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The paper presents the concept of the method of determining the direction of ultrasonic signal arrival, i.e.,
the azimuth and elevation angles. This method is an extension of the previous approach which was proposed
to determine only the azimuth angle. The approach is based on the indirect phase determination. This makes
it possible to tolerate spacing of receivers greater than half the wavelength of the received signal. At the same
time, it provides increased measurement accuracy and reduced hardware requirements. To check the robustness
of the method, simulations were carried out for the geometric arrangement of the receivers of the sonar module,
for which the method was then implemented. This sonar module was used in the conducted experiments. The
results of these simulations and experiments are included in the paper and discussed.
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1. Introduction

Determining the direction of arrival (DOA) for an
ultrasonic signal is an essential issue for the effective
use of ultrasonic echolocation in mobile robot naviga-
tion. However, this is not the only area of application
of this type of sensors. A very important field where
it is also possible to use such a device is in support-
ing the activities of people who are blind or visually
impaired. In this case in particular, a very important
requirement is, on the one hand, to reduce energy con-
sumption and simplify calculations, and on the other
hand, to increase the reliability of detection and per-
ception of the environment. This problem is addressed
in this paper. The proposed approach makes it possi-
ble to estimate the DOA using the indirect determina-
tion of the signal phase shift. Because it does not rely
on a signal amplitude measurement, no sampling is
needed and computations are simplified. Experimental
verification of the method was carried out using a sonar
module equipped with four convectional piezoelectric
receivers.

The problem of determining DOA is an area of
intensive research. There are many methods to deal
with this problem. A brief overview of them is given in
the next section. Then, in Sec. 3, the basic concept of

the indirect phase determination method is presented.
The problem that arises in the proposed method is the
ambiguity of the solutions. This is described in Sec. 4.
How the ambiguities can be removed is the subject of
Sec. 5. Then, Sec. 6 discusses the robustness of the
method. Computations of the limit of the tolerable
measurement errors for a specific arrangement of re-
ceivers are presented in Sec. 7. This layout of receivers
was applied to the sonar module used in the experi-
ments. Section 8 presents an approach to reducing the
impact of noise on DOA determination. The results of
the experiments are described and discussed in Sec. 9.
The conclusions and scope of future work are presented
in the final section.

2. Determining direction of signal arrival

The simplest approaches to DOA estimation are
based on triangulation methods. They rely on time-of-
flight (TOF) measurements (Peremans et al., 1993;
Kleeman, 1995; Choi et al., 2014). However, much
more effective approaches use array signal process-
ing. These are the most common techniques for de-
termining DOA that find applications in radar, sonar,
medicine or communications. Two categories of such
approaches can be distinguished, namely spectral-
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based and parametric (Krim, Viberg, 1996). Methods
falling into the first of these categories include beam-
forming (Krishnaveni et al., 2013) and the algorithm
of multiple signal classification (MUSIC) (Schmidt,
1986), as well as its variants, i.e., the total spectral
search MUSIC method (Zhou et al., 2013), or the
partial spectral search (Sun et al., 2015). The second
category includes methods such as deterministic maxi-
mum likelihood (DML) (Cadzow, 1990), root-MUSIC
(Barabell, 1983) and the estimation of signal param-
eters via rotational invariance techniques (ESPRIT)
(Roy et al., 1986; Roy, Kailath, 1989). The lat-
ter method has several other variants and adaptations,
e.g., Unitary ESPRIT (Haardt, Nossek, 1995), Con-
jugate ESPRIT (Tayem, Kwon, 2003).

The aforementioned methods require a large num-
ber of floating-point calculations. Beamforming allows
for some simplifications. This technique acts as a spa-
cial filter (Van Veen, Buckley, 1988). It includes
delay-and-sum approaches and as well as other meth-
ods based on different weights of added signals that
are delivered by individual receivers. Changes in the
weight values make it possible to control sidelobes.
However, even with uniform weights, good results can
be obtained (Dokmanić, Tashev, 2014). The most
important advantage of the delay-and-sum technique
is that it can be implemented in hardware. Such im-
plementations using MEMS microphones and FPGA
are presented in (Kerstens et al., 2017; 2019; Alle-
vato et al., 2020). Unfortunately, this does not allow
for high angular resolution. Therefore, the improved
version of the sensor presented in (Kerstens et al.,
2019), uses an implementation of the MUSIC algo-
rithm (Verellen et al., 2020). Such an approach pro-
vides much more accurate environmental data at the
cost of increased computational complexity. To reduce
this, methods based on co-prime arrays are proposed
(Yang et al., 2018; Li et al., 2020). In this approach,
a co-prime array is divided into two or more uniform
sparse subarrays. In these subarrays, the distances be-
tween the receivers can be greater than half the wave-
length of the received signal. This results in ambigu-
ity in the determination of DOA for each subarray.
However, they can be eliminated because the distances
in each subarray are co-prime numbers. The similar
idea can be found in (Gialich et al., 2012). Instead of
exploiting several subarrays with uniform spacing be-
tween receivers greater than half a wavelength, a single
such receiving array is used in (Chen et al., 2020). The
problem of DOA ambiguity is solved by emitting pulses
at different frequencies.

