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Abstract
Production problems have a significant impact on the on-time delivery of orders, resulting
in deviations from planned scenarios. Therefore, it is crucial to predict interruptions during
scheduling and to find optimal production sequencing solutions. This paper introduces a self-
learning framework that integrates association rules and optimisation techniques to develop
a scheduling algorithm capable of learning from past production experiences and anticipating
future problems. Association rules identify factors that hinder the production process, while
optimisation techniques use mathematical models to optimise the sequence of tasks and min-
imise execution time. In addition, association rules establish correlations between production
parameters and success rates, allowing corrective factors for production quantity to be cal-
culated based on confidence values and success rates. The proposed solution demonstrates
robustness and flexibility, providing efficient solutions for Flow-Shop and Job-Shop scheduling
problems with reduced calculation times. The article includes two Flow-Shop and Job-Shop
examples where the framework is applied.
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Introduction

Machine breakdowns or other types of problems in
the production system can generate a high percent-
age non-conforming parts realized. Such events may
lead to a part having to be reworked or discarded,
scenarios that in any case cause a delay in produc-
tion compared to the planned schedule. To increase
their competitiveness, companies must be capable of
responding fast to several factors that can compromise
the production process. In this context, it is important
that the scheduling phase can predict such anomalies
to avoid errors in the scheduled dates.

For this reason, Data Mining (DM) approaches have
been used over the years to create scheduling algo-
rithms that are more flexible because they are able to
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consider different aspects when choosing the sequence
of activities. In particular, Association Rules (ARs)
are a powerful tool to support decision-making pro-
cesses, because they are able to find hidden relation-
ships between different parameters in large datasets
(Troncoso-García et al., 2023).

In this context, the present work aims to develop
a self-learning framework that combines ARs and
optimization models to realize a scheduling algo-
rithm capable of considering the probability of non-
conforming items based on several factors. ARs are
used to find correlations between different combina-
tions of production aspects (like the type of article,
type of material or number of parts to be manu-
factured) and the likelihood of good parts realized
present in historical datasets. Depending on the num-
ber and type of parameters chosen to extract ARs,
different levels of ARs were defined with different lev-
els of accuracy. From the results of ARs, the list of
tasks to be scheduled is compared with them to find
one or more rules that describe one or more produc-
tion processes. If there is a match between the task to
be scheduled and the ARs, a corrective factor on the
quantity to produce based on the consequent value
and the success rate is calculated. From the ARs re-
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sults, it is possible to understand if a production pro-
cess with certain characteristics had a higher or lower
success rate based on historical data. Thus, the quan-
tities that will be produced are higher than the ac-
tual demands in order to anticipate future failures
and respect the delivery date. To solve the scheduling
problem, a mathematical model was developed with
the aim of minimizing the makespan value. The pro-
posed scheduling algorithm turns out to be flexible
for both Flow-Shop Scheduling Problems (FSSP) and
Job-Shop Scheduling Problems (JSSP). FSSP and
JSSP are known as NP-hard problems (Babor et al.,
2023), are one of the most difficult combinatorial op-
timization problems. It was considered limited avail-
ability of resources for processing and each machine
has its own matrix setup time.

In the existing literature, numerous scheduling
models integrate Artificial Intelligence (AI) tech-
niques or a DM approach with heuristic methods to
tackle scheduling problems (Zhang et al., 2022). How-
ever, there is a paucity of research employing mathe-
matical models and DM techniques for this purpose.
To fill this gap, the scheduling framework proposed in
this study aims to introduce a novel decision-making
tool that utilizes a data-driven approach and an op-
timisation model. The aim is to achieve a globally
optimal solution to the problem of task sequencing in
an unpredictable production environment.

The manuscript is structured as follows: in Litera-
ture Review there is a literature review about the use
of ARs in scheduling problems. Research Approach
presents the research approach and the framework.
Framework Application presents the application of
the framework. The results and discussion are re-
ported in section Results and discussion. Finally, con-
clusions of the work are reported in Conclusions.

Literature review

In recent years, the research focus on scheduling
problems has significantly increased with the emer-
gence of Industry 4.0. Various methods have been
proposed to address the challenges posed by JSSP or
FSSP. However, the use of DM approaches combined
with the use of mathematical models to solve the se-
quencing problem in this field is relatively limited. To
collect the contributions in the literature on the use
of ARs or DM techniques for solving scheduling prob-
lems, a systematic literature review was conducted.
The renowned scientific database Scopus was selected,
considering articles written in English and having full-
text availability. To stay up to date with the latest

advancements, only articles published between 2019
and 2023 were included in the study. Each article was
thoroughly reviewed to assess its relevance and suit-
ability to the established theme of this research. The
total number of papers retrieved from Scopus, along
with the number of papers selected for the literature
study, are presented in Table 1. The literature review
was conducted by searching for keyword pairs that
would lead back to the topic of the article. Specifi-
cally, “Scheduling”, “Flow-shop scheduling” and “Job-
shop scheduling” were chosen as the first keywords in
order to collect publications that deal with the prob-
lems discussed in this article. Meanwhile, for the sec-
ond keyword, “Association Rules” and “Data Mining”
were chosen in order to study how other authors have
used the same techniques as us to solve scheduling
problems.

