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CONTROL, INFORMATICS AND ROBOTICS

On applications of quasi-Abelian Cayley graphs
to Denial-of-Service protection

Ewa GIREJKO ∗ and Agnieszka B. MALINOWSKA

Bialystok University of Technology, Wiejska 45, 15-351 Białystok, Poland

Abstract. This paper addresses the problem of designing secure control for networked multi-agent systems (MASs) under Denial-of-Service
(DoS) attacks. We propose a constructive design method based on the interaction topology. The MAS with a non-attack communication topology, 
modeled by quasi-Abelian Cayley graphs subject to DoS attacks, can be represented as a switched system. Using switching theory, we provide 
easily implementable sufficient conditions for the networked MAS to remain asymptotically stable despite DoS attacks. Our results are applicable 
to both continuous-time and discrete-time systems, as well as to discrete-time systems with variable steps or systems that combine discrete and
continuous times.
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1. INTRODUCTION
The advent of powerful communication technologies has led to
rapid development in cyber-physical systems, integrating phys-
ical plants with communication networks and computational
devices. However, reliance on communication networks under-
scores the need to design control algorithms resilient against
malfunctioning communication links. Periodic interruptions of
communication links may serve as models of malicious attacks,
where adversaries eliminate some communication links. This
phenomenon is known as a Denial-of-Service (DoS) attack (see,
e.g., [1] and references therein). Thus, there is a need for con-
trol algorithms capable of achieving synchronization even in the
presence of temporarily unavailable communication links.

In recent years, networked security control subject to DoS
attacks has garnered considerable attention (see [2–10] and ref-
erences therein). Random DoS attacks have been considered
in [4,9, 11], while multi-agent systems subject to asynchronous
denial-of-service attacks have been studied in [2,5]. A dwell time
approach [6,7] and an event-triggered mechanism [3,8,10] have
become effective strategies for researching secure control under
DoS attacks. In [12–15], a switching approach was proposed,
wherein the authors dealt with the presence of DoS attacks by
considering two modes: stable and unstable. The control mech-
anisms designed in those papers can effectively mitigate the
impact of frequency- and duration-limited DoS attacks.

In this paper, we propose a switching approach to address the
problem of designing secure control for networked multi-agent
systems (MASs) under DoS attacks. Unlike previous works, we
present constructive design conditions based on the interaction
topology of MASs. Specifically, we assume that the topology of
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the original network of agents is described by a quasi-Abelian
Cayley graph that is undirected and connected. This assumption
enables us to consider various models of DoS attacks, including
stochastic and deterministic, synchronous (where all commu-
nication links are simultaneously disrupted) and asynchronous
(where only part of the communication links are disrupted each
time). Moreover, since the attacker’s behavior is unpredictable,
we do not impose any limitations on the frequency and duration
of DoS attacks.

A characteristic feature of communication networks is data
transmission in packets, where flow is not continuous. Thus, time
intervals between consecutive moments of sending/receiving
data arise. Furthermore, these time intervals are not necessar-
ily constant. If such a network is used for control, the control
algorithm must ensure satisfactory behavior even when receiv-
ing data at non-uniform time intervals. This design require-
ment motivated our consideration of MASs with continuous-
time and discrete-time subsystems. Therefore, our results ap-
ply to continuous-time and discrete-time systems, as well as to
discrete-time systems with variable steps or systems that are
combinations of discrete and continuous times.

The main contributions of the paper are summarized as fol-
lows. Firstly, in Section 3, we provide sufficient conditions for
switched systems with continuous-time and discrete-time sub-
systems to be asymptotically stable. This result generalizes The-
orem 1 proved in [16] and is consistent with results presented
in [17,18], however, we do not use the time scale machinery and
the positive regressivity assumption. Secondly, in Section 4,
a switched system model is built to characterize the behav-
ior of MAS under DoS attacks. In Theorems 4 and 5, condi-
tions for the asymptotic stability of MASs under DoS attacks
are given using switched systems. We emphasize that the tra-
ditional switching topologies differ from the changes caused
by DoS attacks. Namely, switching caused by DoS attacks oc-
curs among the original graph, which describes non-attack com-
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munication topology, and subgraphs describing different attack
modes. Next, in Section 5, MASs with non-attack communi-
cation topology modeled by quasi-Abelian Cayley graphs are
discussed. In this case, simple conditions ensuring the asymp-
totic stability of MASs despite DoS attacks are provided. Fur-
ther, through examples, we explain a design method for MASs
that achieve asymptotic stability in a malicious DoS attack en-
vironment. The basic idea is that the original non-attacked net-
worked MAS should mimic the net of edges in a respective
quasi-Abelian Cayley graph 𝐺. If any communication channel
in any quasi-Abelian Cayley subgraph �̃� of graph 𝐺 is attacked,
the automatic security system should turn off the whole block
of physical channels modeled by subgraph �̃�. In such a case, as
long as the attacks stay within the block of communication links
modeled by one of the subgraphs of 𝐺, the networked MAS will
continue to work in an asymptotically stable manner. Since for
any natural number 𝑁 , there exists a quasi-Abelian Cayley graph
with 𝑁 nodes, the method described above could be applied to
any multi-agent system with 𝑁-agents.

2. PRELIMINARIES

In this paper, the information exchange among agents is modeled
by undirected graphs and the systems are considered on arbitrary
time domains. Therefore for the convenience of the reader we
recall some notions and facts from graph theory and time scale
calculus. Let 𝐺 = (𝑉,𝐸) be a weighted communication graph of
𝑛 agents, with the set of nodes (vertices) 𝑉 = {𝑣1, 𝑣2, ..., 𝑣𝑛} and
the set of edges 𝐸 ⊆ 𝑉 ×𝑉 . Each edge, denoted by (𝑖, 𝑗), means
that there is information flow from agent 𝑗 to agent 𝑖. Matrix
𝐴 = [𝑎𝑖 𝑗 ] ∈ R𝑛×𝑛 such that, 𝑎𝑖 𝑗 = 1 if (𝑖, 𝑗) ∈ 𝐸 and 𝑎𝑖 𝑗 = 0
otherwise, we call the adjacency matrix. Matrix 𝐿 = [𝑙𝑖 𝑗 ] ∈R𝑛×𝑛

