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Abstract.. To improve the dynamic adaptability and flexibility of process route during manufacturing, a dynamic optimization 
method of multi-process route based on improved ant colony algorithm driven by digital twin is proposed. Firstly, on the basis 
of part manufacturing features analysis, the machining methods of each process are selected, and the fuzzy precedence constraint 
relationship between machining metas and processes is constructed by intuitionistic fuzzy information. Then, the multi-objective 
optimization  function  driven  by  digital twin  is  established  with  the  optimization  objectives  of  least  manufacturing  cost  and 
lowest carbon emission, also the ranking of processing methods is optimized by an improved adaptive ant colony algorithm to 
seek the optimal processing sequence. Finally, the transmission shaft of some equipment is taken as an engineering example for

verification analysis, which shows that this method can obtain a process route that gets closer to practical production.
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1. INTRODUCTION 

With the rapid development of a new generation of 

information technology, communication technology, and 

Internet of Things technology, the manufacturing industry is 

leaping forward in the direction of digitalization, networking, 

and intelligence [1]. The traditional high-volume and large-

scale manufacturing mode has been gradually eliminated, and 

the upgrading of new products is becoming more and more 

frequent. The recent market demand is facing severe 

challenges such as diversification and personalization, small 

batches and multiple varieties, short cycles and fast response 

[2]. The process route of the product stipulates the whole 

process of transforming the blank part into the finished 

product by using the workshop manufacturing resources. A 

scientific and reasonable process route is an important means 

to shorten the production cycle, reduce manufacturing costs 

and improve processing quality. At the same time, it also has 

an important impact on reducing resource and energy 

consumption, mitigating environmental pollution, and 

promoting green and low-carbon development [3-5]. 

Therefore, it has attracted wide attention and is a technical 

difficulty that needs to be solved in the process of 

technological transformation and upgrading of manufacturing 

enterprises. 

The optimization decision of the process route is not only 

affected by manufacturing resources (such as machine tools, 

cutting tools, checking fixtures, and measuring instruments) 

but also restricted by processing methods, process constraints, 

and other factors. At the same time, it is related to product 

types, product batches, design level of technicians, and even 

the limitation of enterprise process habits. So that it becomes 

a very complex and multi-factor constrained non-linear 

planning problem [6,7]. The traditional methods (such as the 

Newton method, integer programming method, gradient 

descent method, and graph theory method) are used to carry 

out process route optimization with defects such as low 

efficiency, time-consuming, poor consistency, and easily 

falling into local optimal solution [8-10]; Moreover, this 

single static process route cannot adapt to the dynamic change 

of enterprise's manufacturing resources, resulting in the 

efficiency of process planning greatly reduced or even invalid. 

In addition, the environmental impact on the manufacturing 
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process is less considered, which cannot meet the 

development needs of low-carbon flexible manufacturing 

[11]. In recent years, with the development of artificial 

intelligence, scholars at home and abroad have proposed a 

variety of optimization algorithms, such as the Hopfield 

neural network, genetic algorithm, grey correlation method, 

ant colony optimization algorithm, tabu search, particle 

swarm optimization algorithm, etc., and achieve a large 

number of research results [12-15]. However, due to the 

defects of each algorithm itself, as well as the comprehensive 

impact of product diversity and dynamic changes in 

manufacturing resource, the use of a single optimization 

algorithm has certain limitations and it is difficult to achieve 

the desired results. So, it is needed to adopt a mixture of 

multiple algorithms or the complementation between 

different optimizing algorithms to improve the optimization 

efficiency. 

With the widespread application of digital manufacturing 

technology, digital twin technology, as synchronous 

interactive feedback between physical entities and virtual 

space, provides a feasible way for the dynamical adjustment 

and optimization of process routes to adapt to manufacturing 

resource changes during production and improve production 

management. Digital twin technology provides a scenario-

aware means for collecting and utilizing of dynamic 

information of process routes, expands the dynamic 

optimization decision-making capability of process routes 

through high-fidelity mapping evolution, data fusion analysis, 

and iterative optimization for decision-making, and meets the 

production management needs of enterprises. 