Table 1
Selected papers for literature contributions

Keywords Papers
found

Relevant
papers

“Scheduling” AND
“Association Rules” 90 7

“Job shop scheduling” AND
“Association Rules” 2 1

“Flow shop scheduling” AND
“Association Rules” 2 0

“Job shop scheduling” AND
“Data Mining” 17 4

“Flow shop scheduling” AND
“Data Mining” 7 0

An interesting approach to the use of ARs is that
proposed by (Wu et al., 2018) which focuses on an as-
sembly resource planning strategy that uses the Apri-
ori algorithm to mine historical assembly resources
and labour hour data. Similarly, (Farizal & Joelian,
2020) also applied the Apriori algorithm to deter-
mine the optimal engine replacement timing using
DM techniques on heavy equipment engine condi-
tion monitoring data and external parameters. They
used clustering to categorise monitoring data, ARs to
analyse interactions between variables and time series
analysis to estimate the usefulness of condition mon-
itoring.

Nasiri et al. (2019) presents a DM approach that
combines ‘attribute-oriented induction (AOI) and as-
sociation rules (AR)’ techniques to generate an im-
proved initial population for population-based meta-
heuristics in JSSP resolution. The authors used AOI
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to learn rules and knowledge types and the concept
tree obtained from AOI was used as input for ARs.
The ARs were applied to a dataset of optimal or near-
optimal solutions of JSSP instances to identify asso-
ciations between the attribute class of an operation
and its sequence in the solutions. The authors eval-
uated the effectiveness of the proposed procedure by
using the solutions as the initial population for the
Genetic Algorithm (GA) and Particle Swarm Opti-
misation (PSO) and obtained significant performance
improvements.

Qiu et al. (2019) conducted an experiment on a data
mining-based disturbance prediction system for the
workshop schedule. They employed a hybrid algo-
rithm in the DM module to generate a disturbance
tree, which acted as a classifier of disturbances oc-
curring prior to production. The disturbance tree
was then used to classify disturbances and based on
the results of the decision-making process; schedul-
ing was planned in advance to avoid disruptions. In-
stead, Zhao et al. (2022) proposed a reactive schedul-
ing method to manage the uncertainty of the arrival
of new jobs. They used makespan and machine utilisa-
tion as scheduling criteria and divided the production
system period into several sub-criteria. The dynamic
scheduling model assigned dispatching rules to sub-
scheduling periods in real-time.

Habib Zahmani & Atmani (2021) presented an ap-
proach combining DM, GA and simulation techniques
for the JSSP. Data mining was used to identify the
best dispatching rules through a decision tree, which
served as a database for the GA. The GA then created
and evolved the dispatching rule sets and assigned
them to the machines on the shop floor. A simulator
replicated the shop floor environment collected the
data, filled a database with job attributes, and evalu-
ated the rule sets based on the relevant time interval.
Chen (2019) proposed a resource allocation algorithm
based on big data association mining in the context of
cloud computing. This technique extracted resource
ARs from the information management system and
employed adaptive optimal resource allocation control
using ARs as training sets. On the other hand, Wang
et al. (2022) explored the use of ARs in manufactur-
ing systems and applied logic to address production
rule problems between production lines and goods in
the automotive industry.

Analysis of the publications shows that the use of
ARs in combination with optimization algorithms is
present in the literature. However, there are no cases
of self-learning frameworks that combine the use of
ARs with mathematical models for solving scheduling
problems. This paper aims to fill this gap by proposing
a self-learning framework for solving JSSP and FSSP.

Research approach

The algorithm was created in an attempt to find
the global minimum value of makespan in scheduling
production orders. However, the processing time often
does not correspond to what is expected due to er-
rors made during the production phase. Consequently,
it was necessary to use DM techniques such as ARs.
Based on historical data, ARs are used to identify the
relationships between the characteristics that define
the production process and its success rate. Fig 1.
shows a diagram of the working process of the pro-
posed framework.

Fig. 1. Self-learning framework for scheduling program

A preliminary phase of the framework consists of
collecting and cleaning the data of the company under
investigation. This phase determines the overall qual-
ity of the path. Indeed, any irregularities overlooked at
this point can have an impact on the subsequent pro-
cedure. It is necessary to ensure the accuracy of the
collections, combine the various sources and correct
missing values. This process leads to a single dataset
incorporating all relevant sources. The dataset con-
tains information on the percentage of successfully
processed parts for a given production process.

Application of ARs is crucial in order to find a cor-
relation between the percentage of correctly executed
processes and different combinations of factors that
may be the type of material, the type of article and the
quantity to be produced. ARs return different rules
which are defined according to the number of param-
eters considered as antecedents. In “Association rules
definition” this step of the framework will be more
accurately explained.

The sequence of operations to be programmed is
compared with the ARs results. If there is a match
with one or a set of rules, a correction factor is calcu-
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lated on the quantities to be produced to avoid subse-
quent rework and to predict possible anomalies dur-
ing the production process (“Corrective factor calcu-
lation”).

The last step of the framework is the optimization
model for scheduling problems; it is a mathematical
model with the aim of finding the global optimum
solution that minimises the makespan. (“Optimization
Model”). From the outcome of the processing that has
been carried out, the dataset can be enriched with new
data from the production process in order to make the
framework more accurate and create a self-learning
method.

The following paragraphs explain the various stages
of the algorithm in detail.