with 𝑙𝑖𝑖 =
∑

𝑖≠ 𝑗 𝑎𝑖 𝑗 and 𝑙𝑖 𝑗 = −𝑎𝑖 𝑗 , 𝑖 ≠ 𝑗 , is called the graph
Laplacian matrix induced by the topology𝐺. By construction, 𝐿
has at least one zero eigenvalue with a corresponding eigenvector
1𝑛 = [1, . . . ,1]𝑇 . If for a certain graph 𝐺 we have that ( 𝑗 , 𝑖) ∈ 𝐸

for every (𝑖, 𝑗) ∈ 𝐸 , then the graph is called undirected. Clearly,
for an undirected graph matrices 𝐴 and 𝐿 are symmetric. Let
𝑠𝑝𝑒𝑐(𝐿) := {𝜆 𝑗 : 𝑗 = 1, ..., 𝑛} be the set of all eigenvalues of
𝐿, which are ordered 0 = 𝜆1 ≤ 𝜆2 ≤ . . . ≤ 𝜆𝑛 for an undirected
graph 𝐺. An undirected graph is connected if there exists a path
between any two distinct nodes. For a connected graph we have
𝜆2 > 0, 𝜆2 ∈ 𝑠𝑝𝑒𝑐(𝐿).

In order to analyze a special (practical) case of our main result
we need the following definitions and facts.

Definition 1. [19] Let 𝐻 be a finite group and let 𝑆 ⊆ 𝐻 be a
subset. The corresponding Cayley graph 𝐶𝑎𝑦(𝐻,𝑆) has vertex
set equal to 𝐻. Two vertices (𝑔, ℎ) ∈ 𝐻 are joined by a directed
edge from 𝑔 to ℎ if and only if there exists 𝑠 ∈ 𝑆 such that 𝑔 = 𝑠ℎ.
Each edge is labeled to denote that it corresponds to 𝑠 ∈ 𝑆. If 𝐺
is a graph such that there exists a group H and generating set
𝑆 ⊆ 𝐻 with 𝐺 � 𝐶𝑎𝑦(𝐻,𝑆), then 𝐺 is said to be Cayley.

Remark 1. [19] The Cayley graph 𝐶𝑎𝑦(𝐻,𝑆) of a group 𝐻

is undirected if and only if 𝑆 = 𝑆−1. Moreover, if 𝑆 generates
𝐻, then the labeled Cayley graph 𝐶𝑎𝑦(𝐻,𝑆) uniquely deter-
mines 𝐻.

Example 1. [19] If 𝐻 = 𝑍/𝑛𝑍 and 𝑆 = {1,−1} then 𝐶𝑎𝑦(𝐻,𝑆)
is the cycle on 𝑛 vertices.

In what follows we assume that 𝑆 does not contain the iden-
tity, so that 𝐶𝑎𝑦(𝐻,𝑆) does not contain any loops. Under this
assumption 𝐶𝑎𝑦(𝐻,𝑆) is a connected and undirected regular
graph of degree |𝑆 | on |𝐻 | vertices (without loops). Inside a
single group one can often find different sets of generators with
the same numbers of elements.

A Cayley graph 𝐶𝑎𝑦(𝐻,𝑆) is called quasi-Abelian if 𝑆 is the
union of some conjugacy of 𝐻.

Theorem 1. [20] All quasi-Abelian Cayley graphs on finite
group 𝐻 have a common basis of eigenfunctions and hence
their Laplacian matrices commute.

3. SWITCHED SYSTEMS WITH CONTINUOUS-TIME AND
DISCRETE-TIME SUBSYSTEMS

Let us consider the switched system that is composed of
continuous-time subsystem

¤𝑥(𝑡) = 𝐴𝑐𝑥(𝑡) (1)

and discrete-time subsystem

Δ𝑥(𝑡) = 𝐴𝑑𝑥(𝑡), (2)

where 𝑥(𝑡) ∈ R𝑁 is the state, 𝐴𝑐, 𝐴𝑑 ∈ R𝑁×𝑁 . We do not assume
that the sampling period of system (2) is constant, it can be a
function of time. Moreover, we do not fix any switching law,
that is, arbitrary switching is possible for the switched system
composed of subsystems (1) and (2).

In the sequel, T denotes the time domain of the considered
switched systems. Clearly, T ⊆ R. We assume that 0 ∈ T is the
initial time, and T is unbounded above and closed.

Definition 2. The switched system composed of subsystems (1)
and (2) is asymptotically stable on T if for any initial condition
𝑥(0) = 𝑥0 the solution to (1)–(2) satisfies lim𝑡→∞ ∥𝑥(𝑡)∥ = 0.

To study the stability of switched system composed of (1) and
(2) we adopt notions known from time scales theory [21].

Definition 3. Let 𝑡 ∈ T. The forward jump operator 𝜎 : T→ T
is defined by 𝜎(𝑡) := inf{𝑠 ∈ T : 𝑡 < 𝑠}.

Definition 4. The graininess function 𝜇 : T→ [0,∞] is defined
by 𝜇(𝑡) := 𝜎(𝑡) − 𝑡, for all 𝑡 ∈ T.

Let us observe that for continuous-time system (1), 𝜎(𝑡) = 𝑡

and 𝜇(𝑡) = 0, while for discrete-time system (2), 𝜎(𝑡) > 𝑡 and
𝜇(𝑡) > 0, respectively.