In the course of process planning, the process knowledge is 

complex, fuzzy, and discrete, and there are fuzzy constraint 

relationships among the process of different processing 

methods, which are suitable for analysis by the fuzzy 

mathematics theory. Intuitionistic fuzzy set, as an important 

extension and supplement of fuzzy set theory, 

comprehensively considers the information of membership, 

non-membership, and hesitation degree of elements [16], 

which is more flexible and objective in analyzing fuzzy and 

uncertain problems. Ant colony algorithm, which simulates 

the foraging behavior of ants, has strong local search ability, 

information positive feedback, distributed computing, and 

other features, and has significant advantages in solving 

combinatorial optimization problems. Taking into account 

this, this paper proposes a multi-process route dynamic 

optimization method based on digital twin technology, 

integrating intuitionistic fuzzy information and an improved 

ant colony algorithm. Intuitionistic fuzzy information is 

utilized to construct the fuzzy constraint relationship between 

machining metas and processes, and then the multi-objective 

optimization function driven by digital twin is established 

with the minimum manufacturing cost and the least carbon 

emission as the optimization objectives. After that, the sorting 

efficiency of processing methods is optimized by an 

improved ant colony algorithm, and the convergence speed is 

effectively improved. Finally, the effectiveness and 

availability of this method are verified by engineering 

examples. 

2. PROBLEM DESCRIPTION 

The optimization of process route is very complex, and its 

optimization variables are sequential rather than regular 

numerical optimization, meanwhile the constraints and 

optimization objectives are difficult to be expressed by 

explicit analytical expressions, which further increases the 

difficulty of solving. 

2.1. Part features and constraints 

The optimization decision of the process route is essentially 

the decomposition and extraction of part manufacturing 

features, and the sequencing optimization of the 

manufacturing process. As a carrier of various information in 

the product development process, manufacturing features not 

only involve geometric topology information of parts but also 

contain non-geometric information required for design and 

manufacturing, such as material information, tolerance 

information, heat treatment information, tool information, 

surface quality information, etc. Usually, part features are 

divided into several categories, such as main features, 

auxiliary features, and management features [17]. There is 

usually an interrelationship between each basic feature, and 

the part can be represented by a feature set as

{ }1 2 mF f , f , , f= , m is the number of features. 

During the part machining process, each part feature can be 

achieved by multiple operations, and the processes that 

complete the machining of all part features constitute a 

processing sequence, in which each machining node is called 

a machining meta and can be described as a six-tuple: 

  , , , , ,ij e i j l rP PI PF PS PM PW PD= . () 

Where ePI  is the machining meta number; iPF  is the part 

feature; jPS  is the machining stage j  of feature i  ; lPM  is 

the method l   available for the feature i   in the machining 

stage j ; rPW is the manufacturing resource r  available for 

the feature i  in the machining stage j ; PD is the clamping 

position of the feature i  in the machining stage j . 

Therefore, the set of machining meta in each machining stage 

of a part can be expressed as  1 2, , ,j j njA P P P= , for ease of 

presentation, the machining stages are expanded and 

constituted as  1 2, , , nA a a a=  , n  is the total number of 

machining meta. When each machining meta performs a 

reasonable allocation and sequencing of manufacturing 

resources under certain constraint conditions, a process route 

will form. A typical process route generation process is shown 

in Fig. 1 as below. 

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



Machining feature 

analysis of part

planes, conical surface, 

holes, grooves, tapered 

edge ......

Determine the location 

reference

rough benchmark、

fine benchmark  

Choose machining 

method

turning, milling, 

planing, grinding, 

boring, drilling ......

Identify manufacturing 

resources

machine tools, cutting 

tools, fixtures  

Divide processing 

stages
rough cutting、semi-

finish machining、

finishing  

Operation sequencing

process constraint 、

optimization objective 

function  

Fig. 1. Generation steps of process route 

The sorting of each machining meta in the process route is not 

arbitrary, it is necessary to consider the constraints of 

processing methods, processing stages, process rules, and 

other factors to ensure the effectiveness of the optimization 

efficiency. Generally, constraints include the following 

aspects:  

1) Benchmark and location constraints: the machining 

features used as the benchmark should be processed first. If 

there are multiple precise datum, the principle of reference 

surface transfer order and gradually improving machining 

accuracy should be abided by for machining processes; when 

there is a location relationship between the machining 

features, the locating feature shall be dealt with first. 