Association rules definition

ARs are a type of DM technique used to discover re-
lationships between variables or elements in a dataset.
Specifically, ARs analyse transactions in a dataset to
discover patterns of co-occurrence between two main
elements, antecedent and consequent. The consequent
refers to a distinct group of items or attributes that
frequently occur together with the antecedent. The
antecedent, on the other hand, represents a set of one
or more items or attributes that co-occur in a process.
To calculate ARs in a dataset, the first step involves
identifying frequent itemsets, which are collections of
one or more items that appear together. To evaluate
the quality of an AR, in this work, support and con-
fidence are utilized (Fani et al., 2023). For an AR of
the form x → y where x is the antecedent and y the
consequent, the support Supp(x→ y) is calculated as
the number of transactions containing both x and y,
divided by the total number of transactions. Support
represents the probability of encountering both x and
y in a transaction.

For the same AR, the confidence Conf (x → y) is
computed as the support of the rule Supp(x → y)
divided by the support of the antecedent (Supp(x)).
Confidence indicates the likelihood of finding item y
in a transaction that already contains item x. The
Apriori algorithm, developed by (Agrawal & Srikant
(1994), is an early and widely used algorithm for dis-
covering ARs and has gained significant popularity in
the DM community. This algorithm operates on the
concept of frequent itemsets, which are sets of items
(such as objects, products, and words) that occur to-
gether with a certain frequency within a given dataset.

To effectively utilize the Apriori algorithm, it is nec-
essary to define two parameters: minimum support
and minimum confidence. These parameters serve as
thresholds to determine the significance of itemsets

and rules. The algorithm employs a pruning strat-
egy, where infrequent itemsets are removed in order
to reduce computational complexity and enhance per-
formance. By eliminating infrequent itemsets, the al-
gorithm focuses on the most relevant and significant
associations within the dataset.

Based on the data sources available to construct
the case study, specific objectives for the analysis may
be developed, and the ARs can then be retrieved to
solve the specific issue. For instance, one can focus on
drawing connections between the outcomes of specific
workflows and the emergence of problems through-
out the manufacturing stage. The outcomes from this
phase can be used to plan certain corrective actions to
improve the process flow, its reliability, and, as a re-
sult, the timely delivery of the product.

In the proposed framework, ARs were used to dis-
cover hidden relationships between several factors of
the production process and the success rate. A pro-
duction process can be characterized by consider-
ing different aspects, which can be divided into two
groups:
• Constant parameters: These are attributes that re-

main unchanged from one scheduling program to
the next one. They provide a consistent basis for
the production process.

• Variable parameters: These are parameters that
may vary from one machining operation to the
next. They capture the dynamic nature of the pro-
duction process and reflect the changes that occur.

Based on these parameters, groups of ARs can be
formed. Each group consists of an antecedent, which
includes a combination of constant and variable pa-
rameters, and a consequent, which represents the as-
sociated outcome or behaviour like the percentage of
good parts realized. The number of parameters con-
sidered in the antecedent determines the level of the
ARs.

Is possible to define different Association Rule Lev-
els (ARL) based on the number of parameters in-
volved:
• Association Rules Level 1 (ARL1): This level in-

cludes rules that have m + n parameters as the
antecedent, where m represents the constant pa-
rameters and n represents the variable parameters.

• Association Rules Level 2 (ARL2) includes rules
that havem+(n−1) parameters as the antecedent.
One variable parameter is excluded compared to
ARL1.

• . . .
• Association Rules Level n (ARLn): This level in-

cludes rules that have m+1 parameter as the an-
tecedent. Only one variable parameter is consid-
ered as antecedent.
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The classification of ARs at different level help to
find more rules which describe the process with differ-
ent level of accuracy. The more parameters that are
considered as antecedents, the better that process will
be described.

Each ARL can contain multiple groups of rules, de-
pending on the possible combinations of variable pa-
rameters. These levels provide a structured framework
for analysing and understanding the relationships and
patterns within the production process at different
levels of detail. There will be dl possible ARs for a spe-
cific level depending on the combination of parame-
ters you want to choose as antecedents. dl is the bi-
nomial coefficient (1) (Jiménez-Pastor & Petkovšek,
2023) and l is the ARs level being considered.

dl =

(
n

k

)
=

n!

(n− k)! ∗m!
, l ∈ [1, n] (1)

k = n− l + 1 (2)

No of combinations =
n∑

l=1

dl (3)

The total number of possible groups of ARs is ex-
pressed by Equation (3). In this way is possible to
have several groups of ARs with different numbers of
parameters so is easier to find one or a group of rules
that can describe the production process. The authors
propose an example of a dataset in Table 2 where m1
and m2 are two constant parameters that describe
the production process and i1, i2, and i3 are variable
parameters; the last column is the consequent c.

The difference between the several ARL is how the
antecedent is constructed. An example of different
ARL of the data presented in Table 2 is shown in
Fig. 2. At the highest level, the antecedent is com-
posed of all the five parameters that describe the pro-

Table 2
Example of the dataset for the extraction of ARs

m1 m2 i1 i2 i3 c

a b x1 y1 z1 c1

a b x1 y2 z1 c2

a b x2 y1 z2 c3

a b x2 y2 z1 c1

a b x1 y2 z2 c3

a b x3 y1 z1 c1

a b x1 y1 z2 c3

a b x2 y1 z1 c2

a b x2 y2 z1 c3

a b x1 y1 z2 c1

cess (constants + variables). Meanwhile, the ARL2
have as antecedent only four parameters but at this
level, there are three possible combinations of ARs, it
depends on the combination of variables parameters.
At least, the ARL3 have only one variable parame-
ter as an antecedent that describes the process, in
this level, there are three possible combinations too.
It can be seen from Equation (3) that there are seven
possible combinations on which to calculate ARs.