With the introduced notions we may write subsystem (2) in
the equivalent form

𝑥(𝜎(𝑡)) = (𝐼 + 𝜇(𝑡)𝐴𝑑) 𝑥(𝑡), (3)

where 𝐼 is an identity matrix of dimension 𝑁 ×𝑁 .
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Example 2. Let 𝑎 and 𝑏 be positive numbers, and consider the
switched system consisting of

¤𝑥(𝑡) = 𝐴𝑐𝑥(𝑡), 𝑡 ∈
∞⋃
𝑘=0

[𝑘 (𝑎 + 𝑏), 𝑘 (𝑎 + 𝑏) + 𝑎[ (4)

and

Δ𝑥(𝑡) = 𝐴𝑑𝑥(𝑡) 𝑡 ∈
∞⋃
𝑘=0

{𝑘 (𝑎 + 𝑏) + 𝑎} . (5)

Then T =

∞⋃
𝑘=0

[𝑘 (𝑎 + 𝑏), 𝑘 (𝑎 + 𝑏) + 𝑎],

𝜇(𝑡) =


0 if 𝑡 ∈

∞⋃
𝑘=0

[𝑘 (𝑎 + 𝑏), 𝑘 (𝑎 + 𝑏) + 𝑎[,

𝑏 if 𝑡 ∈
∞⋃
𝑘=0

{𝑘 (𝑎 + 𝑏) + 𝑎},

and 𝑥(𝑡 + 𝑏) = (𝐼 + 𝑏𝐴𝑑) 𝑥(𝑡) for 𝑡 ∈
∞⋃
𝑘=0

{𝑘 (𝑎 + 𝑏) + 𝑎}.

We make the following five assumptions on subsystems (1)
and (3).

Assumption 1. 𝐴𝑐𝐴𝑑 = 𝐴𝑑𝐴𝑐.
Let us observe that under Assumption 1 it holds

𝑒𝐴𝑐𝑡 (1+ 𝜇(𝑡)𝐴𝑑) = (1+ 𝜇(𝑡)𝐴𝑑)𝑒𝐴𝑐𝑡 (6)

for any scalar 𝑡 ∈ T.

Assumption 2. 𝐴𝑐 = 𝐴𝑇
𝑐 and 𝐴𝑑 = 𝐴𝑇

𝑑
.

Observe that under Assumption 2 matrices 𝐴𝑐 and 𝐴𝑑 are
diagonalizable, and all the eigenvalues of those matrices are
real.

Assumption 3. The graininess function of system (3) fulfills 0 <
𝜇min ≤ 𝜇(𝑡) ≤ 𝜇max , where 𝜇min := min𝑡∈T{𝜇(𝑡)} and 𝜇max :=
max𝑡∈T{𝜇(𝑡)}.

Let us denote spec(𝐴𝑐) = {𝜆𝑐
𝑗

: 𝑗 = 1, ..., 𝑁} and spec(𝐴𝑑) =
{𝜆𝑑

𝑗
: 𝑗 = 1, ..., 𝑁}.

Assumption 4. 𝐴𝑐 is Hurwitz stable, that is 𝜆𝑐
𝑗
< 0, 𝑗 = 1, ..., 𝑁 .

In order to provide stability conditions for discrete-time
subsystem (3) we have to analyze the values: |1 + 𝜇(𝑡)𝜆𝑑

𝑗
|,

𝑗 = 1, ..., 𝑁 , for 𝑡 ∈ T with 𝜇(𝑡) > 0. To this end we consider
the function 𝑚(𝑐) := |1+ 𝑐𝜆𝑑 |, 𝑐 ∈ [𝜇min, 𝜇max]. Observe that:
i) If 𝜆𝑑 ≥ 0, then max

𝜇min≤𝑐≤𝜇max
{|1+ 𝑐𝜆𝑑 |} = |1+ 𝜇max𝜆

𝑑 |.

ii) If 𝜆𝑑 < 0 and 𝜇min ≥ − 1
𝜆𝑑

, then max
𝜇min≤𝑐≤𝜇max

{|1 + 𝑐𝜆𝑑 |} =

|1+ 𝜇max𝜆
𝑑 |.

iii) If 𝜆𝑑 < 0 and 𝜇min < − 1
𝜆𝑑

, then max
𝜇min≤𝑐≤𝜇max

{|1 + 𝑐𝜆𝑑 |} =

max{|1+ 𝜇min𝜆
𝑑 |, |1+ 𝜇max𝜆

𝑑 |}.
Assumption 5. 𝐴𝑑 is stable, that is

max
𝜆𝑑
𝑗
∈spec(𝐴𝑑 )

max
𝜇min≤𝑐≤𝜇max

{|1+ 𝑐𝜆𝑑𝑗 |} = 𝛿 < 1.

Lemma 1. [22] Let F be a commuting family of diagonalizable
linear operators on the finite-dimensional vector space𝑉 . There
exists an ordered basis for 𝑉 such that every operator in F is
represented in that basis by a diagonal matrix.

Lemma 2. [23] If two matrices commute with each other, every
non-degenerate eigenvector of one is also an eigenvector of the
other.

Lemma 3. [24] If F ⊂ R𝑛×𝑛 is a commuting family of matrices,
then there is a vector 𝑣 ∈ C𝑛 that is an eigenvector of every 𝐴 ∈ F.

The following Theorem 2 and Theorem 3 provide sufficient
conditions for switched systems with continuous-time (1) and
discrete-time subsystems (3) to be asymptotically stable.

Theorem 2. Under Assumptions 1–5, the switched system com-
posed of subsystems (1) and (3) is asymptotically stable on T.

Proof. First let us observe that for any time T ∋ 𝑡 > 0 we can di-

vide the interval [0, 𝑡] in such a way that 𝑡 = 𝑡𝑐 +
𝑚∑︁
𝑖=1

𝜇(𝑡𝑖), where

𝑡𝑐 is the total duration time for continuous-time subsystems on

[0, 𝑡] and
𝑚∑︁
𝑖=1

𝜇(𝑡𝑖) is the total duration time for discrete-time

subsystems on the interval [0, 𝑡]. Furthermore, according to As-
sumptions 1 and 2, and by Lemmas 1, 2, and 3, one can express
the solution to the considered switched system in the form

𝑥(𝑡) = 𝑥0

𝑁∑︁
𝑗=1

𝑐 𝑗𝑣 𝑗𝑒
𝜆𝑐
𝑗
𝑡𝑐

𝑚∏
𝑖=1

(1+ 𝜇(𝑡𝑖)𝜆𝑑𝑗 ), (7)

where 𝑥0 = 𝑥(0), 𝑐 𝑗 are constants, 𝑣 𝑗 are shared eigenvectors
corresponding to 𝜆𝑐

