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Abstract. This paper addresses the problem of designing secure control for networked multi-agent systems (MASs)
under Denial-of-Service (DoS) attacks. We propose a constructive design method based on the interaction topology. 
The MAS with a non-attack communication topology, modeled by quasi-Abelian Cayley graphs subject to DoS attacks, 
can be represented as a switched system. Using switching theory, we provide easily applicable sufficient conditions for 
the networked MAS to remain asymptotically stable despite DoS attacks. Our results are applicable to both continuous- 
time and discrete-time systems, as well as to discrete-time systems with variable steps or systems that combine discrete 
and continuous times.
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1. INTRODUCTION

The advent of powerful communication technolo-
gies has led to rapid development in cyber-
physical systems, integrating physical plants with
communication networks and computational de-
vices. However, reliance on communication net-
works underscores the need to design control algo-
rithms resilient against malfunctioning communi-
cation links. Periodic interruptions of communica-
tion links may serve as models of malicious attacks,
where adversaries eliminate some communication
links. This phenomenon is known as a Denial-of-
Service (DoS) attack (see, e.g., [1] and references
therein). Thus, there is a need for control algo-
rithms capable of achieving synchronization even
in the presence of temporarily unavailable commu-
nication links.
In recent years, networked security control sub-
ject to DoS attacks has garnered considerable at-
tention (see [2–10] and references therein). Ran-
dom DoS attacks have been considered in [4,9,11],
while multi-agent systems subject to asynchronous
Denial-of-Service attacks have been studied in [2,
5]. A dwell time approach [6, 7] and an event-
triggered mechanism [3, 8, 10] have become effec-
tive strategies for researching secure control under
DoS attacks. In [12–15], a switching approach was
proposed, wherein the authors dealt with the pres-
ence of DoS attacks by considering two modes: sta-
ble and unstable. The control mechanisms designed
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in those papers can effectively mitigate the impact
of frequency- and duration-limited DoS attacks.
In this paper, we propose a switching approach to
address the problem of designing secure control for
networked multi-agent systems (MASs) under DoS
attacks. Unlike previous works, we present con-
structive design conditions based on the interaction
topology of MASs. Specifically, we assume that
the topology of the original network of agents is
described by a quasi-Abelian Cayley graph that is
undirected and connected. This assumption enables
us to consider various models of DoS attacks, in-
cluding stochastic and deterministic, synchronous
(where all communication links are simultaneously
disrupted) and asynchronous (where only part of
the communication links are disrupted each time).
Moreover, since the attacker’s behavior is unpre-
dictable, we do not impose any limitations on the
frequency and duration of DoS attacks.
A characteristic feature of communication networks
is data transmission in packets, where flow is not
continuous. Thus, time intervals between consecu-
tive moments of sending/receiving data arise. Fur-
thermore, these time intervals are not necessarily
constant. If such a network is used for control, the
control algorithm must ensure satisfactory behav-
ior even when receiving data at non-uniform time
intervals. This design requirement motivated our
consideration of MASs with continuous-time and
discrete-time subsystems. Therefore, our results ap-
ply to continuous-time and discrete-time systems,
as well as to discrete-time systems with variable
steps or systems that are combinations of discrete

1

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

THIS IS AN EARLY ACCESS ARTICLE.
This article has been accepted for publication in a future issue of this journal,
but has not been fully edited. Content may change prior to final publication.



Autor(s) Name Last Name

and continuous times.
The main contributions of the paper are summa-
rized as follows. Firstly, in Section 3, we pro-
vide sufficient conditions for switched systems with
continuous-time and discrete-time subsystems to be
asymptotically stable. This result generalizes The-
orem 1 proved in [16] and is consistent with results
presented in [17, 18], however, we do not use the
time scale machinery and the positively regressiv-
ity assumption. Secondly, in Section 4, a switched
system model is built to characterize the behavior
of MAS under DoS attacks. In Theorems 18 and
20, conditions for the asymptotic stability of MASs
under DoS attacks are given using switched sys-
tems. We emphasize that the traditional switch-
ing topologies differ from the changes caused by
DoS attacks. Namely, switching caused by DoS
attacks occurs among the original graph, which
describes non-attack communication topology, and
subgraphs describing different attack modes. Next,
in Section 5, MASs with non-attack communication
topology modeled by quasi-Abelian Cayley graphs
are discussed. In this case, simple conditions ensur-
ing the asymptotic stability of MASs despite DoS
attacks are provided. Further, through examples,
we explain a design method for MASs that achieve
asymptotic stability in a malicious DoS attack en-
vironment. The basic idea is that the original non-
attacked networked MAS should mimic the net of
edges in a respective quasi-Abelian Cayley graph
G. If any communication channel in any quasi-
Abelian Cayley subgraph G̃ of graph G is attacked,
the automatic security system should turn off the
whole block of physical channels modeled by sub-
graph G̃. In such a case, as long as the attacks stay
within the block of communication links modeled
by one of the subgraphs of G, the networked MAS
will continue to work in an asymptotically stable
manner. Since for any natural number N, there ex-
ists a quasi-Abelian Cayley graph with N nodes,
the method described above could be applied to any
multi-agent system with N-agents.

