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Abstract. Optimization of industrial processes such as manufacturing or processing of specific materials is a point of interest 
for many researchers, and its application can lead not only to speeding up the processes in question, but also to reducing the 
energy  cost  incurred  during  them.  This  article  presents  a  novel  approach  to  optimizing  the  spindle  motion  of  a  computer 
numeric control (CNC) machine. The proposed solution is to use deep learning with reinforcement to map the performance of 
the Reference Points Realization Optimization (RPRO) algorithm used in industry. A detailed study was conducted to see how 
well  the  proposed  method  performs  the  targeted  task.  In  addition,  the  influence  of  a  number  of  different  factors  and 
hyperparameters  of  the  learning  process  on  the  performance  of  the  trained  agent  was  investigated.  The  proposed  solution 
achieved very good results, not only satisfactorily replicating the performance of the benchmark algorithm, but also, speeding 
up the machining process and providing significantly higher accuracy.
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1. INTRODUCTION 
The ability to carve parts of complex shapes with high 
accuracy not only allows the creation of robots capable of 
performing many tasks, but also enables the development of 
technology. For a long time, therefore, computer numeric 
control (CNC) machines has been the subject of many studies 
[1], [2]. Fields being developed include general machine 
control [3], estimation, and minimization of machining errors 
[4], [5]. The topic attracting the most attention is spindle 
motion path planning and determination of spindle motion 
control signals in successive time steps [6], [7], [8], [9], [10], 
[11], [12], [13], [14], [15]. Artificial intelligence methods 
actively developed recently are also eagerly used for the 
previously mentioned tasks [16], [17], [18], [19], [20]. A lot of 
attention has also been paid by researchers to the 
reinforcement learning (RL) algorithm [21], which, due to its 
versatility, can be applied to various types of control tasks 
[22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], 
[33]. Due to the operating characteristics of the shop floor, or 
even the machining process itself (time steps), this algorithm 
is also widely used for various tasks: manufacturing floor 
process control [34], [35], [36], [37], [38], damage prediction 
[39], equipment overhaul management [40], [41], selection of 
equipment settings [42], [43], [44], [45], [46], [47], [48] and 
optimizing the spindle motion path and determining the g-
code [49], [50], [51], [52], [53], [54], [55], [56], [57], [58], 
[59] that determines spindle motion. In the paper [60], the 
authors proposed to use fuzzy logic systems taught by the 
particle swarm method to replicate the operation of the g-code 
determination algorithm used in industry [6]. In this way, they 

wanted to linearize the computational complexity of this 
algorithm and make its operation independent of CNC 
machine dynamics parameters such as maximum spindle 
velocity or maximum linear acceleration of the spindle. The 
present work builds on the aforementioned research by using a 
deep learning algorithm with reinforcement to map the 
performance of the Reference Points Realization Optimization 
(RPRO) algorithm. 
 
Contributions of this work are as follows: 

• a novel approach that involves using a deep 
reinforcement learning algorithm to mimic the work 
of the RPRO algorithm, 

• study of a number of different configurations of 
parameters of the learning process, 

• testing the accuracy of mimicking the operation of 
the RPRO algorithm, 

• optimization of the machining process 
 
In section 2. the proposed solution will be characterized. Then, 
in Section 3. the conducted research will be described and the 
results of the performed experiments will be presented and 
analyzed. Section 4. will summarize the paper and indicate the 
direction of further work. 
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2. Proposed framework 
According to the premise, the work involves applying a deep 
reinforcement learning algorithm to the task of generating the 
g-code that controls the operation of the CNC machine. On its 
form depends not only the duration of the machining of the 
fabricate, but also the accuracy of the production of the final 
workpiece, as well as the level of tool wear and electricity 
consumption. The task is to train a neural network to respond 
to the given input signals in such a way as to mimic the 
behavior of another algorithm. According to the authors, this 
allows to linearize the process of generating the g-code - while 
the RPRO algorithm for each time step must perform checks 
for a certain number of forward steps, the proposed solution 
directly generates the desired output signal. The proposed 
system of learning and operation of the algorithm is shown in 
Figure 1. 