Corrective factor calculation

The results of ARs provide valuable insights into
the probability of success for each production step
based on historical data. This information is cru-
cial in the decision-making process, as it allows for
informed choices regarding production planning and
scheduling.

Fig. 2. Example of different ARL
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By analysing the ARs, it becomes possible to as-
sess the success rate associated with each operation
or step in the production process. If the success rate
is found to be low for a particular step, it indicates
a higher likelihood of interruptions or failures during
that stage. In such cases, it may be advantageous to
adjust the production strategy by producing a larger
quantity to mitigate potential disruptions in the pro-
duction chain.

The next step in the framework involves comparing
the results of ARs with the sequence of operations to
be scheduled. This comparison helps to make more
informed decisions on the sequence of tasks and to
optimise the overall production schedule.

Figure 3. shows a flow chart which explains the ap-
proach used to compare the activities that must be
scheduled and the results of ARs.

The first step is trying to find a set of rules in ARL1
that describe one or more operations to be scheduled.
The first research must be conducted on the high-
est level of ARs results previously calculated because
ARL1 is considering as antecedent all the variable pa-
rameters so rules present in this level characterize bet-
ter the process. If there is a match means that there
has been one or more processes with the same charac-
teristics in the historical data so is possible to see the
success rate and that operation will not be searched
for in the lower levels. If no correlations are found
on the higher level, one will look for them in one of
the possible results of the lower level (ARL2). This
process iterates up to the last calculated level of ARs.

Once a correlation has been found between the op-
erations to be scheduled and a set of rules, a correction
factor is calculated based on the confidence value and
the value of the consequent.

If there are no correlations, it means that there is no
information about the production process in historical
data.

No of part to be manufactured = ni

+
∑
j

ni ∗ (scij) ∗ confj (4)

Equation (4) is used to calculate the correction fac-
tor that must be added to the theoretical demand of
the part to be manufactured. The terms of the equa-
tion are:
• ni represents the units of item i to be realised (cus-

tomer demand).
• sci represents the percentage of non-conforming

parts (1 – consequent).
• confi represents the confidence of the rule article

i→ Succes Rate.
This correction factor helps prevent under-dimen-

sioning during production. For convenience, if the re-
sulting correction factor is not a whole number, it is
rounded up to the nearest whole number.

The sequence of steps described earlier can be ap-
plied to all operations that need to be scheduled.
However, it is advisable to prioritize its application
to the most critical production processes. By focus-
ing on critical processes, excessive and unnecessary
calculation times can be avoided improving overall ef-
ficiency. By incorporating the correction factor into
customer demands and considering the specific needs
of each production process, more accurate and reli-
able scheduling can be achieved. This approach helps
in reducing the risk of under-dimensioning and assures
a smooth and efficient production workflow.

Fig. 3. Research of a match between ARs results and sequence of operation to be scheduled
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Optimization model

This section presents in detail the mathematical
model that implements the Scheduling Problem (SP)
to find the optimal solution for resource allocation.
The proposed model is applicable for JSSP and FSSP
with the assumption that a machine can only process
one article at a time and an article can only be pro-
cessed by one machine at a given time instant. There
is no constraint on the availability of material and
human resources at instant zero.

A typical SP is described by the allocation of a set
of jobs J to a group of machines M and the various
article to be manufactured can be composed by a set
of different materials O.
• j ∈ J , the elements and set of jobs.
• s ∈ S, the elements and set of jobs that have al-

ready started but not yet completed at the time
of scheduling.

• m ∈M , the elements and set of machines.
• o ∈ O, the elements and set of materials.
• (i, n) ∈ [1, len(J)] indices for range of set J .
• (k, v) ∈ [1, len(M)] indices for range of set M .
• (y, z) ∈ [1, len(O)] indices for a range of set O.
A single task to be scheduled can be characterized

by the triad (j,m, o): product j with material o pro-
cessed on the machine m.

Table 3 shows how the information of the task
(j,m, o) is structured: for each task is reported in-
formation about the duration for single part produc-
tion, any precedence constraints, customer demand
and the percentage of completion. This last column is
necessary because, at the instant of the schedule, it is
possible that activities are already in progress.

It is important to know the set-up time necessary
to pass from the production of ji with material oy to
article jn with material oz in machine mk for every
(j,m, o) to be scheduled. The group of all set-up times
is indicated with:
• tji,mk,oy,jn,oz ∈ T , elements and set of set-up times

for machine mk.
Every task to be scheduled is characterized by two
decision variables:
• durj,m,o = duration of task j-th on machine m-th

with o-th material.

• startj,m,o = time to start of task j-th on machine
m-th with o-th material.

The proposed mathematical model for solving the
scheduling problem is illustrated below.