2. PRELIMINARIES

In this paper, the information exchange among
agents is modeled by undirected graphs and the
systems are considered on arbitrary time domains.
Therefore for a convenience of a reader we recall
some notions and facts from graph theory and time
scale calculus. Let G = (V,E) be a weighted com-
munication graph of n agents, with the set of nodes
(vertices) V = {v1,v2, ...,vn} and the set of edges
E ⊆ V ×V . Each edge, denoted by (i, j), means

that there is information flow from agent j to agent
i. Matrix A = [ai j] ∈ Rn×n such that, ai j = 1 if
(i, j) ∈ E and ai j = 0 otherwise, we call the adja-
cency matrix. Matrix L = [li j] ∈ Rn×n with lii =
∑i6= j ai j and li j = −ai j, i 6= j, is called the graph
Laplacian matrix induced by the topology G. By
construction, L has at least one zero eigenvalue with
a corresponding eigenvector 1n = [1, . . . ,1]T . If for
a certain graph G we have that ( j, i) ∈ E for ev-
ery (i, j) ∈ E, then the graph is called undirected.
Clearly, for an undirected graph matrices A and L
are symmetric. Let spec(L) := {λ j : j = 1, ...,n} be
the set of all eigenvalues of L, which are ordered
0 = λ1 ≤ λ2 ≤ . . . ≤ λn for an undirected graph G.
An undirected graph is connected if there exists a
path between any two distinct nodes. For a con-
nected graph we have λ2 > 0, λ2 ∈ spec(L).

In order to analyze a special (practical) case of
our main result we need the following definitions
and facts.

Definition 1. [19] Let H be a finite group and let
S⊆H be a subset. The corresponding Cayley graph
Cay(H,S) has vertex set equal to H. Two vertices
(g,h) ∈ H are joined by a directed edge from g to
h if and only if there exists s ∈ S such that g = sh.
Each edge is labeled to denote that it corresponds to
s ∈ S. If G is a graph such that there exists a group
H and generating set S ⊆ H with G ∼= Cay(H,S),
then G is said to be Cayley.

Remark 2. [19] The Cayley graph Cay(H,S) of
a group H is undirected if and only if S = S−1.
Moreover, if S generates H, then the labeled Cay-
ley graph Cay(H,S) uniquely determines H.

Example 3. [19] If H = Z/nZ and S = {1,−1}
then Cay(H,S) is the cycle on n vertices.

In what follows we assume that S does not con-
tain the identity, so that Cay(H,S) does not contain
any loops. Under this assumption Cay(H,S) is a
connected and undirected regular graph of degree
|S| on |H| vertices (without loops). Inside a single
group one can often find different sets of generators
with the same numbers of elements.
A Cayley graph Cay(H,S) is called quasi-Abelian
if S is the union of some conjugacy of H.

Theorem 4. [20] All quasi-Abelian Cayley graphs
on finite group H have a common basis of eigen-
functions and hence their Laplacian matrices com-
mute.
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3. SWITCHED SYSTEMS WITH CONTINUOUS-
TIME AND DISCRETE-TIME SUBSYSTEMS

Let us consider the switched system that is com-
posed of continuous-time subsystem

ẋ(t) = Acx(t) (1)

and discrete-time subsystem

∆x(t) = Adx(t), (2)

where x(t)∈RN is the state, Ac, Ad ∈RN×N . We do
not assume that the sampling period of system (2)
is constant, it can be a function of time. Moreover,
we do not fix any switching law, that is, arbitrary
switching is possible for the switched system com-
posed of subsystems (1) and (2).
In the sequel, T denotes the time domain of the
considered switched systems. Clearly, T ⊆ R. We
assume that 0 ∈ T is the initial time, and T is un-
bounded above and closed.

Definition 5. The switched system composed of
subsystems (1) and (2) is asymptotically stable on
T if for any initial condition x(0) = x0 the solution
limt→∞ ‖x(t)‖= 0.