Despite described improvements, the discussed ap-
proaches involve methods that are relatively compu-
tationally expensive. Most of them are able to de-
termine the DOA of signals that come from several
sources. The approach presented in this paper is re-
stricted to the problem of DOA determination for an

echo coming from a single direction. This is the ob-
vious drawback. However, when an emitted signal is
short enough, it can be acceptable for many applica-
tions of mobile robot navigation. The important ad-
vantages are that the computational burden is reduced
and the hardware requirements are very low. Despite
this, the method allows for good DOA estimation ac-
curacy. In this sense, the proposed approach can be
exploited in order to build an inexpensive sonar that
will be an attractive replacement of traditional ultra-
sonic range finders. Such an inexpensive device can
also become a good support for the blind and visually
impaired.

3. Indirect signal phase determination

To locate an object using ultrasonic sonar, in addi-
tion to measuring the distance to it, the key is to find
the direction from which the echo of the reflected signal
arrives. Using the horizontal coordinate system, DOA
is determined by the azimuth and elevation angles
denoted here as φ and θ, respectively (see Fig. 1). The
problem of their determination can be simplified when
considering a narrowband signal. This approach be-
comes natural when a piezoelectric transducer is used
as an emitter. An important advantage of using piezo-
electric over electrostatic transmitters is that their
signal emission is actually limited to the ultrasonic
band only. Electrostatic transducers during emission of
ultrasonic wave, also emit quiet sizzles in the audible
band. Despite the fact that they are not loud, when
they are repeated very often they are annoying. This
type of sizzling is also emitted by piezoelectric trans-
ducers. However, they are much quieter. In practice,
they can be noted by a person when the transducer is
no more than a few centimeters from the ear.

X

Y

Z

Sonar

ϕ
θ

Object

Fig. 1. Horizontal coordinates of an object in relation
to a sonar.

Considering a narrowband signal, some simplifica-
tions can be made. It may be assumed that the signal
carrier has a constant frequency. In fact, in the pre-
sented approach it is sufficient to assume that changes
of signal carrier frequency are negligible during about
three signal periods. Assuming that the signal source
is in the far-field of the receivers, the signal wave can
be treated as a plane wave. This is a common ap-
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proach in signal array processing (Van Trees, 2004).
Using these assumptions, a phase shift measurement
can be applied to determine DOA. For the 1-D case,
when only one angle is being determined, e.g., the az-
imuth angle, it is sufficient to use two receivers pro-
vided that their mutual distance is less than half the
signal wavelength. For the 2-D case, when two angles
are determined, i.e., the azimuth and elevation an-
gles, three receivers are needed, which must be placed
non-collinearly and must be two pairs whose mutual
distances are lower than half the signal wavelength.
Since a plane wave can be modeled as a set of planes
relating to specific signal phases, wave points belong-
ing to the same signal phase must satisfy the equation:

ax + by + cz + d = 0, (1)

where a, b, and c are coordinates of the vector perpen-
dicular to the plane. Considering a plane wave, it is
convenient to use a normalized vector pointed to the
direction of wave propagation expressed by direction
cosines, i.e.:

a =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

− cos θ cosφ

− cos θ sinφ

− sin θ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

Thus, Eq. (1) can be rewritten as

axx + ayy + azz + d = 0, (3)

where a = (ax, ay, az). When a plane wave is prop-
agated towards the origin of the coordinate system,
then d is the distance of the plane wave from the ori-
gin. For a plane wave propagated in the opposite di-
rection, d has the same absolute value, but with the
minus sign. Equation (3) is a special form of a more
general function:

D(p) = axxp + ayyp + azzp + d, (4)

where p = (xp, yp, zp). The absolute value of this func-
tion for a point p corresponds to its distance to the
plane described by Eq. (3). The sign of this value de-
pends on which side of the plane the point p is located.

Considering the set of three receivers, it is useful
to choose such a coordinate system that its origin is
at the center of one of them, e.g., the receiver R0 (see
Fig. 2). For the sake of simplicity, let us assume that
the signal wavefront first reaches the receiver R0 (this

R
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Z

Fig. 2. Coordinate system for the set of three receivers.

assumption will be dropped later). Then, the wave-
front is detected by receivers R1 and R2. The data
obtained allow expressing the distances from receivers
R1 and R2 to the plane wave (see Fig. 3a) as follows:

s1 = vaτ01, s2 = vaτ02, (5)

where va is the speed of the acoustic wave, τ01 = t1−t0,
τ02 = t2 − t0 and t0, t1, t2 are the wave detection times
by receivers R0, R1, and R2, respectively. On the other
hand, these distances can be determined using the
function D(.) modeling a plane wave corresponding to
the moment of arrival at the receiver R0. It gives

D(R1) = s1, D(R2) = s2.

a) b)

ϕ
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Fig. 3. Distance to the wavefront when the receiver R0

is reached: a) before R1; b) after R1.