The aim of this optimization problem is to minimize
the makespan value (Equation (5)). The makespan is
a metric used in task scheduling and planning prob-
lems and it indicates the total amount of time required
to complete all tasks in a work schedule or production
system. The proposed model has different constraints
(Equations (6)–(10)).

minimize(makespan)
= minimize(max) ∀ z{∈ R|
z = startj,m,o + durj,m,o,∀(j,m, o) (5)

startj,m,o ≥ 0 (6)

durj,m,o ≥ 0 (7)

startj,m,o + durj,m,o ≤ makespan (8)

startji,mk,oy + durji,mk,oy ≤ startji,mv,oy ;

for
(
xji,mk,oy

)
= prec(xji,mv,oy )

(9)

starts,m,oy + durs,m,oy ≤ startj,m,o (10)

[startji,mk,oy + durji,mk,oy+

tji,mk,oy,jn,oy ≤ startjn,mk,oz ]

∨
[startjn,mk,oz + durjn,mk,oz+

tjn,mk,oz,ji,oz ≤ startji,mk,oy ]

(11)

Equations (6) and (7) are used to specify that the
duration and start time must be non-negative num-
bers and (8) requires that the end time of a single
activity must be equal or less than makespan. The
constraint Equation (9) says that an activity cannot
begin if the activity preceding it has not been com-
pleted; it is an equation that refers to those activities
subject to precedence constraints with other activi-
ties. Meanwhile, Equation (10) serves to give prece-
dence to tasks that have a higher percentage of com-
pletion than other tasks to be performed on the m-
th machine, this is because it has been assumed that
a task cannot be stopped if it has already begun.

Table 3
Example of a task structure for scheduling

Task (job, machine, material) Dur Prerequisite Task Demand % Complete

(‘Job1’, ‘M1’, ‘material1’) 10 None 4 100

(‘Job1’, ‘M2’, ‘material1’) 12 (‘Job1’, ‘M1’, ‘material1’) 4 20

(‘Job1’, ‘M3’, ‘material1’) 3 (‘Job1’, ‘M2’, ‘material1’) 4 0
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A disjunction equation is a type of equation that
contains at least two expressions separated by the
word ‘or’. The objective of solving a disjunction equa-
tion is to find all values that satisfy at least one of
the two equations separated by the word ‘or’. Equa-
tion (11) describes the behaviour whereby if a ma-
chine is engaged in a machining operation, it cannot
start an activity on another item until the previous
activity has been completed. Thanks to this expres-
sion there is no possible overlapping of the activity in
the scheduling program.

Regarding the availability of machines is necessary
to introduce a machine availability calendar in which
it is stated day by day whether the day is working or
not and at what times the machines are available as
shown in Table 4. The last column is a binary number
indicating whether the day is a holiday with 0 and
whether the day is a working day with 1.

Table 4
Machine availability calendar

M
on

th

D
ay

H
_
st
ar
t

m
in
_
st
ar
t

m
in
_
av
ai
la
bl
e

W
or
k_

da
y

5 1 6 0 0 0

5 2 6 0 960 1

5 3 6 0 960 1

. . . . . . . . . . . . . . . . . .

5 31 6 0 960 1

Framework application

The proposed framework was tested in different sce-
narios, to give the reader a clear understanding of the
algorithm and an idea of its robustness, two exam-

ples are given. The first refers to a classic job shop
scheduling problem while the second to a flow-shop
scheduling problem. In order to compare better the
two proposed scenarios, a configuration with 5 arti-
cles that must be manufactured on 5 machines is pre-
sented. Next, the results in terms of calculation times
will be shown for different scenarios in which various
factors are varied, such as the number of machines,
the number of articles to be processed, the number
of operations to be scheduled, the number of correla-
tions found between the activities to be planned and
the calculated ARs. The list of tasks to be scheduled
is shown in Table 5 and the scheme of the JSSP is
illustrated in Fig. 4.

Fig. 4. Job-Shop scheme

Job-shop scheduling problem

The proposed JSSP, a classic NP-hard problem, is
shown in Fig. 4. Part of the list of tasks to be sched-
uled is shown in Table 5.

The proposed JSSP consists of 5 articles to be pro-
duced on 5 machines with 4 different types of materi-
als.

The next step is to search if similar processes ex-
ist in the historical data. For this purpose, ARs were
used and to optimise the calculation time of the algo-
rithm, a good strategy is to search for past production
anomalies only for the critical process. This strategy
thus makes it possible to avoid increasing the calcula-
tion time by analysing established processes that do
not generate faults. In this case, in order to make the

Table 5
Tasks to schedule in the Job-Shop plant

ID Task (job, machine, material) Dur Prerequisite task Demand % complete

1 (Job1, Machine1, Material 1) 10 None 10 5

2 (Job1, Machine2, Material 1) 10 (Job1, Machine1, Material 1) 10 0

. . . . . . . . . . . . . . . . . .

24 (Job5, Machine5, Material 2) 15 (Job5, Machine1, Material 2) 3 0

25 (Job5, Machine3, Material 2) 8 (Job5, Machine5, Material 2) 3 0
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example clearer, Machine 2 has been assumed to be
the most critical of the path, and therefore the extrac-
tion of ARs will only be done for this process. If there
are several critical processes within a production pro-
cess, the extraction of ARs will also be done for the
other processes.

Flow-shop scheduling problem

The FSSP proposed is illustrated in Fig. 5. In this
case, all 5 items to be scheduled must be processed
on the same 5 machines in the same order. This last
aspect is the difference between FSSP and JSSP.

Fig. 5. Flow-Shop scheme

In order to be able to compare the calculation times
of the algorithm in the case of FSSP and JSSP, the
same number of articles (5), the same number of ma-
chines (5) and the same number of available mate-
rials (4) were used and the manufacturing time for
each process is the same for both the problems. Cus-
tomer demand and unit production themes were left
unchanged in both cases. Table 6 reports part of the
tasks to be scheduled.

For both cases, the set-up time matrices for the five
machines are the same and the Machine 2 process was
considered as the most critical in the path.