To study the stability of switched system com-
posed of (1) and (2) we adopt notions known from
time scales theory [21].

Definition 6. Let t ∈T. The forward jump operator
σ(t) :T→T is defined by σ(t) := inf{s∈T : t < s}.

Definition 7. The graininess function µ(t) : T→
[0,∞] is defined by µ(t) := σ(t)− t, for all t ∈ T.

Let us observe that for continuous-time system
(1), σ(t) = t and µ(t) = 0, while for discrete-time
system (2), σ(t)> t and µ(t)> 0, respectively.

With the introduced notions we may write sub-
system (2) in the equivalent form

x(σ(t)) = (I +µ(t)Ad)x(t), (3)

where I is an identity matrix of dimension N×N.

Example 8. Let a and b be positive numbers, and
consider the switched system consisting of

ẋ(t) = Acx(t), t ∈
∞⋃

k=0

[k(a+b),k(a+b)+a[ (4)

and

∆x(t) = Adx(t) t ∈
∞⋃

k=0

{k(a+b)+a} . (5)

Then T=
⋃

∞
k=0[k(a+b),k(a+b)+a],

µ(t)=

{
0 if t ∈

⋃
∞
k=0[k(a+b),k(a+b)+a[

b if t ∈
⋃

∞
k=0{k(a+b)+a},

and x(t + b) = (I +bAd)x(t) for t ∈
⋃

∞
k=0{k(a +

b)+a}.

We make the following five assumptions on sub-
systems (1) and (3).
Assumption 1: AcAd = AdAc.

Let us observe that under Assumption 1 it holds

eAct(1+µ(t)Ad) = (1+µ(t)Ad)eAct (6)

for any scalar t ∈ T.

Assumption 2: Ac = AT
c and Ad = AT

d .
Observe that under Assumption 2 matrices Ac and
Ad are diagonalizable, and all the eigenvalues of
those matrices are real.
Assumption 3: The graininess function of sys-
tem (3) fulfils 0 < µmin ≤ µ(t) ≤ µmax , where
µmin := mint∈T{µ(t)} and µmax := maxt∈T{µ(t)}.

Let us denote spec(Ac) = {λ c
j : j = 1, ...,N} and

spec(Ad) = {λ d
j : j = 1, ...,N}.

Assumption 4: Ac is Hurwitz stable, that is λ c
j < 0,

j = 1, ...,N.
In order to provide stability conditions for

discrete-time subsystem (3) we have to analyze the
values: |1 + µ(t)λ d

j |, j = 1, ...,N, for t ∈ T with
µ(t) > 0. To this end we consider the function
m(c) := |1+ cλ d |, c ∈ [µmin,µmax]. Observe that:

i) If λ d ≥ 0, then maxµmin≤c≤µmax{|1+cλ d |}= |1+
µmaxλ d |.

ii) If λ d < 0 and µmin ≥ − 1
λ d then,

maxµmin≤c≤µmax{|1+ cλ d |}= |1+µmaxλ d |.
iii) If λ d < 0 and µmin < − 1

λ d then,
maxµmin≤c≤µmax{|1 + cλ d |} = max{|1 +
µminλ d |, |1+µmaxλ d |}.

Assumption 5: Ad that isis stable,
max

λ d
j ∈spec(Ad)

maxµmin≤c≤µmax{|1+cλ d
j |}= δ < 1.

Lemma 9. [22] Let F be a commuting family
of diagonalizable linear operators on the finite-
dimensional vector space V . There exists an or-
dered basis for V such that every operator in F is
represented in that basis by a diagonal matrix.

Lemma 10. [23] If two matrices commute with
each other, every non degenerate eigenvector of one
is also an eigenvector of the other.

Lemma 11. [24] If F⊂Rn×n is a commuting fam-
ily of matrices, then there is a vector v ∈ Cn that is
an eigenvector of every A ∈ F.
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The following Theorem 12 and Theorem 13 pro-
vide sufficient conditions for switched systems with
continuous-time (1) and discrete-time subsystems
(3) to be asymptotically stable.

Theorem 12. Under Assumptions 1–5, the
switched system composed of subsystems (1) and
(3) is asymptotically stable on T.