Since the plane wave at that moment contains the
origin of the coordinate system, then d = 0. Taking into
account that R1 = (0, y1, z1) and R2 = (0, y2, z2) and
the the vector a is normalized, a system of equations
is obtained: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ayy1 + azz1 = s1,

ayy2 + azz2 = s2,

a2
x + a2

y + a2
z = 1.

(6)

Its solution is

ay =
z2s1 − z1s2

y1z2 − y2z1
,

az =
y1s2 − y2s1

y1z2 − y2z1
,

ax =
√

1 − a2
y − a2

z.

(7)

According to Eq. (2)

az = − sin θ ∧ ay = − cos θ sinφ. (8)

Due to the fact that θ ∈ (−π
2
, π

2
), its cosine values are

positive. As a result, the expression of ay can be rewrit-
ten to the form:

ay = −(
√

1 − a2
z) sinφ.



110 Archives of Acoustics – Volume 49, Number 1, 2024

This gives the formulas for calculating the azimuth and
elevation angles:

φ = arcsin − ay√
1 − a2

z

,

θ = arcsin −az.
(9)

They show that ax does not need to be computed to
find φ and θ.

The presented calculation procedure can be directly
applied to the obtained measurements when the dis-
tance between the receivers is not more than half the
wavelength of the received signal, and the same wave-
front is detected first by the receiver R0 and then
by R1. In such a case, the signal detection times t0
and t1 satisfy the relationship:

0 ≤ t1 − t0 <
Ta
2
.

Otherwise, when after registering the first wavefront
by R0, R1 registers the next wavefront (see Fig. 3b),
the following condition is fulfilled:

Ta
2

≤ t1 − t0 < Ta.

These conditions are disjoint because the distance be-
tween the receivers is assumed to be less than half the
wavelength. In the last case discussed, a correction is
needed to calculate the correct distance s′ (see Fig. 3b),
namely:

τ ′01 = t1 − t0 − Ta. (10)

In this case, s′ < 0 which means that R1 is behind the
wavefront detected by R0 (see Fig. 3b).

4. Ambiguities for larger mutual distances
of receivers

Using popular piezoelectric transducers as re-
ceivers, it is impossible to meet the condition that
their mutual distances are less than half the wave-
length. This is because their smallest diameter is about
10 mm. Fortunately, there are available MEMS micro-
phones on the market, which have much smaller hous-
ing and allow the mutual distances to be reduced. Sen-
sor constructions which exploit them to create micro-
phone arrays are presented in (Steckel et al., 2013;
Verellen et al., 2020). Nevertheless, it is still useful
to have longer mutual distances as this can reduce the
error in determining the azimuth and elevation angles.
In (Kreczmer, 2018), it was shown that such a result
is obtained for 2-D sonar (i.e., determining distance
and azimuth angle) for calculating the azimuth an-
gle values. However, when mutual distances between
receivers are greater than half the wavelength of the
signal, ambiguities arise. This is due to the fact that
the same distances s1 and s2 refer to several DOAs.

As discussed before, when the plane wave detected by
R0 is not the same one detected by R1 or R2, a cor-
rection should be added to the measured time τ01 or
τ02, respectively. This correction is a multiple of the
signal period Ta. It can be different for both receivers.
Equation (10) is a special case of such a correction for
which the multiplier equals −1.

The possible measurement values of τ0i (where
i ∈ {1,2}) are determined by the distance between re-
ceivers R0 and Ri. Since for a given τ0i, only the rel-
ative position of the two respective receivers need be
considered, the range of possible multiples for the full
range of arrival angles α = [−π

2
, π

2
] is limited to:

Iα(b0i) = {k ∶ k ∈ I ∧ ⌊−b0i
λ

⌋ ≤ k ≤ ⌊b0i
λ

⌋},

where i ∈ {1,2} and the range of variation of indices
in further expressions, in this section, is the same, I is
the set of integer numbers, b0i is the distance between
R0 and Ri, λ is the wavelength of the signal, and
⌊.⌋ is the floor function. Due to the directionality of
the receivers and transmitter, the range of signal ar-
rival angles that can be detected is much smaller, i.e.,
α = [αmin, αmax] ⊂ [−π

2
, π

2
]. For simplicity, it can be as-

sumed that the receivers have axial symmetry along
their acoustic axes and have the same directivity pat-
tern. Therefore, αmin = −αmax and αmax > 0. Then, the
range of possible multiples can be expressed as follows

Iα(b0i) =

{k ∶ k ∈ I ∧ ⌊−b0i sinαmax

λ
⌋ ≤ k ≤ ⌊b0i sinαmax

λ
⌋}.