Association rules application

In these cases, the ARs are calculated to find the
correlation between the characteristic of the Machine

2 operation and its success rate. Five parameters were
considered to describe the process, divided as follows:
• Type of process (Machine 2) and period of the year

(May) were assumed as constant parameters.
• Type of article, type of material and number of

parts to be manufactured as variable parameters.
According to Equation (3) is possible to consider

seven combinations of parameters that can describe
the Machine 2 process divided into three levels of ac-
curacy. Fig. 6 shows the difference between the an-
tecedents chosen for the different levels of ARs.

In the present case study ARL1 is defined as the
set of rules that describe the Machine 2 process with
all the five parameters (type of process, period of the
year, type of article, type of material and number of
parts to be manufactured) as antecedent and the suc-
cess rate as consequent.

ARL2 is composed of three groups of ARs that have
different combinations of parameters as antecedents:
• ARL21: have as antecedent the type of process

(Machine 2 process), month (May), type of arti-
cle and type of material.

• ARL22: have as antecedent the type of process
(Machine 2 process), month (May), type of arti-
cle and number of parts to be manufactured.

• ARL33: have as antecedent the type of process
(Machine 2 process), month (May), type of ma-
terial and number of parts to be manufactured.

In the same way, ARL3 have three groups of ARs
too characterized in the following way:
• ARL31: have as antecedent the type of process

(Machine 2 process), month (May) and type of
article.

• ARL32: have as antecedent the type of process
(Machine 2 process), month (May) and type of
material.

• ARL33: have as antecedent the type of process
(Machine 2 process), month (May) and the num-
ber of parts to be manufactured.

To extract the ARs from the dataset was used Mlx-
tend library (Raschka, 2018), an open-source library
used in Python 3.8.10.

Table 6
Tasks to schedule in the Flow-Shop plant

ID Task (job, machine, material) Dur Prerequisite task Demand % complete

1 (Job1, Machine1, Material 1) 10 None 10 5

2 (Job1, Machine2, Material 1) 10 (Job1, Machine1, Material 1) 10 0

. . . . . . . . . . . . . . . . . .

24 (Job5, Machine4, Material 2) 4 (Job5, Machine3, Material 2) 3 0

25 (Job5, Machine5, Material 2) 15 (Job5, Machine4, Material 2) 3 0
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Fig. 6. Structure of antecedents and consequents of different ARL

For each level, the first step is to find the most fre-
quent sets in the dataset. The minimum support and
minimum confidence threshold is set to min_support
= 0.005 and min_confidence = 0.000. These two val-
ues are set low to try to find all possible rules to better
identify the process, as the size of the dataset is not
large enough. It is of interest to be able to appropri-
ately define time intervals for updating the database.
In this way, it will also be possible to define when it
is appropriate to update the new ARs. In fact, since
these are data-driven processes, it is essential that the
results of the analyses are up to date, with a view to
being able to adapt production as promptly as pos-
sible. Given that there is no time interval defined by
the state of the art, it makes sense to propose a time
interval of at least one month between successive up-
dates. This allows the company time to assimilate the
new suggestions provided by the data-driven analy-
sis and, at the same time, does not leave too wide
an interval that would compromise the validity of the
results themselves.

Part of the results of ARs for the seven levels pre-
sented are shown in Table 7. The total number of
rules found, based on available historical data, is 528
divided into the three accuracy levels of ARs.

For example, line 502 of Table 7 describes the Ma-
chine 2 process in May with only one article to be
produced and the 100% of good parts realized have
a support of 0,31. That means that this pair of events
is present in 31% of the transaction. Confidence value
explains that with 85% the Machine 2 process de-
scribed in line 502 has a success rate of 100%. Line
501 presents the same antecedent but a different con-

sequent. Rule 501-st has a support value of 0,074 so
is less frequent than the rule in lane 502. Confident
value tells that the 15% of probability that the process
describes in lane 501 has a 0% of success rate.

Corrective factor calculation

From the ARs results, it is possible to understand
the percentage of good parts produced for a spe-
cific working condition of the Machine 2 process with
a given confidence value. To avoid having to carry
out rework that would lead to an excessive increase in
time to market, a correction factor on the quantity to
be produced was calculated. The first step is to try to
identify a set of ARs that can describe the tasks that
must be scheduled.

The list of the tasks which must be scheduled (Ta-
ble 5 and Table 6) and the results of ARL1 were com-
pared in order to find one or more rules that charac-
terize a specific Machine 2 process. If there is a match,
a corrective factor on the quantity to be produced will
be calculated according to the consequent and confi-
dence values. In the event that there are no rules in
ARL1 with the same antecedent compared to the pa-
rameters of a specific Machine 2 process that must be
scheduled, other rules will be searched for in one of the
three groups forming ARL2. Again, if there is a match
between a task to be scheduled and rules present in
one of the ARL2 groups, the corrective factor will be
calculated, otherwise, the search for potential rules
will be carried out in the lower level, ARL3. If there
are no matches in ARL3 either, it will mean that there
is no historical record of the Machine 2 process with
the selected parameters.
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Table 7
Part of results from each ARL

Level Antecedent Consequent Support Confidence

1 ARL1 Machine2/May/Product 1/Material 1/NP5’ 0 0.006369 1

2 ARL1 Machine2/May/Product 4/Material 1/NP1’ 100 0.003299 0.333333

3 ARL1 Machine2/May/Product 5/Material 3/NP1’ 100 0.019849 0.25

. . . . . . . . . . . . . . . . . .