Proof. First let us observe that for any time T 3
t > 0 we can divide the interval [0, t] in such a way
that t = tc +∑

m
i=1 µ(ti), where tc is the total dura-

tion time for continuous-time subsystems on [0, t]
and ∑

m
i=1 µ(ti) is the total duration time for discrete-

time subsystems on the interval [0, t]. Furthermore,
according to Assumptions 1 and 2, and by Lemmas
9, 10, and 11, one can express the solution to the
considered switched system in the form

x(t) = x0

N

∑
j=1

c jv je
λ c

j tc
m

∏
i=1

(1+µ(ti)λ d
j ), (7)

where x0 = x(0), c j are constants, v j are shared
eigenvectors corresponding to λ c

j and λ d
j . Thus

‖x(t)‖ ≤ ‖x0‖
N

∑
j=1
‖c j‖‖v j‖eλ c

j tc
m

∏
i=1
|1+µ(ti)λ d

j |.

(8)
Now, let us observe that for the fixed j and accord-
ing to Assumptions 4 and 5, we have

eλ c
j tc

m

∏
i=1
|1+µ(ti)λ d

j | ≤ eλ c
j tc δ

m =

= eλ c
j tc e∑

m
i=1 µ(ti) lnδ

µmin ≤ eλ jt ,

where λ j = max{λ c
j ,

lnδ

µmin
} < 0. Proceeding analo-

gously for all j ∈ {1, . . . ,N}, we get

‖x(t)‖ ≤ ‖x0‖
N

∑
j=1
‖c j‖‖v j‖eλ jt ,

where λ j < 0 for all j = 1, . . . ,N. Therefore,
limt→∞ ‖x(t)‖= 0. This completes the proof.

Theorem 13. Let µ(ti) = ai. If ∑
∞
i=1 ai < ∞, then

under Assumptions 1–4, the switched system com-
posed of subsystems (1) and (3) is asymptotically
stable on T.

Proof. Similarly to the proof of Theorem 12 the so-
lution to the considered switched system is given by
(7) and inequality (8) holds. Now, let us observe

that for the fixed j we have

eλ c
j tc

m

∏
i=1
|1+µ(ti)λ d

j | ≤

eλ c
j tc
(

max
µmin≤c≤µmax

{|1+ cλ
d
j |}
)m

= eλ c
j te∑

m
i=1 µ(ti)(−λ c

j +
lnmaxµmin≤c≤µmax {|1+cλd

j |}
µmin

)
.

Proceeding analogously for all j ∈ {1, . . . ,N}, we
get

‖x(t)‖ ≤ ‖x0‖
N

∑
j=1
‖c j‖‖v j‖eλ c

j t ·

· e∑
m
i=1 µ(ti)(−λ c

j +
lnmaxµmin≤c≤µmax {|1+cλd

j |}
µmin

)
.

Since λ c
j < 0, j = 1, ...,N, and ∑

∞
i=1 µ(ti) < ∞, it

follows that limt→∞ ‖x(t)‖ = 0. This completes the
proof.

Example 14. We consider the switched system
composed of

ẋ(t) = Acx(t), t ∈
∞⋃

k=1

[2k +
1
2k ,2

k+1[ (9)

and

∆x(t) = Adx(t) t ∈ {0}∪
∞⋃

k=1

{2k+1}. (10)

Then T= {0}∪
⋃

∞
k=1[2

k + 1
2k ,2k+1] and

µ(t) =


if0 t ∈

⋃
∞
k=1[2

k + 1
2k ,2k+1[

1
2k+1 if t ∈

⋃
∞
k=1{2k+1}

2 1
2 if t = 0.

Then one gets ∑
∞
i=1 µ(ti) = 2 1

2 +∑
∞
i=1

1
2i+1 < ∞.

Note that, Theorems 12 and 13 evidently show
that the stability of the discrete-time subsystem es-
sentially depends on the size of the discrete steps. In
consequence, when the discrete step size is variable
in time, the stability conditions strongly depend on
µmin and µmax.

Remark 15. Theorems 12 and 13 remain true for
more than two subsystems satisfying assumptions of
those theorems.

4. DOS ATTACKS

Let T⊆R be a time-domain such that 0 ∈ T, and T
is unbounded above and closed. Consider a set of N
agents interacting over a communication network.
The interaction topology of the network is repre-
sented by undirected graph G = (V,E) with the set
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of nodes V = {1,2, . . . ,N} and edges E ⊆ V ×V .
We are interested in a very general situation where
DoS attacks could occur on some or all transmis-
sion channels at any time.
Let us define:

• Ψ(i, j)[a,b]T, i < j, as the union of moments of
DoS attacks on edge (channel) (i, j) ∈ E over
[a,b]T;
• ϒ(t) := {(i, j)∈ E | t ∈Ψ(i, j)[0,∞[T} as the set of

edges (channels) which are attacked at time t.