2) Processing stage constraints: from coarse to precise, from 

primary surface to secondary surface. That is, in the order of 

roughing → semi-finishing machining → finishing →
smoothing. At the same time, the main surfaces (working 

surface, assembly surface, etc.) are processed first, and the 

secondary surface (non-working surface, auxiliary surface, 

etc.) should be post-processing. 

3) Non-destructive constraints: the features of post-

processing cannot destroy the properties generated by the 

previous processing. For example, chamfering is earlier than 

thread processing, and groove is processed after cylinder 

processing. 

4) Constraints formed by the feature's own properties: the 

hole expansion or reaming of an inner hole must be processed 

after the drilling of it. 

5) The uniqueness constraint of machine tool and cutting tool: 

each processing can only be carried out on one machine tool, 

and only one cutting tool can be selected for machining 

operation. 

6) Constraints of energy-saving and consumption-reduction: 

under the premise of ensuring machining quality, the 

machining features should be dealt with as many as possible 

for one clamping, and the tool path of each processing should 

be the shortest, which not only shortens the processing time 

but also reduces tool consumption and machine tool wear. 

Among them, 1) to 5) are mandatory constraints, which must 

be satisfied during the dynamic optimization of the process 

route; 6) belongs to selective constraints, which are satisfied 

as much as possible during the dynamic optimization process 

of the process route. Due to the overlapping and fuzziness of 

the constraint relationship between the part features, in order 

to accurately express this state between machining metas, the 

intuitionistic fuzzy information introduced below will be 

adopted to establish the precedence constraint relationship of 

the machining metas. 

2.2. Objective functions 

Usually, in a certain manufacturing environment, the 

manufacturing resources of the actual production process are 

unchanged, that is, under the condition of the machine tool, 

cutting tool, and fixture is known, the variation of them will 

cause changes in processing time, production cost, carbon 

emission, and product quality.  

Therefore, the order optimization of processing methods can 

be carried out by taking the lowest manufacturing cost and 

the least carbon emission as objective functions, namely: 

 min (x) ( ) ( )C MC x CE x= +  () 

Where ( )MC x is manufacturing cost, which mainly includes 

the machining costs of machine tools and cutting tools, as 

well as the changing costs caused by changes in machine tools, 

cutting tools, and fixtures, can be expressed as follows: 

1
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1 1
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Where ,  JC DJ  are the unit machining cost coefficients of 

machine tools and cutting tools respectively. 

,  ,  d d dJC DJ JJ   are the unit variable cost coefficients of 

machine tools, cutting tools, and fixtures respectively. 

1( )i ix ,x +  is the discriminant function [18], which can be 

expressed as: 

 1

1

1

1     ( )
( )

0    ( )

i i

i i

i i

x x
x ,x

x x


+

+

+


= 

=

 () 

( )CE x is the carbon emission, which mainly contains carbon 

emission from energy consumption of machine tools during 

machining, carbon emissions from tool wear, and carbon 

emissions from chip fluid, which can be expressed as follows:  

 
1 1 1

( ) ( Q Q )
n n n

ri i
e i i d i y c y c

i i ii yi

t t
CE x f P t f m f f

T T


= = =

=  +  + +   

 () 

Where ,  ,  e i if P t  are the carbon emission coefficient of 

electric energy, machine power, and corresponding 

machining time during machining, respectively; ,  ,  d i if T m

are the cutting tools’ carbon emission coefficient, tool life, 

and weight, respectively; ,  ,  ,  Q ,  r

y y yi cf f T  are the carbon 

emission coefficient of chip fluid, carbon emission coefficient 
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of chip waste disposal, cutting fluid replacement cycle, 

cutting fluid dosage and cutting fluid concentration, 

respectively. 

In the optimization process, these two objective functions will 

be constrained by each other, and it is difficult to meet their 

optimal conditions simultaneously. The multi-objective 

problem can be transformed by weighted combination 

according to the importance of a single objective function, 

that is, the objective function can be expressed as： 

 1 2min ( ) min ( ) min ( )C x MC x CE x = +  () 

Where
1 2,     are weight coefficients, and

1 2 1 2,  [0,  1],  1    + = . 

