameters. The
reason for this lies in the overhead that is introduced by
streaming-rANS compared to the original ANS. In streaming-
rANS, the compression output consists of both the bitstream
and the final state value. The coding overhead of the final
state value is higher for bigger l and k values, however, the
bigger l and k offer better alignment of the bitstream with
entropy (bitstream bits are output more rarely). For smaller
datasets, the final coding state prevails in the coding rate, and
for bigger datasets the bitstream prevails. Thus, bigger datasets
prefer bigger l and k, and the smaller the opposite.



226 M. PASTULA, P. RUSSEK, K. WIATR

Fig. 6. BPS to encode 2 GB for k and l={16, 32, 64, 128}

Fig. 7. BPS to encode 128 bytes for l and k={1, 2, 4}

As a result, the proposed design will offer the best com-
pression ratio for smaller sets of data.

What is also interesting, the most of the obtained results are
very close to the entropy level of the data, which is marked as
a red horizontal line on the figures. Entropy is a lower bound
of the number of bits needed to encode one symbol of data
with lossless compression. It is calculated as

H(X) = −
∑
x∈X

p(x) ∗ log2(p(x)), (15)

where p(x) is the probability of occurrence of symbol x from
alphabet X in data, which can be calculated as the number of
symbol occurrences divided by the size of the data [18].

The difference between entropy and BPS obtained is
6.7E−2, 6.1E−4, and 8.4E−7 bits per symbol, resulting in a
8.3E−1%, 7.72E−3%, and 1E−5% difference for 128 bytes,
32 KB, and 2 GB data sizes, accordingly.

B. Resources used

In order to recognize if the proposed l=1 and k=1 values
truly decrease the number of resources for codec implemen-
tation, the number of resources needed for the non-optimized
encoder was examined. The main difference between this non-
optimised and the one proposed in this paper is how the next
state is calculated: the non-optimised design uses division and
modulo operations, which are avoided in the optimized one.
The results are given in Tables VII and VIII. Resources of the
optimised design are given in Table III, for the same 7-bit-
width data size (8-bit-width state).

Fig. 8. BPS to encode 128 bytes for l and k={1, 32, 64, 128}

Fig. 9. BPS to encode 32 KB for l and k={1, 2, 4}

TABLE VII
USE OF LUTS BY THE NON-OPTIMISED 7-BIT-DATA-WIDTH ENCODER
COMPARED TO THE OPTIMISED DESIGN FOR THE VALUES OF l AND k

l\k 1 2 4 8 16 32 64 128
1 121% 123% 114% 117% 127% 147% 192% 270%
2 123% 114% 116% 119% 128% 148% 193% 271%
4 124% 115% 117% 122% 129% 149% 195% 272%
8 118% 117% 119% 123% 132% 155% 196% 273%

16 121% 118% 120% 124% 133% 155% 197% 275%
32 131% 121% 122% 126% 135% 156% 201% 276%
64 126% 122% 123% 128% 135% 157% 200% 278%
128 136% 124% 125% 129% 136% 158% 201% 279%

TABLE VIII
USE OF FFS BY THE NON-OPTIMISED 7-BIT-DATA-WIDTH ENCODER
COMPARED TO THE OPTIMISED DESIGN FOR THE VALUES OF l AND k

l\k 1 2 4 8 16 32 64 128
1 114% 114% 114% 115% 115% 117% 121% 128%
2 114% 114% 114% 115% 116% 117% 121% 128%
4 114% 114% 114% 115% 116% 117% 121% 128%
8 114% 114% 114% 115% 116% 117% 121% 128%

16 114% 114% 115% 115% 116% 118% 121% 128%
32 114% 115% 115% 115% 116% 118% 121% 128%
64 115% 115% 115% 115% 116% 118% 121% 128%
128 115% 115% 115% 115% 116% 118% 121% 128%

Additional examinations were performed for the use of DSP
blocks. They were obtained for 7-bit-width, 15-bit-width and
31-bit-width data sizes. As it can be seen in Table IX, the use
of the DSP blocks is not a zero, in difference to the optimised
design.

For the non-optimised 15-bit-width and 31-bit-width data
sizes, the usage of LUTs and flip-flops is roughly the same as
for the optimized design.