𝑗
and 𝜆𝑑

𝑗
. Thus

∥𝑥(𝑡)∥ ≤ ∥𝑥0∥
𝑁∑︁
𝑗=1

|𝑐 𝑗 | ∥𝑣 𝑗 ∥𝑒𝜆
𝑐
𝑗
𝑡𝑐

𝑚∏
𝑖=1

|1+ 𝜇(𝑡𝑖)𝜆𝑑𝑗 |. (8)

Now, let us observe that for the fixed 𝑗 and according to As-
sumptions 4 and 5, we have

𝑒
𝜆𝑐
𝑗
𝑡𝑐

𝑚∏
𝑖=1

|1+ 𝜇(𝑡𝑖)𝜆𝑑𝑗 | ≤ 𝑒
𝜆𝑐
𝑗
𝑡𝑐𝛿𝑚 ≤ 𝑒

𝜆𝑐
𝑗
𝑡𝑐𝑒

∑𝑚
𝑖=1 𝜇 (𝑡𝑖 )

ln 𝛿
𝜇min ≤ 𝑒𝜆 𝑗 𝑡 ,

where 𝜆 𝑗 = max
{
𝜆𝑐𝑗 ,

ln𝛿
𝜇min

}
< 0. Proceeding analogously for all

𝑗 ∈ {1, . . . , 𝑁}, we get

∥𝑥(𝑡)∥ ≤ ∥𝑥0∥
𝑁∑︁
𝑗=1

|𝑐 𝑗 | ∥𝑣 𝑗 ∥𝑒𝜆 𝑗 𝑡 ,

where 𝜆 𝑗 < 0 for all 𝑗 = 1, . . . , 𝑁 . Therefore, lim
𝑡→∞

∥𝑥(𝑡)∥ = 0.
This completes the proof. □

Theorem 3. Let 𝜇(𝑡𝑖) = 𝑎𝑖 . If
∞∑︁
𝑖=1

𝑎𝑖 <∞, then under Assump-

tions 1–4, the switched system composed of subsystems (1) and
(3) is asymptotically stable on T.
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Proof. Similarly to the proof of Theorem 2 the solution to the
considered switched system is given by (7) and inequality (8)
holds. Now, let us observe that for the fixed 𝑗 we have

𝑒
𝜆𝑐
𝑗
𝑡𝑐

𝑚∏
𝑖=1

|1+ 𝜇(𝑡𝑖)𝜆𝑑𝑗 | ≤

𝑒
𝜆𝑐
𝑗
𝑡𝑐

(
max

𝜇min≤𝑐≤𝜇max
{|1+ 𝑐𝜆𝑑𝑗 |}

)𝑚
≤ 𝑒

𝜆𝑐
𝑗
𝑡
𝑒
∑𝑚

𝑖=1 𝜇 (𝑡𝑖 ) (−𝜆𝑐
𝑗
+

lnmax𝜇min≤𝑐≤𝜇max {|1+𝑐𝜆𝑑
𝑗
|}

𝜇min
)
.

Proceeding analogously for all 𝑗 ∈ {1, . . . , 𝑁}, we get

∥𝑥(𝑡)∥ ≤ ∥𝑥0∥
𝑁∑︁
𝑗=1

|𝑐 𝑗 | ∥𝑣 𝑗 ∥𝑒𝜆
𝑐
𝑗
𝑡 ·

· 𝑒
∑𝑚

𝑖=1 𝜇 (𝑡𝑖 ) (−𝜆𝑐
𝑗
+

lnmax𝜇min≤𝑐≤𝜇max {|1+𝑐𝜆𝑑
𝑗
|}

𝜇min
)
.

Since 𝜆𝑐
𝑗
< 0, 𝑗 = 1, ..., 𝑁 , and

∞∑︁
𝑖=1

𝜇(𝑡𝑖) < ∞, it follows that

lim
𝑡→∞

∥𝑥(𝑡)∥ = 0. This completes the proof. □

Example 3. We consider the switched system composed of

¤𝑥(𝑡) = 𝐴𝑐𝑥(𝑡), 𝑡 ∈
∞⋃
𝑘=1

[
2𝑘 + 1

2𝑘
,2𝑘+1

[
(9)

and

Δ𝑥(𝑡) = 𝐴𝑑𝑥(𝑡) 𝑡 ∈ {0} ∪
∞⋃
𝑘=1

{2𝑘+1}. (10)

Then T = {0} ∪
∞⋃
𝑘=1

[
2𝑘 + 1

2𝑘
,2𝑘+1

]
and

𝜇(𝑡) =



0 if 𝑡 ∈
∞⋃
𝑘=1

[
2𝑘 + 1

2𝑘
,2𝑘+1

[
,

1
2𝑘+1 if 𝑡 ∈

∞⋃
𝑘=1

{2𝑘+1},

2
1
2

if 𝑡 = 0.

Then one gets
∞∑︁
𝑖=1

𝜇(𝑡𝑖) = 2
1
2
+

∞∑︁
𝑖=1

1
2𝑖+1 <∞.

Note that, Theorems 2 and 3 evidently show that the stability
of the discrete-time subsystem essentially depends on the size
of the discrete steps. In consequence, when the discrete step
size is variable in time, the stability conditions strongly depend
on 𝜇min and 𝜇max.

Remark 2. Theorems 2 and 3 remain true for more than two
subsystems satisfying assumptions of those theorems.

4. DOS ATTACKS

Let T ⊆ R be a time-domain such that 0 ∈ T, and T is unbounded
above and closed. Consider a set of 𝑁 agents interacting over
a communication network. The interaction topology of the net-
work is represented by undirected graph G = (𝑉,𝐸) with the set
of nodes 𝑉 = {1,2, . . . , 𝑁} and edges 𝐸 ⊆ 𝑉 ×𝑉 . We are inter-
ested in a very general situation where DoS attacks could occur
on some or all transmission channels at any time.