Having a set of all multipliers, the set of possible values
of time measurements can be constructed as follows:

τα(τ0i) = {τj ∶ τj = τ0i + kTa, k ∈ Iα(b0i) ∧ ∣vaτj ∣ < b0i}.

These times refer to the different possible directions
of arrival of the wavefront detected by R0, then R1 or
R2. The times of signal detection by both receivers are
related values. Their set can be defined as follows:

τ 2
α(τ01, τ02) = {(τi, τj) ∶ τi ∈ τα(τ01) ∧ τj ∈ τα(τ02)}.

Taking into account the velocity of the acoustic wave,
a set of possible distances (si, sj) to the wavefront can
be created:

s2(τ01, τ02) ={(si, sj) ∶ si = vaτi, sj = vaτj ,

(τi, τj) ∈ τ 2
α(τ01, τ02)}.

Applying these distances to Eq. (6), the set of its so-
lutions is obtained:

a∗(τ01, τ02) = {(ax,1, ay,1, az,1), ..., (ax,k, ay,k, az,k)}.

Values of intervals τ01 and τ02 depend on geometry of
the receiving system R = (R0,R1,R2) and the received
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signal S. Therefore, it is more convenient to use R and
S as arguments of a∗. It is also worth to note that it is
enough to know ay and az to calculate angles φ and θ.
This makes it possible to consider a bit more restricted
set defined as follows:

a⋆(R, S) = {(ay,1, az,1), ..., (ay,k, az,k)}.

This set of solutions determines all possible values of
φ and θ for given measurements.

5. Ambiguity removal

It can be easily shown for the 1-D case of DOA that
when mutual distances between receivers are properly
chosen then the only common direction in the set of
determined possible arrival angles, is the proper one
(Kreczmer, 2019) (see Fig. 4). The same idea can
be applied to the 2-D case of DOA. The main differ-
ence is that an elementary receiving system in the 2-D
case has to consist of three receivers instead of two. In
Fig. 5a, there is an arrangement of two such elementary
systems Ra = (R0,R1,R2) and Rb = (R3,R4,R5). Ap-
plying the aforementioned idea, the solution sought is

a⋆(Ra, S) ∩ a⋆(Rb, S).

These two systems can be integrated into one set in
such a way that both have two common receivers

a) b)

ϕ

ϕ

R0 R1
b01

ϕ

ϕ

R0 R1
b01

Fig. 4. Examples of possible incident angles for measure-
ment data obtained while the real incident angle is equal
to 20○. Directions were determined for the gap size b

equal to: a) 11 mm; b) 15 mm.

a) b)
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R1

R2

R5

R4
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R0

R1

R2

R3

Fig. 5. Receiving system for the 2-D case that makes
possible to solve the problem of ambiguity: a) two sepa-
rate elementary receiving systems; b) a single integrated

receiving system.

(see Fig. 5b). In this way, having the set of transducers
R = (R0,R1,R2,R3), two receiving systems can be dis-
tinguished, i.e. R1=(R0,R1,R2) and R2=(R1,R2,R3).
However, it is simple to notice, that also two addi-
tional systems can be found. In this case, they are
R3 = (R0,R1,R3) and R4 = (R0,R2,R3). Taking into
account all elementary systems, the solution sought is

a⋆(R1, S) ∩ a⋆(R2, S) ∩ a⋆(R3, S) ∩ a⋆(R4, S).

6. Robustness

Due to the time measurement errors, the deter-
mined values of ay and az are also burdened with them.
It is convenient to assume that measurement errors of
τ intervals are approximated by the same value ∆τ .
Then, taking into account Eq. (7), errors in determin-
ing ay and az can be estimated by formulas:

∆ay =
∣z1∣ + ∣z2∣

∣y1z2 − y2z1∣
va∆τ,

∆az =
∣y2∣ + ∣y1∣

∣y1z2 − y2z1∣
va∆τ.

(11)

They show that for each receiving system Rq the
errors of determining the coordinates ay and az are
constant and strongly depend on the location of its re-
ceivers. Moreover, it is worth noting that to minimize
∆ay and ∆az, the receivers R1 and R2 should be lo-
cated along perpendicular lines crossing at the location
of the receiver R0. Following this idea and considering
the arrangement of the receivers R1 = (0, y1,0) and
R2 = (0,0, z2), Eq. (11) reduces to the form:

∆ay =
1

∣y1∣
va∆τ, ∆az =

1

∣z2∣
va∆τ. (12)

6.1. Influence of measurement errors
on the ambiguity of solutions

In order to take into account measurement errors,
instead of a point set a2(Rk, S), a set of rectangles is
obtained. It can be defined as follows:

a2
∆(Rk, S) ={AiS,k = [ay,i −∆kay, ay,i +∆kay]

× [az,i −∆kaz, az,i +∆kaz] ∶ (ay,i, az,i)

∈ a2(Rk, S)},

where the index k identifies an elementary receiving
system.