A. Used base algorithm 
The RPRO algorithm is aimed at optimizing the g-code in 
terms of machining time keeping in mind, however, to ensure 
the best possible workpiece manufacturing accuracy at a given 
time. It is worth noting that the mentioned workpiece 
machining accuracy should be understood as the average 
accuracy of the spindle reaching each reference point. For 
each time step of 2ms, the algorithm decides whether the 
spindle should accelerate, decelerate, or perhaps should move 
with unchanged dynamics. The calculations are carried out 
off-line, allowing different versions of the g-code to be 
checked going forward and manipulated accordingly. The 
disadvantage of this approach is the inability to operate in real 
time, receiving as input the actual data describing the 
dynamics of the machine and the spindle, rather than those 
from the simulation. During the simulation and operation of 
the algorithm, the current spindle position, spindle velocity 
and spindle acceleration are calculated based on equation (1). 
The exact way the algorithm works is described in [6]. 
 
 𝐽𝐽(𝑡𝑡) = 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= �̇⃗�𝑎(𝑡𝑡) = 𝑑𝑑2𝑣𝑣

𝑑𝑑𝑑𝑑2
= �̈⃗�𝑣(𝑡𝑡) = 𝑑𝑑3𝑟𝑟

𝑑𝑑𝑑𝑑3
= 𝑟𝑟(𝑡𝑡) (1) 

B. Reinforcement learning   
The reinforcement learning algorithm is characterized by 
stepwise action - the agent decides in successive time steps 𝑡𝑡 
what action 𝑎𝑎 should be taken to maximize the sum of rewards 
𝑟𝑟 granted to him after each choice. His learning is 
accomplished through his interaction with the environment in 
which he moves and updating information about it. According 
to currently accepted methods, this knowledge can be 
represented in two ways. First, by a value function 𝑉𝑉𝜋𝜋(𝑠𝑠) (2) 
specifying the expected total value of the reward to be gained 
starting from a given state 𝑠𝑠0. The second way is by an action 
value function 𝑄𝑄𝜋𝜋(𝑠𝑠, 𝑎𝑎) (3) specifying the expected total value 
of the reward to be earned when an agent starts from a given 
state 𝑠𝑠0 and performs an action 𝑎𝑎0 in it. The discount factor 𝛾𝛾 
is also an important aspect controlling the learning process and 
the final behavior of the agent. It is also referred to as the 
agent's foresight factor and takes values in the range (0;1). 
 

𝑉𝑉𝜋𝜋(𝑠𝑠) = 𝐸𝐸𝜋𝜋[∑ (𝛾𝛾𝑑𝑑 ∙ 𝑟𝑟𝑑𝑑)𝑑𝑑=0 ] 𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒 𝑠𝑠0 = 𝑠𝑠 (2) 
𝑄𝑄𝜋𝜋(𝑠𝑠,𝑎𝑎) = 𝐸𝐸𝜋𝜋[𝑟𝑟0 + ∑ (𝛾𝛾𝑑𝑑 ∙ 𝑟𝑟𝑑𝑑)𝑑𝑑=0 ] 𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒 𝑠𝑠0 = 𝑠𝑠, 𝑎𝑎0 = 𝑎𝑎 (3) 

 
For the simplest model of the environment and for many 
applications, a basic tabular representation of the functions 
mentioned is sufficient. However, if the problem domain is not 
finite, then some method of approximating the values of these 
functions can be used. One such method is to use a neural 
network for this purpose, the so-called deep learning with 
reinforcement (DRL). Such an action provides the possibility 
of learning an agent that is likely to be able to perform 
satisfactorily even in the case of small changes in the 
environment in which it moves. 

C.  Database 
To conduct the experiments, a previously prepared database 
consisting of stored simulations of machining processes for 
different reference point paths and a number of combinations 
of machine dynamics parameters was used. These 
simulations were prepared using the RPRO algorithm. The 
values of the various parameters are shown in Table 1. High 
density of reference points means that the distances between 
them are less than 1mm, medium density means that the 
distance between them is greater than 1mm but less than 
10mm, while low density means that the distances between 
successive reference points are between 10mm and 100mm. 

TABLE 1 Database Parameters Values [60] 