Let us define:
• Ψ(𝑖, 𝑗 ) [𝑎, 𝑏]T, 𝑖 < 𝑗 , as the union of moments of DoS attacks

on edge (channel) (𝑖, 𝑗) ∈ 𝐸 over [𝑎, 𝑏]T;
• Υ(𝑡) := {(𝑖, 𝑗) ∈ 𝐸 | 𝑡 ∈ Ψ(𝑖, 𝑗 ) [0,∞[T} as the set of edges

(channels) which are attacked at time 𝑡.
Here and subsequently [𝑎, 𝑏]T := [𝑎, 𝑏] ∩T.

Remark 3. Since edges (𝑖, 𝑗) and ( 𝑗 , 𝑖) are seen as one channel,
only edge (𝑖, 𝑗) with 𝑖 < 𝑗 is considered and Ψ(𝑖, 𝑗 ) = Ψ( 𝑗 ,𝑖) .

Let Θ be a set of all subsets of the set of all connections
between every two different nodes in graph G . In other words,
setting E = {(𝑖, 𝑗) : 1 ≤ 𝑖, 𝑗 ≤ 𝑁 ∧ 𝑖 < 𝑗} we can say that Θ is
the set of all subsets of the set E and |Θ| = 2 |E | . Obviously,
Υ(𝑡), 𝑡 ∈ [0,∞[T are elements of Θ. Note that, at a given time
𝑡 ∈ [0,∞[T one and only one from 2 |E | = 2

|𝐸 |
2 possible attacks

modes may happen. Hence, to every 𝑡 ∈ [0,∞[T corresponds a
unique element of the setΘ. Now, let 𝐴 ∈ RN×N be the adjacency
matrix of G and 𝐿 its Laplacian. To describe a DoS attack at time
𝑡 we introduce a matrix 𝐿Υ(𝑡 ) that is defined as 𝐿 with 𝑎𝑖 𝑗 = 0
for ( 𝑗 , 𝑖) ∉ Υ(𝑡). Precisely, if channel ( 𝑗 , 𝑖) is not attacked at
time 𝑡, then in matrix 𝐿Υ(𝑡 ) we have 𝑎𝑖 𝑗 = 0. By introducing bi-
jection map 𝑓 : Θ→ {1, ...,2 |E | } ⊂ N numbering the elements
of set Θ, we define switching signal 𝜅 : T → {1, ...,2 |E | } as
𝜅(𝑡) := 𝑓 (Υ(𝑡)). By definition, 𝜅 is piecewise continuous. Con-
sequently, with the attack mode at 𝑡 ∈ [0,∞[T, we associate a
matrix 𝐴𝜅 (𝑡 ) defined by

𝐴𝜅 (𝑡 ) := 𝐿− 𝐿Υ(𝑡 ) . (11)

4.1. Stability under DoS attack

Suppose each node of a graph G = (𝑉,𝐸) represents a dynamic
agent with dynamics described by continuous-time equations

¤𝑥𝑖 (𝑡) = 𝑝𝑥𝑖 (𝑡) + 𝑞𝑢𝑖 (𝑡) , (12)

and discrete-time equation

𝑥𝑖 (𝜎(𝑡)) = 𝑥𝑖 (𝑡) + 𝜇(𝑡) (𝑝𝑥𝑖 (𝑡) + 𝑞𝑢𝑖 (𝑡)) , (13)

where 𝑥𝑖 (𝑡) ∈ R and 𝑢𝑖 (𝑡) ∈ R denote the state and the control
input at time 𝑡 of node 𝑖, 𝑖 = 1, . . . , 𝑁 , respectively. The two
parameters 𝑝, 𝑞 ∈ R will be specified later. We consider the
switched dynamics for each agent and a corresponding switch-
ing law is governed by a particular time-domain T. Namely,
on continuous part of T we deal with equation (12), while on
discrete part of T with equation (13). The state-feedback dis-
tributed control for multi-agent system composed of (12) and
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(13) is proposed as follows

𝑢𝑖 (𝑡) =
𝑁∑︁

𝑗=1, ( 𝑗 ,𝑖)∉Υ(𝑡 )
𝑎𝑖 𝑗 (𝑥 𝑗 (𝑡) − 𝑥𝑖 (𝑡)) , 𝑖 = 1, ..., 𝑁 , (14)

where 𝐴 = [𝑎𝑖 𝑗 ] ∈ R𝑁×𝑁 is the adjacency matrix of graph G
describing network of multi-agent system composed of (12) and
(13), 𝑢𝑖 : T→ R. Accordingly, the network dynamics becomes

¤𝑥(𝑡) =
(
𝑝𝐼𝑁 − 𝑞(𝐿− 𝐿Υ(𝑡 ) )

)
𝑥(𝑡) , (15)

for continuous-time and

𝑥(𝜎(𝑡)) =
(
𝐼𝑁 + 𝜇(𝑡) (𝑝𝐼𝑁 − 𝑞(𝐿− 𝐿Υ(𝑡 ) ))

)
𝑥(𝑡) , (16)

for discrete-time, where 𝑥 = [𝑥1, . . . , 𝑥𝑁 ]𝑇 . On account of
formula (11), we obtain the switched system composed of
continuous-time subsystems

¤𝑥(𝑡) ∈ {(𝑝𝐼𝑁 − 𝑞𝐴𝜅 )𝑥(𝑡)}𝜅∈𝐼 , (17)

and discrete-time subsystems

𝑥(𝜎(𝑡)) ∈ {(𝐼𝑁 + 𝜇(𝑡) (𝑝𝐼𝑁 − 𝑞𝐴𝜅 )) 𝑥(𝑡)}𝜅∈𝐼 , (18)

that represent multi-agent system (12)–(13) under DoS attack.
Below we state conditions on parameters 𝑝 and 𝑞 that guaran-

tee asymptotic stability of multi-agent system (12)–(13) under
DoS attacks. To this end, let us denote spec(𝐴𝜅 ) = {𝜆𝜅

𝑗
: 𝑗 =

1, ..., 𝑁}, 𝜅 ∈ 𝐼, and

𝜆max = max
𝑗∈{1,...,𝑁 },𝜅∈𝐼

𝜆𝜅
𝑗 . (19)

Remark 4. Observe that, by formula (11), matrices 𝐴𝜅 are
principal submatrices of Laplacian matrix 𝐿, it imlpies that
𝜆max is the largest eigenvalue of 𝐿.