Here and subsequently [a,b]T := [a,b]∩T.

Remark 16. Since edges (i, j) and ( j, i) are seen as
one channel, only edge (i, j) with i< j is considered
and Ψ(i, j) = Ψ( j,i).

Let Θ be a set of all subsets of the set of all con-
nections between every two different nodes in graph
G . In other words, setting E = {(i, j) : 1 ≤ i, j ≤
N ∧ i < j} we can say that Θ is the set of all sub-
sets of the set E and |Θ| = 2|E |. Obviously, ϒ(t),
t ∈ [0,∞[T are elements of Θ. Note that, at a given

time t ∈ [0,∞[T one and only one from 2|E | = 2
|E|
2

possible attacks modes may happen. Hence, to ev-
ery t ∈ [0,∞[T corresponds a unique element of the
set Θ. Now, let A ∈ RN×N be the adjacency ma-
trix of G and L its Laplacian. To describe a DoS
attack at time t we introduce a matrix Lϒ(t) that is
defined as L with ai j = 0 for ( j, i) /∈ ϒ(t). Precisely,
if channel ( j, i) is not attacked at time t, then in
matrix Lϒ(t) we have ai j = 0. By introducing bi-
jection map f : Θ → {1, ...,2|E |} ⊂ N numbering
the elements of set Θ), we define switching signal
κ : T→ {1, ...,2|E |} as κ(t) := f (ϒ(t)). By defini-
tion, κ is piecewise continuous. Consequently, with
the attack mode at t ∈ [0,∞[T, we associate a matrix
Aκ(t) defined by

Aκ(t) := L−Lϒ(t). (11)

A. Stability under DoS attack
Suppose each node of a graph G = (V,E) repre-
sents a dynamic agent with dynamics described by
continuous-time equations

ẋi(t) = pxi(t)+qui(t) , (12)

and discrete-time equation

xi(σ(t)) = xi(t)+µ(t)(pxi(t)+qui(t)) , (13)

where xi(t) ∈ R and ui(t) ∈ R denote the state and
the control input at time t of node i, i = 1, . . . ,N,
respectively. The two parameters p, q ∈ R will be
specified later. We consider the switched dynamics
for each agent and a corresponding switching law is

governed by a particular time-domain T. Namely,
on continuous part of T we deal with equation (12)
while on discrete part of T with equation (13). The
state-feedback distributed control for multi-agent
system composed of (12) and (13) is proposed as
follows

ui(t) =
N

∑
j=1,( j,i)/∈ϒ(t)

ai j(x j(t)− xi(t)) , i = 1, ...,N ,

(14)
where A = [ai j] ∈ RN×N is the adjacency matrix of
graph G describing network of multi-agent system
composed of (12) and (13), ui : T→ R. Accord-
ingly, the network dynamics becomes

ẋ(t) = (pIN−q(L−Lϒ(t)))x(t) , (15)

for continuous-time and

x(σ(t)) =
(
IN +µ(t)(pIN−q(L−Lϒ(t)))

)
x(t) ,

(16)
for discrete-time, where x = [x1, . . . ,xN ]

T . On ac-
count of formula (11), we obtain the switched sys-
tem composed of continuous-time subsystems

ẋ(t) ∈ {(pIN−qAκ)x(t)}κ∈I , (17)

and discrete-time subsystems

x(σ(t))∈ {(IN +µ(t)(pIN−qAκ))x(t)}κ∈I , (18)

that represent multi-agent system system (12)–(13)
under DoS attack.

Below we state conditions on parameters p and
q that guarantee asymptotic stability of switched
multi-agent system (12)–(13) under DoS attacks.
To this end, let us denote spec(Aκ) = {λ κ

j : j =
1, ...,N}, κ ∈ I, and

λmax = max
j∈{1,...,N},κ∈I

λ
κ
j . (19)

Remark 17. Observe that, by formula (11), matri-
ces Aκ are principal submatrices of Laplacian ma-
trix L, it imlpies that λmax is the largest eigenvalue
of L.

Theorem 18. Let Assumptions 1–3 hold for all ma-
trices from the family {Aκ , κ ∈ I}, and one of the
following conditions is fulfilled:

i) if q > 0, then 1
q

(
2

µmax
+ p
)
> λmax,

ii) if q < 0, then p
q > λmax .

Then multi-agent system composed of subsystems
(15) and (16) under DoS attacks is asymptotically
stable provided p ∈

(
− 2

µmax
,0
)

.