In order to eliminate the influence of magnitude on the 

calculation results, the smaller the better type of 

normalization is adopted for ( ),  ( )MC x CE x  , then the 

objective function is converted to: 

 

min
1

max min

min
2

max min

( ) ( )
min ( ) min

( ) ( )

( ) ( )
min

( ) ( )

MC x MC x
C x

MC x MC x

CE x CE x

CE x CE x





−
=

−

−
+

−

 () 

Due to the dynamic nature of manufacturing, the uncertainty 

of the pre-determined process route increases in practical 

application. Therefore, on the basis of information collection, 

the digital twin technology is used to fully consider the 

influence of manufacturing processes and their changes on 

process route optimization in the time dimension, such as 

manufacturing environment, production scheduling, and 

workshop control, and to build a dynamic process route 

optimization framework based on digital twinning as shown 

in Fig. 2. 
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Fig. 2. Dynamic optimization framework of process route based on 

digital twin 

3. HYBRID OPTIMIZATION ALGORITHM 

3.1. Intuitionistic fuzzy information 

Intuitionistic fuzzy set considers three aspects of elements 

information: membership, non-membership, and hesitation, 

which is more flexible and practical in solving fuzzy and 

uncertain decision problems. Usually, the intuitionistic fuzzy 

set is defined as: 

  , ( ), ( )i B i B i iB x x x x X =     () 

B is an intuitionistic fuzzy set of X (a given non-empty set), 

where  : 0,  1B X → ，  : 0,  1B X →   represents the 

membership and non-membership of B respectively, and they 

satisfy  ( ) ( ) 0,  1 ,  B i B i ix x x X +     . In addition, 

 ( ) 1 ( ) ( ) 0,  1 ,  B i B i B i ix x x x X  = − −     is the 

hesitation degree of B . When ( ) 0B ix = , it is obvious that

( ) 1 ( )B i B ix x = −  , then the intuitionistic fuzzy set 

degenerates into a traditional fuzzy set [19]. The elements of

B are called intuitionistic fuzzy numbers and are abbreviated 

as follows for the convenience of calculation: 

 , ( ), ( )B i B ib x x   = =   () 

When determining the constraint relationship between any 

machining meta ijP   by intuitionistic fuzzy information, the 

intuitionistic fuzzy value corresponding to each semantic 

evaluation information should be defined in advance. That is, 

according to membership ( )B ix   given by the semantic 

evaluation information and the hesitation ( )B ix  given by 

the technologist, the intuitionistic fuzzy number is calculated:  

 ( ) ( ),  ( ) ( )i B i B i B i B ib x x x x     = −  +   () 

Where  1  and ,  0,1   + = , ,  and  are the higher 

and lower levels of hesitation, respectively. 

The precedence constraint relationship between machining 

metas is divided into 5 categories, namely, extremely strong 

constraint 1B  , strong constraint 2B  , general constraint 3B  , 

weak constraint 4B , and extremely weak constraint 5B . Each 

constraint type corresponds to an intuitionistic fuzziness with 

hesitation, as shown in Table 1, so that technologists can 

easily find. 

For example, 2(0.3)B  means that two adjacent machining 

metas have strong constraints, and the hesitation given by a 

technologist is 0.3, then the corresponding intuitionistic fuzzy 

value is<0.6, 0.9>. Therefore, it is easy to judge the 

precedence relationship between machining metas, which 

provides free operating space for decision-making, and also 

conforms to the actual status. Obviously, when the hesitation 

given by a technologist is 0, there are two extreme situations, 

namely, mandatory precedence constraint<1, 1> and no 

precedence constraint<0, 0>. 
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Table 1. Fuzzy semantic information and its intuitionistic fuzzy value 

semantic information of precedence constraints intuitionistic fuzzy value The value of  and   

extremely strong constraint
1B  1 ,1 − +  1, 0 = =  

strong constraint
2B  0.75 ,0.75 − +  0.5, 0.5 = =  

general constraint
3B  0.5 ,0.5 − +  0.5, 0.5 = =  

weak constraint
4B  0.25 ,0.25 − +  0.5, 0.5 = =  

extremely weak constraint
5B  0 ,0 − +  0, 1 = =  

3.2. Precedence constraint matrix 

The precedence constraint matrix ( )ij n n
Y y


=  can be 

established from the intuitionistic fuzzy values of machining 

metas. Since the elements
ijy   in matrix Y   belong to the 

interval  0,  1 , it is necessary to use the relevant knowledge 

of fuzzy theory to sort the intuitionistic fuzzy values to obtain 

the accurate fuzzy precedence constraints of all machining 

metas. Let 1 1 1,  b  =  ， 2 2 2,  b  =   as any 

intuitionistic fuzzy value, the probability 1 2( )P b b   of 

1 2b b  is expressed as follows: 