Theorem 4. Let Assumptions 1–3 hold for all matrices from
the family {𝐴𝜅 , 𝜅 ∈ 𝐼}, and one of the following conditions is
fulfilled:
i) if 𝑞 > 0, then

1
𝑞

(
2

𝜇max
+ 𝑝

)
> 𝜆max,

ii) if 𝑞 < 0, then
𝑝

𝑞
> 𝜆max .

Then multi-agent system composed of subsystems (15) and
(16) under DoS attacks is asymptotically stable provided 𝑝 ∈(
− 2
𝜇max

,0
)
.

Proof. First, let us observe that the matrices 𝐴𝜅 are positive
semi-definite. We notice that 𝜆max > 0; otherwise, all matrices
𝐴𝜅 would have zero entries.

We begin with assumption i).

From inequality
1
𝑞

(
2

𝜇max
+ 𝑝

)
> 𝜆max we get

2
𝜇(𝑡𝑖)

+ 𝑝 > 𝑞 ·𝜆𝜅
𝑗 for all 𝑗 = 1, ..., 𝑁 , 𝜅 ∈ 𝐼 and 𝑖 ≥ 1. (20)

On the other hand, 𝑞 >
𝑝

𝜆max
for 𝑝 < 0, thus

𝜇(𝑡𝑖) (𝑏𝜆𝜅
𝑗 − 𝑝) > 0 for all 𝑗 = 1, ..., 𝑁 , 𝜅 ∈ 𝐼 (21)

and 𝑖 ≥ 1.
From (20) and (21) we conclude that

|1+ 𝜇(𝑡𝑖) (𝑝− 𝑞𝜆𝜅
𝑗 ) | < 1 , (22)

what together with the observation spec{𝐼𝑁 + 𝜇(𝑡𝑖) (𝑝𝐼𝑁 −
𝑞𝐴𝜅 )} = {1+𝜇(𝑡𝑖) (𝑝−𝑞𝜆𝜅

𝑗
) : 𝑗 = 1, ..., 𝑁 , 𝜅 ∈ 𝐼} means that sys-

tem (16) fulfills Assumption 5. Moreover, one can notice that
in the considered case of assumptions, system (15) is always
asymptotically stable. Indeed, inequality 𝑞 >

𝑝

𝜆max
implies that

𝑝−𝑞𝜆𝜅
𝑗
< 0, for all 𝑗 = 1, ..., 𝑁 , 𝜅 ∈ 𝐼. Since spec{𝑝𝐼𝑁 −𝑞𝐴𝜅 } =

{𝑝 − 𝑞𝜆𝜅
𝑗

: 𝑗 = 1, ..., 𝑁 , 𝜅 ∈ 𝐼}, we conclude that system (15)
fulfills Assumption 4. By Theorem 2 we get the thesis.

Next, let us consider assumption ii): 𝑞 < 0, then 𝑞 >
𝑝

𝜆max
.

Since 𝑝 ∈
(
− 2

𝜇max
,0
)
, it means that 𝑝 − 𝑞𝜆𝜅

𝑗
< 0, for all 𝑗 =

1, ..., 𝑁 , 𝜅 ∈ 𝐼. It implies that system (15) is Hurwitz sta-
ble (Assumption 4 holds). Moreover, from 𝑞 >

𝑝

𝜆max
one gets

𝜇(𝑡𝑖) (𝑝− 𝑞𝜆𝜅
𝑗
) < 0, what leads us to

1+ 𝜇(𝑡𝑖) (𝑝− 𝑞𝜆𝜅
𝑗 ) < 1 . (23)

Furthermore, observe that 𝑞𝜆𝜅
𝑗
< 𝑝+ 2

𝜇 (𝑡𝑖 ) , what implies that for
all 𝑗 = 1, ..., 𝑁 , 𝜅 ∈ 𝐼,

1+ 𝜇(𝑡𝑖) (𝑝− 𝑞𝜆𝜅
𝑗 ) > −1 . (24)

By inequalities (23) and (24) we conclude that system (16)
fulfills Assumption 5. By Theorem 2 we get that multi-agent
system composed of subsystems (15) and (16) under DoS attacks
is asymptotically stable, what finishes the proof. □

Remark 5. Observe that if 𝑞 = 0 in system (12)–(13), then it is
enough that 𝑝 ∈

(
− 2

𝜇max
,0
)

for the system composed of systems
(15) and (16) to be asymptotically stable under DoS attacks.

Theorem 5. Let 𝜇(𝑡𝑖) = 𝑎𝑖 and
∞∑︁
𝑖=1

𝑎𝑖 < ∞. Moreover, let As-

sumptions 1–3 be satisfied for all matrices from the family
{𝐴𝜅 , 𝜅 ∈ 𝐼}. If one of the following conditions holds:
i) 𝑝 < 0 and 𝑞 ≥ 0,
ii) 𝑝 < 0, 𝑞 < 0 and

𝑝

𝑞
> 𝜆max ,

then multi-agent switched system composed of subsystems (15)
and (16) is asymptotically stable under DoS attacks.

Proof. We lead the proof only for condition ii) since condition
i) trivially implies the thesis. First we show that system (15) is
Hurwitz stable. As before, we observe that spec{𝑝𝐼𝑁 − 𝑞𝐴𝜅 } =
{𝑝 − 𝑞𝜆𝜅

𝑗
: 𝑗 = 1, ..., 𝑁 , 𝜅 ∈ 𝐼}, so it is enough to show that

𝑝 − 𝑞𝜆𝜅
𝑗
< 0 for all 𝑗 = 1, ..., 𝑁 , 𝜅 ∈ 𝐼. 𝐴𝜅 are positive semi-

definite matrices, so 𝜆𝜅
𝑗
≥ 0 for every 𝜆𝜅

𝑗
∈ 𝑠𝑝𝑒𝑐{𝐴𝜅 }. Moreover,

condition 𝑝

𝑞
> 𝜆max implies that 𝑝 < 𝜆𝜅

𝑗
𝑞 for all 𝑗 = 1, ..., 𝑁 , 𝜅 ∈ 𝐼.