Assuming that the direction vector of propagation
of the signal S is aS = (ay,S , az,S), the uncertainty
rectangle corresponding to the geometry of the system
Rk and relating to the actual signal S is

AS,k = [ay,S −∆kay, ay,S +∆kay]
× [az,S −∆kaz, az,S +∆kaz].
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According to the idea shown in Fig. 4, each receiving
system determines the correct direction as one of pos-
sible solutions. Therefore, considering the set of receiv-
ing systems R∗ = {R1, . . . ,Rm}, the uncertainty rect-
angles AS,k referring to subsequent receiving systems
Rk must meet the condition:

aS ∈
m

⋂
k=1

AS,k. (13)

The ambiguity is removed when there is only
one sequence of uncertainty rectangles AS,1, ...,AS,m,
denoted as A∗

S , that creates a non-empty common
part, i.e.:

aS ∈ ⋂
AS,k∈A∗S

AS,k ∧ ∀(AjS,1, ...,A
j
S,m) ≠ A∗

S ,

m

⋂
k=1

AjS,k = ∅.
(14)

In order to be able in a simple way to select the com-
mon part of all uncertainty rectangles, it is essential
to choose the same orientation for the local coordinate
frames of all elementary receiving systems.

6.2. Computing the angles of azimuth and elevation

When the results of measurements are not cor-
rupted by any errors, the uncertainty rectangles meet-
ing Eq. (13) have their centers in the common point aS
(see Fig. 6a). In the case of actual measurement values,
the centers of the uncertainty rectangles are in differ-
ent places due to errors. For correctly estimated values
of measurement errors, all rectangles should contain
a point corresponding to the coordinates of the ac-
tual signal direction (see Fig. 6b). There are several
ways to estimate the coordinates of the true signal
direction aS . To describe them a bit more formally,
a function which extracts the coordinates of the mid-
dle point of the rectangle, denoted as M(.), is used.

a) b)

Yay,S

az,S

Z

aS

AS,1

AS,2AS,3

Yay,S

az,S

Z

aS,3

aS,2

aS,1 aS

AS,1
AS,2

AS,3

Fig. 6. Uncertainty rectangles satisfying Eq. (13) for the
set of receiving systems R∗ = {R1,R2,R3} and their mea-
surements that: a) are not affected by errors; b) are af-

fected by errors.

The simplest way is to calculate the mean values of
the coordinates of the centers of the rectangles:

(ay, az)1 =
1

m

m

∑
i=1

M(AS,i).

In order to distinguish the discussed approaches,
a numerical index was provided along with the coordi-
nates of the signal direction.

Using the more sophisticated approach, the uncer-
tainty of the measured values are taken into account.
The sizes of rectangles reflect the uncertainty of these
values. The smaller the size, the more accurate the de-
termination of the coordinates of the signal direction
vector.

Denoting Ly(.) and Lz(.) as functions extracting
the length of the uncertainty rectangle along the co-
ordinate axes OY and OZ, respectively, the certainty
coefficient for each coordinate can be expressed as fol-
lows:

Cy(AS,l) =
1

Ly(AS,l)
(
m

∑
k=1

1

Ly(AS,k)
)
−1

,

Cz(AS,l) =
1

Lz(AS,l)
(
m

∑
k=1

1

Lz(AS,k)
)
−1

.

Then, the estimated coordinates can be computed us-
ing the formula

(ay, az)2 =
m

∑
k=1

(Cy(AS,k)My(AS,k), Cz(AS,k)Mz(AS,k)),

where My(.) and Mz(.) extract the y and z coordi-
nates of the center of the uncertainty rectangles AS,k,
respectively.

However, the most simple and very natural way is to
calculate the coordinates of the center of the rectangle,
that is the common part of them all:

(ay, az)3 =M (
m

⋂
i=k

AS,k).

Having the coordinates (ay, az), the azimuth and ele-
vation angles can be computed using Eq. (9). The ef-
fectiveness of the presented three approaches to DOA
estimation is discussed in the next section.