LOW-COST ANS ENCODER FOR LOSSLESS DATA COMPRESSION IN FPGAS 227

Fig. 10. BPS to encode 32 KB for various values of l and k={32, 64, 128}

Fig. 11. BPS to encode 2 GB for l and k={1, 2, 4}

TABLE IX
POST-SYNTHESIS USE OF DSP BLOCKS FOR VALUES OF L AND K FOR

NON-OPTIMISED ENCODER WITH
7-BIT-WIDTH/15-BIT-WIDTH/31-BIT-WIDTH DATA SIZE

l\k 1 2 4 8 16 32 64 128
1 0/1/3 0/2/3 2/2/4 2/2/4 2/2/5 2/3/7 4/5/11 8/8/18
2 0/2/3 2/2/3 2/2/4 2/2/4 2/2/5 2/3/7 4/5/11 8/9/18
4 2/2/3 2/2/4 2/2/4 2/2/4 2/2/5 2/3/7 4/5/11 8/9/19
8 2/2/4 2/2/4 2/2/4 2/1/5 1/2/5 2/3/7 4/5/11 8/9/19

16 2/2/4 2/2/4 2/2/4 2/1/5 1/2/5 3/3/7 4/5/11 8/9/19
32 2/2/4 2/2/4 2/2/4 2/1/5 1/2/6 3/3/7 4/5/11 8/9/19
64 2/2/4 2/2/4 2/2/4 2/2/5 2/2/6 3/3/8 5/5/11 8/9/19
128 2/2/4 2/2/4 2/1/5 2/2/5 2/2/6 3/3/8 5/5/11 8/9/19

Generally, it can be seen that the non-optimised design uses
significantly more hardware resources than the proposed one.
Even if l and k are ones, there are still 21% more LUTs and
14% more flip-flops needed. Additionally, the non-optimised
design uses DSP units, which were not used at all in the
optimized one. Changes in the number of DSP units used
cause a decrease in the number of LUTs and flip-flops used.
However, the number of LUTs and flip-flops utilized is not
smaller than 113% of those used in the optimized design.

When comparing the use of DSPs between different data
sizes, it can be seen, that with the increase of the data size,
usage of DSP units increases as well. It is most probably
caused by the increase of the state register size, as increasing
data size causes a change of the range given in equation 7. As
a result, the codec performs division and modulo operations
on bigger values, which requires more resources.

VII. CONCLUSIONS AND FURTHER WORK

The proposed design of an ANS encoder meets the ob-
jectives listed in Section II. Setting k and l parameters to

Fig. 12. BPS to encode 2 GB for l and k={32, 64, 128}

one allows a hardware designer to eliminate division and
modulo operations. As a result, the proposed design requires
significantly fewer hardware resources. The drop in hardware
resources varies between 11.5% and 65%, depending on the
k and l parameters and required data size.

A disadvantage is a drop in compression efficiency. How-
ever, this depends on the data size, as the analysis performed
as part of this thesis showed. The drop happens for large data
sizes, but the degradation of algorithm performance is about
1% only.

There are a few modifications of the encoder that can be
implemented. Firstly, to improve it performance, the encoder
should request the frequency table only when its values have to
be changed, not for every new data set. As a result, the encoder
would encode multiple data sets with the same frequency
distribution immediately. However, this solution would be
beneficial only if the chosen data sets have the same or a
similar symbol probability distribution, for example, when the
texts in the same language are compressed. Secondly, to reduce
the number of hardware resources, it is possible to modify
the design to calculate the bitstream in a loop and transfer
it bit-by-bit to the output. However, with this modification,
compression would take much more time, and encoding of
one symbol would take more than one clock cycle, especially
for greater state width.

Although this paper covers a range of analyses, some areas
are still not covered.

Firstly, this paper covers the streaming-rANS encoding and
does not examine the influence of l and k parameters on the
decoder. Based on the fact, that the state’s value is always
in the range given by Equation 10, the

⌊
Xt

M

⌋
operation in

Equation 3 always results in one, and Equation 5 can be
replaced by subtraction slot = Xt − M in the decoder as
well. Consequently, it could be examined, how much more
hardware resources the traditional decoder requires than the
one without the division and modulo operations, and what
differences would be in performance time.

Secondly, for parameter k=1, the range given in Equation
7 can be written as I = [Fst , 2lFst − 1]. This means, that the
result of

⌊
Xt

Fst

⌋
division will always be in range [1, l− 1]. For

small values of l, one can calculate the result of this division by
iterative addition or subtraction. Then, the modulo operation



228 M. PASTULA, P. RUSSEK, K. WIATR

could be replaced by Xt − lst ∗Fst , where lst is the result of
the division. It would be interesting to see, how it affects the
number of hardware resources needed for the implementation
of such an encoder, and how it affects its execution time.

Also, the work does not examine how performance time is
affected by the maximum size of the data to encode, which
could be an important observation. It could be helpful to decide
how big could be the maximum size of the data that would
still allow to have an acceptable encoding time.

Lastly, an interesting aspect to examine is how the as-
signment l and k values to one would affect a tabled-ANS
encoder hardware implementation. The table generation time
can be reduced for the tabled-ANS if the ideas presented
here are incorporated. Most existing implementations of the
tabled-ANS use approximations to do that and they could be
compared to our solution.

REFERENCES

[1] D. A. Huffman, “A method for the construction of
minimum-redundancy codes,” Proceedings of the Insti-
tute of Radio Engineers, vol. 40, no. 9, pp. 1098–1101,
September 1952.