Thus 𝑝−𝑞𝜆𝜅
𝑗
< 0 only if 𝑝, 𝑞 < 0, for all 𝑗 = 1, ..., 𝑁 , 𝜅 ∈ 𝐼. The

latter means that matrices 𝑝𝐼𝑁 − 𝑞𝐴𝜅 are Hurwitz stable. Since
Assumptions 1–4 are satisfied and

∑∞
𝑖=1 𝑎𝑖 < ∞ for 𝜇(𝑡𝑖) = 𝑎𝑖 ,

by Theorem 3, the thesis holds. □
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5. APPLICATIONS OF CAYLEY GRAPHS TO DOS
PROTECTION

In this section, we assume that the network of agents’ topology
is described by the Cayley graph 𝐺, with the corresponding
adjacency matrix 𝐴 having entries 0 and 1.

Lemma 4. (cf. [25]) If {𝐴𝜅 , 𝜅 ∈ 𝐼} is a family of matrices given
by formula (11), where 𝐿 is Laplacian of the Cayley graph, then
the following inequalities hold true:
i) 𝜆max ≥ 1+max𝑥 𝑑𝑥 ,
ii) 𝜆max ≥

∑
𝑥 𝑑𝑥

𝑁−1 ,
where 𝜆max is given by formula (19), 𝑑𝑥 is the degree of the
vertex 𝑥.

Theorem 6. Let Assumption 3 be satisfied and one of the fol-
lowing conditions holds:

i) if 𝑞 > 0, then
1
𝑞

(
2

𝜇max
+ 𝑝

)
> 𝜆max,

ii) if 𝑞 < 0, then
𝑝

𝑞
> 𝜆max .

Then multi-agent system composed of subsystems (15) and
(16) under DoS attacks is asymptotically stable provided 𝑝 ∈(
− 2

𝜇max
,0
)
.

Proof. First, let us observe that Assumptions 1–2 are fulfilled
since the matrices 𝐴𝜅 , 𝜅 ∈ 𝐼 correspond to Cayley graphs and
subgraphs. Furthermore, assumptions i) and ii) imply, as shown
in Theorem 4, that Assumptions 4 and 5 are satisfied, so the
thesis holds. □

Theorem 7. Let 𝜇(𝑡𝑖) = 𝑎𝑖 and
∞∑︁
𝑖=1

𝑎𝑖 < ∞. Moreover, let As-

sumptions 3 be satisfied. If one of the following conditions
holds:
i) 𝑝 < 0 and 𝑞 ≥ 0,
ii) 𝑝 < 0, 𝑞 < 0 and

𝑝

𝑞
> 𝜆max ,

then multi-agent system composed of subsystems (15) and (16)
is asymptotically stable under DoS attacks.

Proof. Again, Assumptions 1–2 are fulfilled for the matrices
𝐴𝜅 , 𝜅 ∈ 𝐼 corresponding to Cayley graphs and subgraphs. Thus,
the thesis holds by Theorem 5. □

Remark 6. Let us observe that in Theorems 6 and 7, one can
use the inequalities provided in Lemma 4 instead of 𝜆max.

5.1. Examples

In this section, in order to keep the network working, we
consider the situation, when the deployment of agents (de-
vices) is modelled by the quasi-Abelian Cayley graphs 𝐺 𝜅 =

𝐶𝑎𝑦𝜅 (𝐻𝜅 , 𝑆𝜅 ), 𝜅 ∈ 𝐼. It implies that vertex sets can be any fi-
nite simple non-abelian group. As an example of generators
of such a group, let us consider 𝑆1, 𝑆2, 𝑆3 as follows: 𝑆1 =

{𝑒, 𝑦, 𝑦2, 𝑦3, 𝑥, 𝑥𝑦, 𝑥𝑦2, 𝑥𝑦3}, 𝑆2 = {𝑥𝑦, 𝑥𝑦2, 𝑥𝑦3}, 𝑆3 = {𝑦, 𝑦3}. It
means that the network consists of eight cooperating devices
(agents). In Fig. 1, we present three graphs𝐺1,𝐺2,𝐺3 that corre-
spond to generators 𝑆1, 𝑆2, 𝑆3, respectively. Graph 𝐺1 illustrates
the original communication topology (the situation without DoS

attacks), while by 𝐺2 different 216 attack modes are modelled
and the rest of 28 possible different attack modes by graph 𝐺3. It
should be understood as follows: if any communication channels
of the subgraphs 𝐺2 or 𝐺3 are attacked, the automatic security
system should turn off all the physical channels (between cooper-
ating devices) represented by all the edges of the corresponding
subgraph 𝐺2 or 𝐺3.

(a) graph 𝐺1 (b) graph 𝐺2

(c) graph 𝐺3

Fig. 1. Three considered situations for the network of eight collaborat-
ing devices

Consequently, there are three matrices: 𝐴1 is the Laplacian
matrix of the original communication topology, 𝐴2 that is as-
sociated with different 216 attack scenarios, 𝐴3 that is asso-
ciated with the rest of 28 possible attack scenarios. Therefore
{𝐴𝜅 , 𝜅 ∈ 𝐼}, 𝐼 = {1,2,3}, and 𝜆max = 6.