 
1 2 2 1

1 2

1 2

1 2

1 2 1 2

1 2 1 2

max(0, max(0, ))
,  0 ;

( )
1,                                      0,   ;

0,                                       0,  <  ;

L L
L L

L L
P b b

L L

L L

 

 

 

+ − −
+  +

 = 
+ = 

 + =

() 

Where 1 2 1L  = − ， 2 2 1L  = −  [20]. In the obtained 

precedence constraint matrix Y  , the modulus of its row 

vector 
1

n

i ij

j

H y
=

=  is calculated to represent the number of 

processing constraints provided by the machining meta i , and 

the modulus of its column vector
1

n

j ij

i

L y
=

=   is calculated 

to represent the number of processing constraints accepted by 

the machining meta j  . When 0iH   and 0iL =  , the 

machining meta i can be the beginning of a processing route; 

when 0iH =  and 0iL   , the machining meta i  acts as the 

endpoint of a processing route. If 0iH   and 0iL   , the 

machining meta i can be used as the intermediate process of a 

processing route, interspersed between the starting and 

ending operations. 

3.3. Improved ant colony algorithm 

The ant colony algorithm is a simulated evolutionary 

algorithm proposed by M. Dorigo et al [21]. It has been 

adopted to solve combinatorial optimization problems such 

as traveling salesman problems, job-shop scheduling, and 

quadratic programming problems, but it is apt to appear 

premature convergence or stagnation behavior, moreover, it 

costs longer time than some other algorithms. In this paper, 

the adaptability of the optimization process is improved by 

improving the heuristic information function and adjusting 

the volatile concentration of local pheromone and global 

pheromone, so as to be used for the optimization decision of 

the multi-process route. The search procedure is as follows. 

1) Initialization 

At the initial time, ants m   are randomly placed on any 

candidate machining meta corresponding to the roughing 

stage of the manufacturing feature n , and the first element of 

the tabu list is set as the current machining meta node. At this 

time, the pheromone of each path is equal, which is a small 

constant, namely, (0)ijr c= . 

2) Path transition rules 

When ants search all the machining meta, they need to 

determine how to move from the current machining meta i  

to the next machining meta j   according to the transition 

probability function (t)k

ijP . The larger the function value, the 

greater the probability of selecting the next machining meta

j , the formula is as follows [22]: 

    ( )
( ) ( )

, j
( ) ( )( )

0                                  

k

ij ij

k
k

is isij

s allowed

r t t
allowed

r t tP t

others

 

 






        


= 




 () 

 
1

(t)ij

ij jmd d
 =

+
 () 

  1 ( )k ka Tab PF= −  () 

Where (t)ijr is the pheromone between machining meta i and

j   at the moment t  ;   is the information heuristic factor, 

which indicates the relative importance of the trajectory; 
is the expected heuristic factor, which represents the relative 

importance of the heuristic factor; ka  is the set of optional 

machining meta nodes for ant k   at the current moment. 

(t)ij  is the heuristic information function, it is usually taken 

as the inverse of distance transferred from i   to j  . In this 

paper, it is taken as the reciprocal of the sum of manufacturing 

cost and carbon emission between two adjacent machining 

metas, i.e., 1 ( )ij ij ijd MC CE= + . This search method does 

not consider the relationship between the current node and 

endpoint, and is easy to fall into the local optimum. Therefore, 

the distance jmd between the machining meta j and the final 

machining meta m  is introduced into the heuristic 

information function to improve the pertinence of the search. 

If ij jmd d , j is defined as a closer node, otherwise it is a 

remote node. When the ant searches, it only calculates several 
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nodes near the closer node, so as to reduce the calculation 

amount and accelerate the convergence rate. 