Parameter Possible Values Combinations 
Factor 

Trajectory length {15, 50. 100} 3 

Reference points density {Low, Medium,𝐻𝐻𝐻𝐻𝐻𝐻ℎ} 3 

Maximum velocity � 𝑚𝑚
𝑚𝑚𝑚𝑚𝑚𝑚

� {2.5, 4.0. 6.0. 8.0} 4 

Maximum acceleration �𝑚𝑚
𝑠𝑠2
� {1.5, 1.8, 2.0. 2.5, 3.0} 5 

Jerk �𝑚𝑚
𝑠𝑠3
� {10. 20. 30} 3 

Target precision [𝑚𝑚𝑚𝑚] 0.01 1 

Time step duration [𝑠𝑠] 0.002 1 

 
FIGURE 1 Proposed framework 
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3. Experiments 
The experiments conducted included testing the impact of 
neural network architectures of different complexity for a 
number of combinations of hyperparameters of the learning 
process. The differences in architectures concerned two 
aspects, namely the number of neurons in successive layers 
and the type of activation function. The exact set of 
architectures studied is shown in Table 2, while their general 
scheme is shown in Figure 2. It was determined that the input 
of the network would be the following signals: normalized 
current spindle velocity, normalized current spindle 
acceleration and normalized distance to the next reference 
point. Normalization of the data was performed with respect 
to, accordingly : the maximum allowed spindle velocity, the 
maximum allowed spindle acceleration and the largest 
distance between adjacent reference points. Double Deep Q-
Learning (DDQL) method was selected as the learning 
algorithm. It is also necessary to specify what signals the agent 
will receive after performing a particular action. A very simple 
system of assigning reinforcement was established, namely, 
when the agent performed an action in accordance with the 
decision of the RPRO algorithm the reward was equal to 0, 
otherwise he received a penalty equal to -0.1. Exact form of 
reinforcement signal is described by formula (4). 

 𝑟𝑟𝑑𝑑 = � 0,  𝐻𝐻𝑖𝑖 𝑎𝑎𝑑𝑑𝑎𝑎𝑎𝑎𝑚𝑚𝑑𝑑 =   𝑎𝑎𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
−0.1 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝐻𝐻𝑠𝑠𝑒𝑒

, (4) 

 
TABLE 2 Evaluated architecture parameters 

Evaluated 
Architecture 

Number 

Layerwise 
Neuron 

Count (N) 

Layerwise 
Activation 
Function 

1 24 ReLU 
2 24 tanh 
3 20 ReLU 
4 20 tanh 
5 16 ReLU 
6 16 tanh 
7 12 ReLU 
8 12 tanh 
9 8 ReLU 
10 8 tanh 
11 6 ReLU 
12 6 tanh 

 
At first, it was decided to evaluate the proposed solution 
depending on the density of the accumulation of reference 
points. Thus, the study was carried out for 3 subsets of the 
database corresponding to combinations of other parameters 
for trajectories of 15 points. Each subset contained 600 
recorded machining processes. Learning was repeated on 
successive 5 pairs from the combinations for 10 trajectories, 
resulting in 120 processes in the training set and 480 in the test 
set. Each learning process was repeated 5 times to 
significantly reduce the impact of randomness in the learning 
process. All experiments were performed using the Matlab 
2022a environment extended with the appropriate toolboxes. 
Subsequent parameters of the learning process were set as 
follows: maxEpisodes (500), TargetSmoothFactor (0.05), 
TargetUpdateFrequency (5), MiniBatchSize (64), 
ExperienceBufferLength (5000), MaxStepsPerEpisode (300). 
For convenience, the listed parameters are summarized in 
Table 3. 
 

TABLE 3 Learning process hyperparameters values. 

Parameter name Parameter value 

maxEpisodes 500 
TargetSmoothFactor 0.05 

TargetUpdateFrequency 5 
MiniBatchSize 64 

ExperienceBufferLength 5000 
MaxStepsPerEpisode 300 

 
A measure of the level of replication of the RPRO algorithm's 
behavior by the proposed solution can be expressed by the 
Pearson correlation coefficient between the number of steps in 
successive test machining processes. An interesting addition to 
it is also the average accuracy of the machining process 
expressed in micrometers. The listed metrics describing the 
results of the experiment are shown in Table 4 and Table 5. 
Note that these values are the medians from all repetitions and 
training pairs for specific combinations of architecture and 
learning process hyperparameters values. In situations where, 
the algorithm failed to achieve the intended effect (learning 
process did not reach convergence), it was not possible to 
determine the correlation coefficient, which is indicated in the 

 
FIGURE 2 Diagram of the used neural network 
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tables by a triple pause (---). Due to the large number of 
failures for a subset of the base with sparsely distributed 
reference points, the corresponding part of the results was 
omitted and will be focus of future study. 
 

TABLE 4 Results of the first experiment - median correlation 
coefficient between the number of steps in the processing performed 

by the RPRO algorithm and the trained agent 
Steps Count 
Correlation 

Discount Factor 
0.99 0.999 

Ref. 
Points 

Density 

Network 
Arch. 