155 ARL21 Machine2/May/Product 1/Material 4’ 25 0.0069427 0.333333

156 ARL21 Machine2/May/Product 5/Material 3’ 33 0.0029325 0.5

157 ARL21 Machine2/May/Product 4/Material 1’ 100 0.0093253 0.8

. . . . . . . . . . . . . . . . . .

220 ARL22 Machine2/May/Product 1/NP5’ 60 0.0025161 0.666667

221 ARL22 Machine2/May/Product 2/NP3’ 67 0.019563 0.75

222 ARL22 Machine2/May/Product 2/NP8’ 100 0.0052141 1

. . . . . . . . . . . . . . . . . .

289 ARL23 Machine2/May/Material 1/NP3’ 33 0.0295612 1

290 ARL23 Machine2/May/Material 3/NP6’ 83 0.0094215 0.666667

291 ARL23 Machine2/May/Material 4/NP1’ 0 0.0076124 0.333333

. . . . . . . . . . . . . . . . . .

390 ARL31 Machine2/May/Product 2’ 50 0.031251 0.235294

391 ARL31 Machine2/May/Product 2’ 25 0.0041252 0.058824

392 ARL31 Machine2/May/Product 1’ 83 0.012523 0.25

. . . . . . . . . . . . . . . . . .

452 ARL32 Machine2/May/Material 1’ 100 0.0195251 0.05

453 ARL32 Machine2/May/Material 3’ 75 0.0096122 0.235294

454 ARL32 Machine2/May/Material 4’ 100 0.0305215 0.471321

. . . . . . . . . . . . . . . . . .

501 ARL33 ’Machine2/May/NP1’ 0 0.07432 0.15

502 ARL33 ’Machine2/May/NP1’ 100 0.31273 0.85

. . . . . . . . . . . . . . . . . .

528 ARL33 ’Machine2/May/NP3’ 67 0.092412 0.333333

Table 8 shows all the correlations found for the Ma-
chine 2 process between the list of tasks that must be
scheduled (Table 5 and Table 6) and the results of the
different levels of ARs (Table 7).

The first line highlights a correlation between the
task on Product 1 and one rule present in ARL1. That
rule has a consequence value of 75% of success rate
with a confidence of 1. Thanks to this value is possi-
ble to calculate the corrective factor based on Equa-
tion (4).

No of part to be manufactured = 10

+ (10 ∗ 0.25 ∗ 1) = 10 + 2.5 = 13

In this case, decimal numbers are rounded up.

Instead, lines 2 and 3 show two rules in ARL2 that
characterise the process for Product 2. This means
that in ARL1 there was no rule describing such a pro-
cess while a group of ARL2 did. Thus, the corrective
factor will be the contribution of two rules:

No of part to be manufactured
= 10 + [(4 ∗ 0.5 ∗ 0.5) + (4 ∗ 0 ∗ 0.5)]
= 4 + 1 + 0 = 5

Mathematical model application

The mathematical model illustrated in Section 3.3
was used to solve both the FSSP and the JSSP. The

66 Volume 14 • Number 4 • December 2023



Management and Production Engineering Review

Table 8
Correspondence between ARs and the task to be scheduled and its correction factor

ID ARL Antecedent
Consequent
(Succes rate)

Confidence Corrective
factor

1 ARL1 (Machine 2, May, Product 1, Material 1, NP10) 75% 1 3

2 ARL21 (Machine 2, May, Product 2, Material 2) 50% 0.5 1

3 ARL21 (Machine 2, May, Product 2, Material 2) 100% 0.5 0

4 ARL22 (Machine 2, May, Product 3, NP5) 0% 0.25 1

5 ARL22 (Machine 2, May, Product 3, NP5) 100% 0.75 0

6 ARL22 (Machine 2, May, Product 4, NP5) 0% 0.33 2

7 ARL22 (Machine 2, May, Product 4, NP5) 100% 0.66 0

8 ARL31 (Machine 2, May, Product 5) 0% 0.5 2

9 ARL31 (Machine 2, May, Product 5) 100% 0.5 0

output of this phase consists of the scheduling plan
with the related Gantt charts shown in Fig. 7 and
Fig. 8. The figure shows a double Gantt diagram in
which the first shows the schedule from the point of
view of the articles, while the second shows the se-
quence of articles to be processed by each machine.

The proposed algorithm finds the minimum
makespan value to realize a list of tasks and a correla-
tion between the list of activities to be scheduled with
relative historical data on a given production process.

The framework was tested on a computer with pro-
cessor Intel 12th Gen Intel(R) Core(TM) i9-12900KF
3.20 GHz and 32 Gigabytes RAM and ‘gurobi’ as
solver.

Concerning the JSSP, the algorithm returns the
global optimum solution to the makespan value min-
imisation problem (760 minutes) in 1.39 seconds.
With regard to the FSSP, both the makespan value
(919 minutes) and, above all, the calculation time,
which amounts to 1.41 seconds, are superior.

Fig. 7. Gantt chart relative to the JSSP
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Fig. 8. Gantt chart relative to the FSSP

Once the scheduled products have been produced,
the results of the machining will be entered into the
database from which ARs are calculated so as to
always provide continuous data and create a self-
learning cycle.

Results and discussion

Determining and controlling the probability of suc-
cess of one or more processes in an unstable produc-
tion environment is of crucial importance to optimise
the development of an accurate production planning
program.