[2] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic
coding for data compression,” Commun. ACM, vol. 30,
no. 6, p. 520–540, jun 1987. [Online]. Available:
doi:10.1145/214762.214771

[3] J. Duda, “Asymmetric numeral systems: entropy coding
combining speed of huffman coding with compression
rate of arithmetic coding,” 2014.

[4] ——, “List of asymmetric numeral systems
implementations,” URL: https://encode.su/threads/
2078-List-of-Asymmetric-Numeral-Systems-implementations,
accessed: [2023-08-12].

[5] “Documentation of Facebook’s ZSTD,” URL:
https://github.com/facebook/zstd/blob/master/doc/zstd
compression format.md#entropy-encoding, accessed:
[2023-08-13].

[6] “Repository of Finite State Entropy,” URL: https://github.
com/Cyan4973/FiniteStateEntropy, accessed: [2023-08-
13].

[7] “Specification of draco - google’s 3d graphic compres-
sor,” URL: https://google.github.io/draco/spec/, accessed:
[2023-08-12].

[8] J. Duda, “Asymmetric numeral systems,” 2009.
[9] K. Tatwawadi, “What is asymmetric numeral sys-

tems? understanding the new entropy coder family,”
URL: https://kedartatwawadi.github.io/post--ANS/, ac-
cessed: [2023-06-05].

[10] P. A. Hsieh and J.-L. Wu, “A review of the asymmetric
numeral system and its applications to digital images,”
entropy.

[11] M. A. S. Hernández, O. Alvarado-Nava, and F. J. Z.
Martı́nez, “Huffman coding-based compression unit for
embedded systems,” in 2010 International Conference on
Reconfigurable Computing and FPGAs, 2010, pp. 238–
243. [Online]. Available: doi:10.1109/ReConFig.2010.65

[12] Y. Chen, G. C. Wan, Z. W. Xia, and M. S. Tong, “A
hardware design method for canonical huffman code,” in
2017 Progress in Electromagnetics Research Symposium
- Fall (PIERS - FALL), 2017, pp. 2212–2215. [Online].
Available: doi:10.1109/PIERS-FALL.2017.8293507

[13] S. Mahapatra and K. Singh, “An fpga-based
implementation of multi-alphabet arithmetic coding,”
IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 54, no. 8, pp. 1678–1686, 2007. [Online].
Available: doi:10.1109/TCSI.2007.902527

[14] S. M. Najmabadi, Z. Wang, Y. Baroud, and
S. Simon, “High throughput hardware architectures
for asymmetric numeral systems entropy coding,” in
2015 9th International Symposium on Image and Signal
Processing and Analysis (ISPA), 2015, pp. 256–259.
[Online]. Available: doi:10.1109/ISPA.2015.7306068

[15] T. Alonso, G. Sutter, and J. López de Vergara Méndez,
“An fpga-based loco-ans implementation for lossless
and near-lossless image compression using high-level
synthesis,” Electronics, vol. 10, p. 2934, 11 2021.
[Online]. Available: doi:10.3390/electronics10232934

[16] N. Wang, C. Wang, and S.-J. Lin, “A simplified variant of
tabled asymmetric numeral systems with a smaller look-
up table,” Distributed and Parallel Databases, vol. 39,
pp. 711 – 732, 2020.

[17] “Repository with source code of ans encoder and
python scripts,” URL: https://github.com/Sharon131/
masters project, accessed: [2023-08-24].

[18] L. Kozlowski, “Shannon entropy calculator,” URL: https:
//www.shannonentropy.netmark.pl, accessed: [2023-08-
02].

doi:10.1145/214762.214771
https://encode.su/threads/2078-List-of-Asymmetric-Numeral-Systems-implementations
https://encode.su/threads/2078-List-of-Asymmetric-Numeral-Systems-implementations
https://github.com/facebook/zstd/blob/master/doc/zstd_compression_format.md#entropy-encoding
https://github.com/facebook/zstd/blob/master/doc/zstd_compression_format.md#entropy-encoding
https://github.com/Cyan4973/FiniteStateEntropy
https://github.com/Cyan4973/FiniteStateEntropy
https://google.github.io/draco/spec/
https://kedartatwawadi.github.io/post--ANS/
doi:10.1109/ReConFig.2010.65
doi:10.1109/PIERS-FALL.2017.8293507
doi:10.1109/TCSI.2007.902527
doi:10.1109/ISPA.2015.7306068
doi:10.3390/electronics10232934
https://github.com/Sharon131/masters_project
https://github.com/Sharon131/masters_project
https://www.shannonentropy.netmark.pl
https://www.shannonentropy.netmark.pl

	Introduction
	Motivation and goal
	ANS family of algorithms
	Range-ANS
	Streaming-rANS
	Tabled-ANS

	Encoders reported in literature
	Entropy encoders
	ANS encoders

	Custom ANS coder development
	Avoiding division and modulo operations
	Input data-related assumptions
	Implementation
	Estimation of hardware resources
	Comparison to other implementations

	Codec performance
	Compression rate
	Resources used

	Conclusions and further work
	References