7. Simulations

To find the range of tolerable measurement errors,
computations were made for the azimuth and eleva-
tion angles using the signal detection times burdened
with all possible combinations of measurement errors
in a given range. The step of changing the time mea-
surement error was 2−5 = 0.03125 µs. The power of 2
was applied to eliminate the problem that results in
the accumulation of calculation errors due to the finite
representation of numbers. The value of time error ∆t
was increased until the value of the azimuth or eleva-
tion angle determined by the method no. 2 discussed
in Subsec. 6.2 was greater than 10○. This procedure
was also stopped when a combination of errors made
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it impossible to remove the ambiguity of the DOA so-
lution. In this way, the maximum value of the simu-
lated time error for which the two conditions aforemen-
tioned were met was taken as the limit of the tolerable
time measurement errors. The computations were per-
formed for the geometrical arrangement of receivers
presented in Fig. 7. It corresponds to the geometry
of the sonar module used in experiments presented in
Sec. 9. It was assumed that the sensitivity range of
the receivers was [−40○,40○] in each direction. The re-
sults of the computations are presented in Fig. 8. The
biggest found value of ∆t is 1.91 µs. The diagram pre-
sented in Fig. 8 does not have any plane symmetry, due
to unsymmetrical arrangement of receivers. However,
it has the axial symmetry induced by the axis of ∆t.
This is due to the symmetry of the sine function used
in Eq. (9).

-5

0

5

10

15

-5 0 5 10-10-15-20

Y
 [m

m
] 

T
R0

R1 R2

R3

20

15       20
X [mm]

Fig. 7. Geometrical arrangement of sonar receivers
and a transmitter.
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In Subsec. 6.2, it was discussed how aS can be
estimated. The question then arises, using the same
timing errors, which of the three approaches presented
gives the best estimate of the angles φ and θ. Figure 9a
shows a diagram comparing the maximum errors of az-
imuth angle estimation using the discussed approaches
at θ = 0○.
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Fig. 9. The maximal errors for angles determined by the
method no. 1, 2, and 3: a) for the azimuth angle at θ = 0○;

b) for the elevation angle at φ = 0○.

An analogous diagram for the elevation angle at
φ = 0○, is presented in Fig. 9b. The mutual relation be-
tween errors in determining the angles φ and θ, visible
in the diagrams, is also preserved for other directions.
It was expected that the method no. 2 which involves
some measure of uncertainty should be the best, but
it is not. The best one is the method no. 3. An addi-
tional advantage of this situation is that this method
is the simplest to compute. The same relation is also
observed when comparing RMSD values.

It is worth noting that the error values for deter-
mining the elevation angle are much larger compared
to the same type of errors for the azimuth angle (see
Fig. 9). The increase in the error value is a direct con-
sequence of the fact that the distance between the ex-
treme receivers in the vertical plane is much smaller
than their counterparts in the horizontal plane.

8. Reducing the impact of noise

The procedure described in the previous sections
is applied to a single wavefront. However, it can also be
applied to each successive one in a given wave packet,
and then average values can be calculated. To explain
this, the measurement procedure used in this method
is presented in more detail. In order to detect a wave
packet, the threshold method is used. It is worth em-
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phasizing that this method is used only for detection,
not for actual measurements, the results of which are
used to determine DOA. When the signal in the re-
ceiver channels exceeds the detection threshold, in the
next moment in each of these channels, the times of
crossing the zero level are recorded (see Fig. 10a). Sig-
nal transitions through the zero level are detected only
for raising edges. The results of these measurements do
not depend on the value of the signal amplitudes. The
measured times are used to determine the azimuth and
elevation angles of DOA. Once a wave packet is de-
tected, the same time measurements can be also per-
formed for successive signal transitions through the
zero level (see Fig. 10b). When the signal is reflected
from a single object and there is no noise, the same
angle values are obtained for all subsequent measure-
ments. In the proposed approach, in order to reduce
the influence of noise, averages of azimuth and ele-
vation angles are calculated based on four consecu-

a)

b)

Fig. 10. Measurements of times of signal zero crossings:
a) for a single signal pulse; b) for subsequent pulses for the
entire wave packet, for clarity, moments of zero-crossing

detection for the first receiver was marked only.

tive wavefronts, whereby a measurement that deviates
most from all others is discarded. This procedure starts
with the third detected wavefront.

9. Experiments

In order to verify the effectiveness of the pro-
posed method, a series of experiments was carried
out using the sonar module shown in Fig. 11. This
module consists of one BPU-1640IOAH12 transmitter
and four MA40S4R receivers. All ultrasonic transduc-
ers are controlled by the mini-module (Cholewiń-
ski et al., 2013), which exploits the microcontroller
MK40DN512VLK10. To verify DOA determination for
different orientations of the ultrasonic transducers, the
sonar module was mounted on a rotating base. This
made it possible to perform a scan in the horizontal
plane with a step equal to 1○. Each scan was made in
the angular range from −40○ to 40○. It was taken 20
measurements for each orientation of the sonar mod-
ule. This allowed the calculation of mean and RMSD
values. The sonar module was placed 1.4 m above the
floor. This made it possible to avoid the ground effect
(Kapoor et al., 2018). Measurements were made for
two different cases. The first case was a series of mea-
surements to a wall (see Fig. 13a). The second case
was a series of measurements to a small glass ball sus-
pended above the floor at different heights. For each
case, the azimuth and elevation angles, i.e., φ and θ,
were determined in the local coordinate system of the
sonar module. To check the correctness of the calcu-
lation of the azimuth angle φ, its value was compared
with the value of the orientation angle of the sonar
module α, which was measured in the global coordi-
nate system of the sonar stand. Considering the case
of a wall, it can be noticed that echoes always arrive
from the direction perpendicular to the wall surface
and it does not depend on the sonar module orienta-
tion, if that direction is within the range of the sonar
beam (see Fig. 12). Therefore, for the ideal case when
there are no measurement errors, the relation between
φ and α is as follows:

φ = −α. (15)

A more detailed explanation of this feature can be
found in (Kreczmer, 2019). The same relation is also

Fig. 11. Sonar module used in experiments.
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Fig. 12. Coordinate systems chosen for the experiment. The
azimuth angle φ measured in the local coordinate system
of the sonar module has an opposite sign to the rotation

angle α measured in the global coordinate system.

valid for such an object as a glass ball used in these
experiments. Performing measurements for the case of
a wall, the sonar module was placed at a distance
of about 2.4 m from the wall (see Fig. 13a). Over the
entire range of sonar module orientations, the wall was
detected, as shown in the diagram of distance measure-
ments (see Fig. 13b). In the discussed experiments, the
distance is measured by using the threshold detection
method. Therefore, this type of measurements cannot
be expected to be very accurate. Nevertheless, they
show very well the orientation ranges of the sonar mod-
ule for which an object was observed. Despite object
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Fig. 13. Results of measurements performed for the wall depending on the orientation angle α of the sonar module,
which was located at a distance of 2.4 m from the wall: a) arrangement of the sonar stand and the wall; b) values of
the measured distance d; c) determined values of the elevation angle θ; d) determined values of the azimuth angle φ.

detection over the entire range, DOA angles were de-
termined properly in a smaller region, which is about
[−28○,33○] (see Figs. 13c and 13d). This limitation re-
sults mainly from the directional characteristics of the
transmitter, which emits a significantly weaker signal
for directions well away from its acoustic axis.

According to the results of the simulations, it would
be expected that the accuracy and precision of deter-
mining the azimuth angle would be higher than that
of the elevation angle. However, this is not the case
here. The diagram in Fig 14a shows the absolute val-
ues of the differences between the actual and deter-
mined values of the elevation and azimuth angles de-
noted as ∆φ and ∆θ, respectively. It can be noticed
that the discrepancies for both angles are similar. An
analogous relationship is also observed for RMSD (see
Fig. 14b). The reason is that the wall is a very good
reflector and the returning echoes are strong. This re-
sults in small measurement errors. Their consequence
is the small differences mentioned earlier.

The second series of experiments was done for the
glass ball, which scatters the signal much more than
the wall. In the first experiment of this series, the glass
ball was placed at a distance of about 1.6 m from the
sonar module and 1.8 m above the floor (see Fig. 15a).
Due to the much weaker echo, SNR is decreased, and
thus azimuth and elevation angles were determined
correctly over a much smaller range of sonar mod-
ule orientation (see Figs. 15b–d). This also results in
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Fig. 15. Results of measurements performed for the glass ball depending on the orientation angle α of the sonar module.
The glass ball was placed above the horizontal plane of the sonar module: a) arrangement of the sonar stand and the
glass ball; b) values of the measured distance d; c) determined values of the elevation angle θ; d) determined values of

the azimuth angle φ.

higher RMSD values. In this case, the differences be-
tween the RMSD for the azimuth and elevation angles
become much more apparent and significant. In the
range of α [−15○,10○], the azimuth angle values are
as expected. In the same range, the results of deter-
mining the elevation angle change very little. This is
also as expected. Unfortunately, its values are below
the desired one which is 16○ while the obtained re-
sults are in the range [11○,13○]. The main reason for
this discrepancy is the small distance of the receivers
in the vertical direction compared to their size. Due to
the large diameter of the receivers in relation to their
mutual distances, it can be assumed that treating them
as fixed points is not sufficient for different angles of

incidence of the acoustic wave. With small mutual ver-
tical distances, even small changes in the location of
these points translate into significant discrepancies in
the determined angle. This makes it difficult to obtain
uniform calibration parameters for the entire range of
angles considered in this experiment.

In the next series of measurements, the glass ball
was placed near the horizontal plane of the sonar mod-
ule (see Fig. 16a). The elevation angle was about 1○.
The object was detected in almost the entire range of
orientation angles of the sonar module (see Fig. 16b).
However, azimuth and elevation angle values, that
were close to expected ones, were obtained only for the
orientation range [−20○,19○] (see Figs. 16c and 16d).
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Fig. 16. Results of measurements performed for the glass ball depending on the orientation angle α of the sonar module.
The glass ball was placed near the horizontal plane of the sonar module: a) arrangement of the sonar stand and the
glass ball; b) values of the measured distance d; c) determined values of the elevation angle θ; d) determined values of

the azimuth angle φ.