To comprehensively identify the connections among
various factors and causes that influence the produc-
tion program, ARs offer a suitable analysis approach
for examining the parameters of the scheduling pro-
cess. By considering both constant antecedents (at-
tributes that remain unchanged throughout) and vari-
able antecedents (attributes that may vary across ma-
chining operations), the algorithm presented in Sec-
tion 3.1 allows managers to assess the probability of
success of a given production process.

The extraction of ARs is influenced by the defined
support and confidence levels. Setting a threshold
greater than 0 may lead to the exclusion of certain
rules, particularly those with a lower probability of oc-
currence. The significance of this parameter becomes
more pronounced as the dataset size increases since
the number of association rules to be mined directly

impacts the algorithm’s efficiency.
Using the results obtained from the ARs, it was pos-

sible to launch a scheduling plan that considers the
high probability of non-conforming parts in a given
process, thus suggesting a higher quantity to be pro-
duced based on historical data. This allows companies
to meet delivery times in more detail, avoiding the
need to frequently change the scheduling plan due to
production problems. As far as calculation time is con-
cerned, the two theoretical cases illustrated in the pre-
vious section show that in both cases calculation times
are very low and can therefore also be implemented
in real business cases. Table 9 shows the calculation
times for different scenarios assumed. The first column
shows the characteristics of the problem in terms of
the number of products to be scheduled and the num-
ber of machines required for processing. The fourth
column shows the number of total operations to be
scheduled, while the third column shows the number
of ARs found. Finally, the last two columns show the
calculation times for the FSSP and JSSP problems.

Note how the calculation times remain very low
(< 10 seconds) for all proposed problems with an in-
crease in these times as the complexity of the problem
increases.

The realization of a self-learning framework that
combine a level structure of ARs with mathematical
models for scheduling production orders is a novelty in
literature. The level structure of the ARs guarantees
different levels of accuracy of the solution depending
on the availability of data. This aspect provides good
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Table 9
Calculation times for problems of varying complexity

Test
(no articles

×
no machines)

No
rules

No
operations

FSSP
time
[s]

JSSP
time
[s]

Test (3× 3) 5 9 1.16 1.15

Test (5× 3) 4 15 1.34 1.25

Test (7× 3) 12 21 1.83 1.73

Test (9× 3) 25 27 3.92 8.31

Test (3× 5) 5 15 1.19 1.18

Test (5× 5) 6 25 1.42 1.39

Test (7× 5) 4 35 1.64 1.99

Test (9× 5) 17 45 3.19 8.76

Test (3× 7) 5 21 1.37 1.17

Test (5× 7) 7 35 1.51 1.41

Test (7× 7) 12 49 2.44 2.68

Test (9× 7) 10 63 3.81 4.62

Test (3× 9) 5 27 1.28 1.31

Test (5× 9) 13 45 1.7 1.41

Test (7× 9) 21 63 4.33 3.57

Test (9× 9) 17 81 8.78 7.41

flexibility and robustness to the framework because it
can also be applied to industrial realities where very
large amounts of data on the production process are
not available. Also, the possibility to update the AR
extraction dataset with new production data allows
for ever better levels of accuracy of the solution, in-
creasing the overall performance value.

The proposed algorithm lends itself well to indus-
trial applications due to its robustness and flexibility,
but above all due to the low computation times found
in different configurations of the scheduling problem.

Conclusions

This paper proposes a self-learning framework able
to schedule production orders considering, from his-
torical company data, the success rate of one or more
stages of the production process. ARs are used to find
correlations between a combination of different pa-
rameters about the production process and the suc-
cess rate. Based on the activities to be scheduled,
a set of ARs was searched for that best describes
the production process. If among the various levels

of ARs, there was one or more rules that described
the process, a demand correction factor was calcu-
lated. This correction factor is calculated as a function
of the confidence value of the rule and the percent-
age of good pieces realised. To solve the scheduling
problem, the authors propose a mathematical model
to find the global optimal solution which minimizes
the makespan. In the modern company, the manage-
ment of the production process has a strategic impor-
tance. The ability to predict errors during one or more
stages of the production process is of fundamental im-
portance, especially in decision-making processes sup-
porting the production planner. The proposed frame-
work assists the production planner in due fundamen-
tal steps: risk analysis in the production process and
scheduling of production orders using a mathematical
approach. This approach increases the possibility of
being able to deliver a production batch on time and
avoid delays caused by non-conformities during the
production process.

The main limitation of this work concerns the in-
formation contained in the dataset used for the ex-
traction of ARs. The more information one has about
a given production process or the entire production
line, the better one can characterise the process un-
der investigation through the use of ARs.

Another missing information concerns the availabil-
ity of raw materials and semi-finished products in
stock that can help in the decision-making process to
understand the real quantity that can be produced.

Further development may consider these two im-
portant aspects, the first one is to try to describe
the production process more accurately. On the other
hand, stock availability is important in order to con-
sider the real availability of material and thus to un-
derstand whether the quantities to be produced sug-
gested by the correction factor are possible. Future
development will be to compare the results obtained
in terms of solution quality and calculation time with
other DM or AI techniques. One could envisage re-
placing the mathematical model, which requires high
computation times for large problems, with an AI ap-
proach such as Reinforcement Learning algorithms, so
that a scheduling program can be realised in real-time
or near real-time, even for more complex problems.
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