At the same time, when the ant k   moves from the current 

machining meta i  to the next machining meta j , it will put 

the nodes that meet the tabu criteria into the tabu list

( )kTab PF , and remove them when selecting. There are two 

types of tabu nodes: one is the processed machining meta 

node, and the other is that does not meet process constraints. 

3) Pheromone update rules 

After each step, the ant k  locally updates the path pheromone 

to avoid falling into the local optimum. Meanwhile, the 

pheromone concentration is limited to the interval
min max[ ,  ]r r  

to prevent it from increasing indefinitely. The local update 

rule of pheromone is as follows: 

 

min min

1 1 max min max

max max

,                

( 1) (1 ) ( ) , 

,                

ij

ij ij ij

ij

r r r

r t r t r r r r

r r r

 

 


+ = − +  
 

() 

Where 1 is the volatilization coefficient of local pheromone, 

( )1 0,  1  。 

When the ant k  traverses all the machining meta nodes of the 

process route once, the pheromone of each path is globally 

adjusted to avoid the pheromone remaining too much to 

annihilate the heuristic information, and to make better use of 

the existing optimal solution. The pheromone global update 

rules are as follows: 

 
2 2

1

( 1) (1 ) ( ) ( )
m

k

ij ij ij

k

r t + r t r t 
=

= − +   () 

 ( )
min(L )

k

ij

k

Q
r t =  () 

Where
2  is the global pheromone volatilization coefficient, 

2 (0,  1)  ; ( )k

ijr t  is information left on the path by ant k  

during this traversal; Lk   is the path of the ant k   between 

time t  and 1t +  . Q   is pheromone intensity, it usually is a 

constant. 

In summary, the flow chart of process routes optimization by 

hybrid ant colony algorithm with intuitionistic fuzzy 

information is shown in Fig. 3. 

4. CASE STUDY AND DISCUSSION 

4.1. Transmission shaft machining information 

In this paper, a transmission shaft part produced by an 

enterprise is considered as an example for analysis and 

verification. The main structure shape, physical dimensions 

and machining accuracy of the part drawing is shown in Fig. 

4, and its material is 40MnB. On the basis of analyzing the 

manufacturing features of this part, the processing methods 

and available manufacturing resources corresponding to each 

manufacturing feature are selected by comprehensively 

considering the factors such as machining quality, processing 

accuracy and manufacturing cost. Feature properties and 

machining methods of this part are shown in Table 2, and the 

available manufacturing resources of machining metas are 

shown in Table 3 and Table 4. 
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Fig. 3. Flow chart of process routes optimization 

 

Fig. 4. The model of a transmission shaft 

In this figure, 1, 7: end face, 2, 3, 5, 6: cylindrical face, 4: 

thread face, 1-1, 7-1: center hole, 2-1, 5-1, 6-1: chamfer, 2-2, 

3-2, 4-2: withdrawal groove, 3-1: flat keyway, 4-1: external 

thread. 
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Table 2. Feature properties and machining methods of part 