𝐴1 =



6 0 −1 −1 −1 −1 −1 −1
0 6 −1 −1 −1 −1 −1 −1
−1 −1 6 0 −1 −1 −1 −1
−1 −1 0 6 −1 −1 −1 −1
−1 −1 −1 −1 6 0 −1 −1
−1 −1 −1 −1 0 6 −1 −1
−1 −1 −1 −1 −1 −1 6 0
−1 −1 −1 −1 −1 −1 0 6


,

𝐴2 =



4 0 0 0 −1 −1 −1 −1
0 4 0 0 −1 −1 −1 −1
0 0 4 0 −1 −1 −1 −1
0 0 0 4 −1 −1 −1 −1
−1 −1 −1 −1 4 0 0 0
−1 −1 −1 −1 0 4 0 0
−1 −1 −1 −1 0 0 4 0
−1 −1 −1 −1 0 0 0 4


,

6 Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 3, p. e149232, 2024



On applications of quasi-Abelian Cayley graphs to Denial-of-Service protection

𝐴3 =



2 0 −1 −1 0 0 0 0
0 2 −1 −1 0 0 0 0
−1 −1 2 0 0 0 0 0
−1 −1 0 2 0 0 0 0
0 0 0 0 2 0 −1 −1
0 0 0 0 0 2 −1 −1
0 0 0 0 −1 −1 2 0
0 0 0 0 −1 −1 0 2


,

In what follows, we show how to apply Theorem 6 and The-
orem 7 in particular situations. Namely, we consider two time
domains: T1 =

⋃∞
𝑘=0

[𝑘 (0,000003), 𝑘 (0,000003) + 0,000001]

(see Example 2) and T2 = {0} ∪
⋃∞

𝑘=1
[2𝑘 + 1

2𝑘
,2𝑘+1] (see Ex-

ample 3). In the case of T1, we use Theorem 6 with 𝜇max =

0,000002. Since forT2 we have
∑︁∞

𝑖=1
𝜇(𝑡𝑖) = 2

1
2
+
∑︁∞

𝑖=1

1
2𝑖+1 <

∞, Theorem 7 is applicable.

Example 4. Let us analyze the situation when there is no at-
tack in the first interval [0,0.000001]. In the second interval
[0.000003,0.000004], at least one of the physical channels that
correspond to edges in the subgraph 𝐺3 is attacked, while in
the next interval [0.000006,0.000007], DoS attack appears on
at least one of physical channels that correspond to edges of
subgraph 𝐺2. In the interval [0.000009,0.00001], once again,
at least one of the links in the subgraph 𝐺3 is attacked and so
on, such that attacks are launched in any order. It follows that
the switching signal is:

𝜅(𝑡) =



1 , 𝑡 ∈ [0,0.000001]
2 , 𝑡 ∈ [0.000003,0.000004]
3 , 𝑡 ∈ [0.000006,0.000007]
2 , 𝑡 ∈ [0.000009,0.00001]
...

,

with the graph presented in Fig. 2.

Fig. 2. Switching signal for the system with eight agents subject to DoS
attacks

The behavior of the network of agents is illustrated in Fig. 3
and Fig. 4. Figure 3 shows asymptotic stability, when: (a) 𝑝 =

−999999, 𝑞 =
1
7

; (b) 𝑝 = −999999, 𝑞 = −150000. In Fig. 4 one
can see instability, when: (a) 𝑝 =−999999, 𝑞 =−200000; (b) 𝑝 =
−999999, 𝑞 = −300000. In both cases, the initial conditions are
𝑥1 (0) = 1, 𝑥2 (0) = 3, 𝑥3 (0) = 6, 𝑥4 (0) = 0, 𝑥5 (0) =

1
2

, 𝑥6 (0) = 4,

𝑥7 (0) =
3
2

, 𝑥8 (0) = 5.

(a) 𝑝 = −999999, 𝑞 = 1
7

(b) 𝑝 = −999999, 𝑞 = −150000

Fig. 3. The evolution in time of the network of eight devices under DoS
attacks is asymptotically stable
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(a) 𝑝 = −999999, 𝑞 = −200000

(b) 𝑝 = −999999, 𝑞 = −300000

Fig. 4. The evolution in time of the network of eight devices under DoS
attacks that is not asymptotically stable

Example 5. In this example, we analyze the situation when there

is no attack at the initial time, and in the time interval
[
5
2
,4
]
.

Then in the interval
[
17
4
,8
]
, at least one of the physical channels

that correspond to edges in the subgraph 𝐺2 is attacked, while

in the interval
[
65
8
,16

]
, DoS attack appears on at least one of

the physical channels that correspond to edges in the subgraph
𝐺3 and so on, such that attacks are launched in any order. What
follows, the switching signal is:

𝜅(𝑡) =



1 , 𝑡 ∈ {0} ∪
[
5
2
,4
]
,

3 , 𝑡 ∈
[
17
4
,8
]
,

2 , 𝑡 ∈
[
65
8
,16

]
...

,

with the graph presented in Fig. 5.

Fig. 5. Switching signal for the system with eight agents subject to DoS
attacks

The behavior of the network of agents is illustrated in Fig. 6
and Fig. 7. Figure 6 shows asymptotic stability, when: (a) 𝑝 =

−10, 𝑞 = −1; (b) 𝑝 = −1, 𝑞 = 1. In Fig. 7 one can see instability,
when 𝑝 = −1, 𝑞 = −1. In both cases, the initial conditions are
𝑥1 (0) = 1, 𝑥2 (0) = 3, 𝑥3 (0) = 6, 𝑥4 (0) = 0, 𝑥5 (0) =

1
2

, 𝑥6 (0) = 4,

𝑥7 (0) =
3
2

, 𝑥8 (0) = 5.

5.2. How to apply the presented design method
in practice?

The main idea of applying the presented method in practice is as
follows: the original non-attacked communication topology of
the MAS should mimic the network of edges in a quasi-Abelian
Cayley graph 𝐺 with the appropriate number of nodes. In the
case where at least one of the physical channels corresponding
to edges in any quasi-Abelian Cayley subgraph of graph 𝐺 is
attacked, the automatic security system should turn off the entire
block of communication links modeled by this subgraph.

By applying Theorems 6 or 7, as long as the attacks stay within
the block of physical channels modeled by any quasi-Abelian
Cayley subgraph of graph 𝐺, the entire networked MAS will
continue to work in an asymptotically stable manner.

The crucial factors that guarantee the success of this design
method are:
• Laplacian matrices of quasi-Abelian Cayley graphs on the

finite group commute.
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(a) 𝑝 = −10, 𝑞 = −1

(b) 𝑝 = −1, 𝑞 = 1

Fig. 6. The evolution in time of the network of eight devices under DoS
attacks is asymptotically stable

• For any natural number 𝑁 there exists a quasi-Abelian Cay-
ley graph with 𝑁 nodes.
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