Compared to the previous case, a shift to the left of
such an interval can be observed. This can be said
even considering the much more limited visibility of
the glass ball in the previous case. This is consistent
with simulation results presented in Sec. 7 (see Fig. 8).
In order to make it clearer and easier to interpret,
the diagram shown in Fig. 8b should be presented
in the space of the rotation angle α (orientation of the
sonar module), instead of the azimuth angle φ. To do

a) b)

 -40     -30  -20 -10
-40

0 10 20   30   40

2.0

2.5

1.5

1.0

0.5

0

Δt [μs]

40

-30

-20

-10

0

10

20

θ
 [

°]

30

α [°] -10-20-30-40

-40

0 10 20             40

2.0

2.5

1.5

1.0

0.5

0

Δt [μs]

40

-30

-20

-10

0

10

20

θ [°]

Scan for the glass ball
in the sonar horizontal plane

Scan for the glass ball above the 
sonar horizontal plane

Scan for the glass ball below the 
sonar horizontal plane

  30

α [°]  30

Fig. 17. Distribution of the maximal tolerable error of time measurement (top view) in space of the sonar module rotation
angle α: a) for the arrangement of receivers in accordance with the original design; b) for the acoustic center coordinates
of the receivers obtained after sonar calibration. The diagram also shows the lines corresponding to DOAs of the signals
reflected by the glass sphere during the three consecutive experiments conducted. The white stripes represent regions

where the determined DOAs were close to the expected values.

this, the relationship expressed by Eq. (15) must be
taken into account. It flips the original diagram along
the vertical axis (see Fig. 17a). The final form obtained
after sonar calibration with marked lines relating to
the results of the three experiments presented is shown
in Fig. 17b. This offset is more evident in the results of
the third experiment, when the glass ball was placed
below the horizontal plane of the sonar module (see
Fig. 18). The range of module orientations, for which
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Fig. 18. Results of measurements performed for the glass ball depending on the orientation angle α of the sonar module.
The glass ball was placed below the horizontal plane of the sonar module: a) arrangement of the sonar stand and the
glass ball; b) values of the measured distance d; c) determined values of the elevation angle θ; d) determined values of

the azimuth angle φ.

the azimuth angle was correctly determined, is shifted
to [−10○,28○]. Considering the elevation angle, larger
deviations from the expected value (about 9○) are no-
ticeable. It can be assumed that these disturbances
result from the scattering of the returning ultrasonic
wave at the upper edge of the base of the rotating sonar
column (see Fig. 18a).

The simulation results presented in Fig. 17b take
into account the correction of the position of the acous-
tic centers of the receivers obtained as a result of the
calibration procedure. However, they do not take into
account the directional patterns of the transmitter and
receivers. Therefore, full agreement with experimen-
tal results cannot be expected. Nevertheless, the main
trend of change is clearly visible. For the case of the
wall shown in Fig. 13, this feature was not observed, as
the received echoes were strong enough to cause very
small measurement errors.

10. Conclusion and further research

The main advantage of the proposed method is its
simplicity. However, the cost of simplicity is sensitivity
to signal interference. Fortunately, the method makes
it possible to distinguish the echo coming from a sin-
gle object from overlapping echoes, and to assess the
reliability of the results obtained (Kreczmer, 2021).

The sonar module used in the experiments to verify the
proposed method uses popular piezoelectric ultrasonic
receivers. Due to their large size relative to their mu-
tual distances, high accuracy DOA determination can-
not be expected for a wide range of sonar module orien-
tations. Nevertheless, in the case of a relatively strong
echo received after reflecting the signal from objects
such as a wall, the sonar module used works very well.
The same cannot be said of the glass ball case. It is
worth noting, however, that the observed limits of the
sonar module orientation, for which acceptable results
are obtained, are consistent with the simulation re-
sults. These limits are determined by the geometry of
the receiver arrangement. The results of simulations
and experiments also indicate that it is desirable to en-
large the distance between some receivers in order to
increase the precision of angle determination. This can
be clearly seen in the difference in the horizontal and
vertical geometric arrangement of the receivers of the
sonar module used. Due to this arrangement, the accu-
racy of the determined azimuth angle was greater than
that of the elevation angle. To be able to determine
azimuth and elevation angles with the same high accu-
racy, it is necessary to maintain an increased distance
between the selected microphones in both horizontal
and vertical directions. Another important considera-
tion is to maximize in terms of angle and distance the
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area visible by the sonar, for which the greatest possi-
ble robustness to measurement errors will be obtained.
It seems that this feature is rather difficult to achieve
with piezoelectric microphones. MEMS microphones
are much more useful for this case. Furthermore, 4 mi-
crophones seem insufficient to achieve improvements in
DOA determination accuracy. How much their number
should be changed and how to arrange them is a topic
for further research.
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