Feature 

number 

Dimensions 

and tolerances 

Machining 

methods 
Machining chain 

Optional 

machining tools 

Optional 

cutting tools 

lamping 

points 

f1 20 turning rough turning a1- semi-finish turning a2 M1，M2 T1，T2 6 

f2 
0.023

0.00220 +

+
 turning, grinding 

rough turning a3- semi-finish turning a4- 

rough grinding a5- fine grinding a6 
M1，M2，M5 

T1，T2，

T5，T6 
6 

f3 
0

0.02126 −
 turning, grinding 

rough turning a7- semi-finish turning a8- 

rough grinding a9- fine grinding a10 
M1，M2，M5 

T1，T2，

T5，T6 
6 

f4 M36 turning rough turning a11- semi-finish turning a12 M1，M2 T1，T2 6 

f5 
0

0.02128 −
 turning, grinding 

rough turning a13- semi-finish turning a14- 

rough grinding a15- fine grinding a16 
M1，M2，M5 

T1，T2，

T5，T6 
2 

f6 
0.023

0.00220 +

+
 turning, grinding 

rough turning a17- semi-finish turning a18- 

rough grinding a19- fine grinding a20 
M1，M2，M5 

T1，T2，

T5，T6 
2 

f7 20 turning rough turning a21- semi-finish turning a22 M1，M2 T1，T2 2 

f1-1 B2.5 turning / drilling drilling a23 M1，M6 T1，T7 6 

f2-1 1×45° turning rough turning a24- semi-finish turning a25 M1，M2 T1，T2 6 

f2-2 2×1.5 turning rough turning a26- semi-finish turning a27 M1，M2 T1，T2 6 

f3-1 8N9 milling rough milling a28-fine milling a29 M3，M4 T3，T4 6, 2 

f3-2 2×1.5 turning rough turning a30- semi-finish turning a31 M1，M2 T1，T2 6 

f4-1 -- turning turning screw a32 M1，M2 T2 6 

f4-2 2×1.5 turning rough turning a33- semi-finish turning a34 M1，M2 T1，T2 6 

f5-1 3×45° turning rough turning a35- semi-finish turning a36 M1，M2 T1，T2 2 

f6-1 1×45° turning rough turning a37- semi-finish turning a38 M1，M2 T1，T2 2 

f7-1 B2.5 turning / drilling drilling a39 M1，M6 T1，T7 2 

Table 3. Machine tool information 

Machine tool 

number 

Machine tool 

type 
Power /kW 

Coefficient 

JC 

M1 ordinary lathe 7.5 10 

M2 CNC lathe 11 15 

M3 vertical miller 10 13 

M4 CNC miller 15 20 

M5 grinder 5.5 30 

M6 driller 2 10 

Table 4. Cutting tool information 

Cutting tool 

number 

Cutting tool 

type 

Weight 

/g 

Tool life 

/min 

Coefficient 

DJ 

T1 lathe tool 9 60 11 

T2 lathe tool 10 110 9 

T3 milling cutter 8 240 12 

T4 milling cutter 40 180 15 

T5 grinding tool 650 24 15 

T6 grinding tool 800 15 25 

T7 drilling bit 325 55 8 

In this case, the unit variable cost coefficients of machine 

tools, cutting tools and fixtures are set respectively as:

7,  1,  4d d dJC DJ JJ= = =  . At the same time, the carbon 

emission coefficient of electric energy with machine tool in 

the machining process is 22.41 kgCO e/kWhef = ; the 

carbon emission coefficient of chip fluid is

22.86 kgCO e/Lyf = , the carbon emission coefficient of 

chip waste disposal is 20.2 kgCO e/Lr

yf = , the cutting fluid 

replacement cycle is 43.6 10 minyiT =  , the cutting fluid 

dosage is 15 LcQ =  , and the cutting fluid concentration is

0.04 = . 

4.2. Analysis of optimization results 

According to the fuzzy priority constraint relationship 

between machining metas, the precedence constraint matrix 

is established, and then the improved ant colony algorithm is 

applied for iterative optimization. This algorithm is 

programmed by MATLAB R2016b. The computer 

configuration used for simulation is as follows: Windows 7 

system, Intel (R) Xeon (R) CPU @3.07 GHz, and 8GB RAM. 
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In this experiment, the ant colony number 25m =  , the 

machining meta number 39n =  , the cycle number

max 250N =  , the information heuristic factor 1.0 =  , the 

expected heuristic factor 1.5 =   and the pheromone 

volatilization coefficient
1 20.9,  0.9 = = . At the same time, 

in order to compare the process route optimization method 

proposed in this paper with the conventional method that only 

focuses on manufacturing cost or carbon emissions, five 

groups of different weight combinations are set respectively, 

and the optimized results are shown in Table 5. 

Table 5. Comparison of optimization results 

Optimized values 

Weight coefficients (γ1, γ2) 

(1,0) (0.6,0.4) (0.5,0.5) (0.4,0.6) (0,1) 

MC 
Convergence 148.72 153.56 157.43 162.47 168.13 

Iterations 53 65 76 92 0 

CE 
Convergence 3.87 3.64 3.49 3.27 3.16 

Iterations 0 94 81 70 50 

As can be seen from Table 5 that when the lowest 

manufacturing cost is taken as optimization objective, the 

machine tool and cutting tool with low machining cost 

coefficient are preferred, and the number of machine tool 

changes and the change times of cutting tool are reduced as 

much as possible, so as to reduce the processing time 

accordingly. However, reducing the machining time will 

inevitably increase the cutting amount or the spindle speed of 

machine tool, which leads to an increase in tool wear and 

machine power consumption, resulting in the carbon 

emissions increased. When the lowest carbon emission is 

taken as the optimization goal, the machine tool with less 

power consumption and the processing route with less tool 

wear and less cutting fluid usage during the machining 

process are preferred, but it also causes frequent switching of 

machine and cutting tool, and increases the machining time 

and auxiliary time, which leads to higher manufacturing cost. 