Proof. First, let us observe that the matrices Aκ are
positive semi-definite. We notice that λmax > 0; oth-
erwise, all matrices Aκ would have zero entries.
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From inequalityWe begin with assumption i).
1
q

(
2

µmax
+ p
)
> λmax we get

2
µ(ti)

+ p> q ·λ κ
j for all j = 1, ...,N ,κ ∈ I and i≥ 1.

(20)
On the other hand, q > p

λmax
for p < 0, thus

µ(ti)(bλ
κ
j − p)> 0 for all j = 1, ...,N ,κ ∈ I

(21)
and i≥ 1. From (20) and (21) we conclude that

|1+µ(ti)(p−qλ
κ
j )|< 1 , (22)

what together with the observation spec{IN +
µ(ti)(pIN − qAκ)} = {1 + µ(ti)(p − qλ κ

j ) : j =
1, ...,N ,κ ∈ I} means that system (16) fulfils As-
sumption 5. Moreover, one can notice that in
the considered case of assumptions, system (15)
is always asymptotically stable. Indeed, inequal-
ity q > p

λmax
implies that p− qλ κ

j < 0, for all j =
1, ...,N ,κ ∈ I. Since spec{pIN−qAκ}= {p−qλ κ

j :
j = 1, ...,N ,κ ∈ I}, we conclude that system (15)
fulfils Assumption 4. By Theorem 12 we get the
thesis.
Next, let us consider assumption ii): q < 0, then
q > p

λmax
. Since p ∈

(
− 2

µmax
,0
)

, it means that
p− qλ κ

j < 0, for all j = 1, ...,N ,κ ∈ I. It im-
plies that system (15) is Hurwitz stable (Assump-
tion 4 holds). Moreover, from q > p

λmax
one gets

µ(ti)(p−qλ κ
j )< 0, what leads us to

1+µ(ti)(p−qλ
κ
j )< 1 . (23)

Furthermore, observe that qλ κ
j < p+ 2

µ(ti)
, what im-

plies that for all j = 1, ...,N ,κ ∈ I,

1+µ(ti)(p−qλ
κ
j )>−1 . (24)

By inequalities (23) and (24) we conclude that sys-
tem (16) fulfils Assumption 5. By Theorem 12 we
get that multi-agent system composed of subsys-
tems (15) and (16) under DoS attacks is asymptoti-
cally stable, what finishes the proof.

Remark 19. Observe that if q = 0 in system (12)–
(13), then it is enough that p ∈

(
− 2

µmax
,0
)

for the
system composed of systems (15) and (16) to be
asymptotically stable under DoS attacks.

Theorem 20. Let µ(ti)= ai and ∑
∞
i=1 ai <∞. More-

over, let Assumptions 1–3 be satisfied for all matri-
ces from the family {Aκ , κ ∈ I}. If one of the fol-
lowing conditions holds:

i) p < 0 and q≥ 0,
ii) p < 0, q < 0 and p

q > λmax ,

then multi-agent switched system composed of sub-
systems (15) and (16) is asymptotically stable under
DoS attacks.

Proof. We lead the proof only for condition ii)
since condition i) trivially implies the thesis. First
we show that system (15) is Hurwitz stable. As
before, we observe that spec{pIN − qAκ} = {p−
qλ κ

j : j = 1, ...,N ,κ ∈ I}, so it is enough to show
that p− qλ κ

j < 0 for all j = 1, ...,N ,κ ∈ I. Aκ are
positive semi-definite matrices, so λ κ

j ≥ 0 for every
λ κ

j ∈ spec{Aκ}. Moreover, condition p
q > λmax im-

plies that p < λ κ
j q for all j = 1, ...,N ,κ ∈ I. Thus

p−qλ κ
j < 0 only if p,q< 0, for all j = 1, ...,N ,κ ∈

I. The latter means that matrices pIN − qAκ are
Hurwitz stable. Since Assumptions 1–4 are satis-
fied and ∑

∞
i=1 ai < ∞ for µ(ti) = ai, by Theorem 13,

the thesis holds.

5. APPLICATIONS OF CAYLEY GRAPHS TO
DOS PROTECTION

In this section, we assume that the network of
agents’ topology is described by the Cayley graph
G, with the corresponding adjacency matrix A hav-
ing entries of 0 and 1.

Lemma 21. (cf. [25]) If {Aκ , κ ∈ I} is a fam-
ily of matrices given by formula (11), where L is
Laplacian of the Cayley graph, then the following
inequalities hold true:

i) λmax ≥ 1+maxx dx,
ii) λmax ≥ ∑x dx

N−1 ,

where λmax is given by formula (19), dx is the degree
of the vertex x.

Theorem 22. Let Assumption 3 be satisfied and one
of the following conditions holds:

i) if q > 0, then 1
q

(
2

µmax
+ p
)
> λmax,

ii) if q < 0, then p
q > λmax .

Then multi-agent system composed of subsystems
(15) and (16) under DoS attacks is asymptotically
stable provided p ∈

(
− 2

µmax
,0
)

.

Proof. First, let us observe that Assumptions 1–2
are fulfilled since the matrices Aκ ,κ ∈ I correspond
to Cayley graphs and subgraphs. Furthermore, as-
sumptions i) and ii) imply, as shown in Theorem 18,
that Assumptions 4 and 5 are satisfied, so the thesis
holds.

Theorem 23. Let µ(ti)= ai and ∑
∞
i=1 ai <∞. More-

over, let Assumptions 3 be satisfied. If one of the
following conditions holds:

6  
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i) p < 0 and q≥ 0,
ii) p < 0, q < 0 and p

q > λmax ,

then multi-agent switched system composed of sub-
systems (15) and (16) is asymptotically stable under
DoS attacks.

Proof. Again, Assumptions 1–2 are fulfilled for the
matrices Aκ ,κ ∈ I corresponding to Cayley graphs
and subgraphs. Thus, the thesis holds by Theorem
20.

Remark 24. Let us observe that in Theorems 22
and 23, one can use the inequalities provided in
Lemma 21 instead of λmax.

A. Examples

In this section, in order to keep the network work-
ing, we consider the situation, when the deploy-
ment of agents (devices) is modelled by the quasi-
Abelian Cayley graphs Gκ = Cayκ(Hκ ,Sκ), κ ∈ I.
It implies that vertex sets can be any finite simple
non-abelian group. As an example of generators of
such a group, let us consider S1,S2,S3 as follows:
S1 = {e,y,y2,y3,x,xy,xy2,xy3}, S2 = {xy,xy2,xy3},
S3 = {y,y3}. It means that the network consists
of eight cooperating devices (agents). In Figure 1,
we present three graphs G1,G2,G3 that correspond
to generators S1,S2,S3, respectively. Graph G1 il-
lustrates the original communication topology (the
situation without DoS attacks), while by G2 differ-
ent 216 attack modes are modelled and the rest of
28 possible different attack modes by graph G3. It
should be understood as follows: if any communi-
cation channels of the subgraphs G2 or G3 are at-
tacked, the automatic security system should turn
off all the physical channels (between cooperating
devices) represented by all the edges of the corre-
sponding subgraph G2 or G3.

Consequently, there are three matrices: A1 is
the Laplacian matrix of the original communication
topology, A2 that is associated with different 216 at-
tack scenarios, A3 that is associated with the rest of
28 possible attack scenarios. Therefore {Aκ ,κ ∈ I},
I = {1,2,3}, and λmax = 6.

A1 =



6 0 −1 −1 −1 −1 −1 −1

60 −1 −1 −1 −1 −1 −1

−1 −1 06 −1 −1 −1 −1

−1 −1 60 −1 −1 −1 −1

−1 −1 −1 − 061 −1 −1

−1 −1 −1 − 601 −1 −1

−1 −1 −1 −1 −1 − 061

−1 −1 −1 −1 −1 − 601



,

(a) graph G1

(b) graph G2

(c) graph G3

Fig. 1. Three considered situations for the network of eight
collaborating devices.

A2 =



004 0 −1 −1 −1 −1

40 00 −1 −1 −1 −1

0 0 04 −1 −1 −1 −1

0 0 40 −1 −1 −1 −1

−1 −1 −1 − 00041

−1 −1 −1 − 00401

−1 −1 −1 − 04001

−1 −1 −1 − 40001



,

A3 =



2 0 −1 − 00001

0 2 −1 − 00001

−1 − 0000021

−1 − 0000201

02000 0 −1 −1

20000 0 −1 −1

000 0 −1 − 021

000 0 −1 − 201



,

In what follows, we show how to apply The-
orem 22 and Theorem 23 in particular situations.
Namely, we consider two time domains: T1 =

 7
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Autor(s) Name Last Name⋃
∞
k=0[k(0,000003),k(0,000003) + 0,000001] (see

Example 8) and T2 = {0}∪
⋃

∞
k=1[2

k+ 1
2k ,2k+1] (see

Example 14). In the case of T1, we use Theo-
rem 22 with µmax = 0,000002. Since for T2 we
have ∑

∞
i=1 µ(ti) = 2 1

2 +∑
∞
i=1

1
2i+1 < ∞, Theorem 23

is applicable.