In the process route that considers both manufacturing cost 

and carbon emission, the weight coefficients of 

manufacturing cost and carbon emission can be 

comprehensively evaluated according to product batch, order 

urgency and workshop production conditions, so as to meet 

the dual demands of economic and environmental benefits in 

the production process; However, under normal production 

conditions, when the weighting coefficients of the two are 

equal, the process result is the best. The optimal process route 

of this case is shown in Table 6, in which the number of 

machine tool changes is 2 times, the cutting tool changes 3 

times, and the clamping position changes 10 times. It is better 

than the existing process route of the enterprise, and the 

priority order of each optimized processing meta is as follows. 

21 17 13 11 22 39 1 3 7 2 23 18

14 12 33 35 37 38 36 4 8 30 26 24

25 27 31 34 32 5 9 15 19 6 10 16

20 28 29

a a a a a a a a a a a a

a a a a a a a a a a a a

a a a a a a a a a a a a

a a a

 

Table 6. The optimal process route of low cost and low carbon 

emission 

Feature 

number 
Process content 

Machine 

tool 

Cutting 

tool 

f7,f6,f6,f4 
rough turning of right end 

face and outer circle surface 
M2 T1 

f7,f7-1 
semi-finish turning of right 

end face and center hole 
M2 T1 

f1,f2,f3 
rough turning of left end face 

and outer circle surface 
M2 T1 

f1,f1-1 
semi-finish turning of left end 

face and center hole 
M2 T1 

f6,f5,f4 
semi-finish turning of outer 

circle surface 
M2 T1 

f4-2,f5-1, 

f6-1 

rough turning of run-out 

groove and chamfer 
M2 T1 

f6-1,f5-1, 

f2,f3 

semi-finish turning of 

chamfer and outer circle 

surface 

M2 T1 

f3-2,f2-2, 

f2-1 

rough turning of run-out 

groove and chamfer 
M2 T1 

f2-1,f2-2, 

f3-2,f4-2 

semi-finish turning of 

chamfer and run-out groove 
M2 T1 

f4-1 turning thread M2 T2 

f3-1 milling key slot M4 T4 

F2,f3,f5,f6 cylindrical grinding M5 T6 

The process route of this scheme has included the main 

processes of that part, according to the specific processing 

conditions and technical requirements, some auxiliary 

processes (such as material preparation, blanking, scribing 

process in the previous stage, the intermediate heat treatment 

process, inspection and storage in the later stage) just need to 

add in the scheme so as to constitute an acceptable process 

route that meet the manufacturing cost and carbon emission 

demands. 

5. CONCLUSIONS 

The dynamic optimization decision of process route is a 

nonlinear programming problem with multiple constraints 

and multi-objective. Considering the diversity and ambiguity 

between processes, as well as the subjectivity of a technician 

in decision-making, the digital twin technology is adopted to 

fully consider the influence of manufacturing process and its 

changes on the process route optimization in the time 

dimension. Taking the lest manufacturing cost and the 

minimum carbon emission as the optimization objectives, an 

improved ant colony algorithm integrating intuitionistic 

fuzzy information is used to carry out the global optimization 

of multi-process routes. Finally, the transmission shaft of an 
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equipment is taken as an engineering example to verify the 

effectiveness and feasibility of this scheme, which can 

provide reference for manufacturing enterprises to make 

process optimization decision, and has practical application 

prospect. 

In addition, this method can also be used to solve other similar 

multi-objective optimization problems. But due to the wide 

categories and various structural shapes of parts, the 

expansibility of this method needs to be verified by more 

types of parts. At the same time, the excessive feature 

information and too strong constraint relationship of parts 

may reduce the applicability of this method, which still needs 

follow-up deeper research and verification in the future. In 

addition, the process route optimization should also be 

combined with process parameter selection and production 

scheduling management to adapt to the dynamic change of 

production conditions. 
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