Example 25. Let us analyze the situation when
there is no attack in the first interval [0,0.000001].
In the second interval [0.000003,0.000004], at least
one of the physical channels that correspond to
edges in the subgraph G3 is attacked, while in the
next interval [0.000006,0.000007], DoS attack ap-
pears on at least one of physical channels that cor-
respond to edges of subgraph G2. In the interval
[0.000009,0.00001], once again, at least one of the
links in the subgraph G3 is attacked and so on, such
that attacks are launched in any order. It follows
that the switching signal is:

κ(t) =



1 , t ∈ [0,0.000001]
2 , t ∈ [0.000003,0.000004]
3 , t ∈ [0.000006,0.000007]
2 , t ∈ [0.000009,0.00001]
...

,

with the graph presented in Figure 2.

Fig. 2. Switching signal for the system with eight agents
subject to DoS attacks.

The behavior of the network of agents is illus-
trated in Figure 3 and Figure 4. Figure 3 shows
asymptotic stability, when: (a) p = −999999,q =
1
7 ; (b) p = −999999,q = −150000. In Fig-
ure 4 one can see instability, when: (a) p =
−999999,q = −200000; (b) p = −999999,q =
−300000. In both cases, the initial conditions are
x1(0) = 1,x2(0) = 3,x3(0) = 6,x4(0) = 0,x5(0) =
1
2 ,x6(0) = 4,x7(0) = 3

2 ,x8(0) = 5.

(a) p =−999999,q = 1
7

(b) p =−999999,q =−150000

Fig. 3. The evolution in time of the network of eight devices
under DoS attacks is asymptotically stable.

Example 26. In this example, we analyze the situa-
tion when there is no attack at the initial time, and in
the time interval [ 5

2 ,4]. Then in the interval [ 17
4 ,8],

at least one of the physical channels that correspond
to edges in the subgraph G2 is attacked, while in the
interval [ 65

8 ,16], DoS attack appears on at least one
of the physical channels that correspond to edges
in the subgraph G3 and so on, such that attacks are
launched in any order. What follows, the switching
signal is:

8  
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(a) p =−999999,q =−200000

(b) p =−999999,q =−300000

Fig. 4. The evolution in time of the network of eight devices
under DoS attacks that is not asymptotically stable.

κ(t) =


1 , t ∈ {0}∪ [ 5

2 ,4]
3 , t ∈ [ 17

4 ,8]
2 , t ∈ [ 65

8 ,16]
...

,

with the graph presented in Figure 5.
The behavior of the network of agents is il-

lustrated in Figure 6 and Figure 7. Figure
6 shows asymptotic stability, when: (a) p =
−10,q = −1; (b) p = −1,q = 1. In Figure
7 one can see instability, when p = −1,q =
−1. In both cases, the initial conditions are
x1(0) = 1,x2(0) = 3,x3(0) = 6,x4(0) = 0,x5(0) =
1
2 ,x6(0) = 4,x7(0) = 3

2 ,x8(0) = 5.

Fig. 5. Switching signal for the system with eight agents
subject to DoS attacks.

(a) p =−10,q =−1

(b) p =−1,q = 1

Fig. 6. The evolution in time of the network of eight devices
under DoS attacks is asymptotically stable.
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Autor(s) Name Last Name

(a) p =−1,q =−1, zoomed

(b) p =−1,q =−1

Fig. 7. The evolution in time of the network of eight devices
under DoS attacks that is not asymptotically stable.

B. How to apply the presented design method in
practice?

The main idea of applying the presented method
in practice is as follows: the original non-attacked
communication topology of the MAS should mimic
the network of edges in a quasi-Abelian Cayley
graph G with the appropriate number of nodes. In
the case where at least one of the physical channels
corresponding to edges in any quasi-Abelian Cay-
ley subgraph of graph G is attacked, the automatic
security system should turn off the entire block of
communication links modeled by this subgraph.

By applying Theorems 22 or 23, as long as the
attacks stay within the block of physical channels
modeled by any quasi-Abelian Cayley subgraph of
graph G, the entire networked MAS will continue
to work in an asymptotically stable manner.

The crucial factors that guarantee the success of
this design method are:

• Laplacian matrices of quasi-Abelian Cayley
graphs on the finite group commute.

10

• For any natural number N there exists a quasi-
Abelian Cayley graph with N nodes.
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