Number 

Learning Rate Learning Rate 

1e-3 1e-4 1e-5 1e-3 1e-4 1e-5 

High 

1 0.847 0.750 0.848 0.647 0.844 0.844 
2 0.855 0.852 0.855 0.847 0.842 0.846 
3 0.844 0.855 0.848 0.839 0.777 0.847 
4 0.852 0.851 0.849 0.687 0.848 0.849 
5 0.849 0.856 --- 0.844 0.853 --- 
6 0.849 0.853 --- 0.855 0.852 --- 
7 0.825 0.857 --- 0.847 0.846 --- 
8 0.850 0.851 0.849 0.850 0.836 0.848 
9 0.821 0.856 --- 0.845 0.850 --- 

10 0.852 0.855 0.846 0.846 0.848 0.845 
11 0.842 0.851 --- 0.848 0.848 --- 
12 0.855 0.849 --- 0.844 0.845 --- 

Mediu
m 

1 0.773 0.777 0.774 0.772 --- --- 
2 0.777 0.774 0.774 --- 0.472 0.538 
3 0.774 0.774 0.774 --- --- --- 
4 0.771 0.777 0.775 --- 0.773 0.726 
5 0.774 0.774 --- --- --- --- 
6 0.771 0.775 0.664 --- 0.386 0.237 
7 0.777 0.774 0.578 --- --- 0.041 
8 0.775 0.776 0.774 --- 0.171 0.172 
9 0.774 0.774 --- --- --- --- 

10 0.774 0.775 0.774 --- 0.009 0.112 
11 0.772 0.774 0.543 --- --- 0.054 
12 0.774 0.775 --- --- --- --- 

 
TABLE 3 Results of the first experiment - median of average error of 

the machining process 
Mean Error 

Discount Factor 
0.99 0.999 

Ref. 
Points 

Density 

Network 
Arch. 

Number 

Learning Rate Learning Rate 

1e-3 1e-4 1e-5 1e-3 1e-4 1e-5 

High 

1 2.38 2.32 2.56 2.47 2.46 2.55 
2 2.45 2.43 2.51 2.46 2.44 2.63 
3 2.4 2.46 2.49 2.44 2.45 2.58 
4 2.45 2.49 2.51 2.52 2.52 2.46 
5 2.56 2.5 3.11 2.41 2.48 3.29 
6 2.47 2.43 4.69 2.48 2.35 4.81 
7 2.32 2.37 4.45 2.46 2.52 4.57 
8 2.49 2.47 2.56 2.49 2.43 2.57 
9 2.4 2.5 3.16 2.41 2.51 3.38 
10 2.45 2.48 2.54 2.39 2.55 2.54 
11 2.47 2.51 3.86 2.47 2.49 4.48 
12 2.41 2.51 435 2.46 2.48 437 

Medium 

1 5.53 5.9 5.41 2708 4496 4450 
2 5.79 5.31 5.14 4835 2661 2926 
3 5.54 5.03 1561 4481 4799 3580 
4 4.99 5.47 5.34 4708 2531 816 
5 5.37 6.2 7.08 4653 4742 4599 
6 5.08 5.56 2445 4852 1814 3607 
7 5.02 5.19 2414 3727 4741 3581 
8 5.42 5.14 5.06 4698 3369 2443 
9 4.83 5.14 3344 3568 3742 4455 
10 5.4 5.34 5.13 4677 4286 4366 
11 5.55 5.91 2446 4450 4622 3472 
12 5.21 5.32 4421 4736 2635 4832 

 
The observed results show that for a subset of reference paths 
with dense reference points, the proposed method achieves a 

high level of correlation in the number of steps during 
individual machining processes. It is also interesting to note 
that the proposed solution achieves significantly better results 
in terms of machining process accuracy. However, in order to 
be able to verify whether this is by chance at the expense of 
the time spent on machining, it is necessary to analyze the 
median of the steps performed in the individual machining 
processes. For the RPRO algorithm, this value is 110 for 
densely spaced reference points and 500 for moderately 
spaced reference points, respectively. The corresponding 
medians for the proposed solution are shown in Table 6. It can 
be observed that for both subsets of the base the median 
number of steps is slightly smaller than for the RPRO 
algorithm. Thus, the learned agent does not behave identically 
to the benchmark algorithm, but it achieves significantly better 
processing accuracy than it in a slightly shorter processing 
time. 
 

TABLE 4 Results of the first experiment - the median of number of 
steps during the machining process 

Steps Count 
Discount Factor 

0.99 0.999 

Ref. 
Points 

Density 

Networ
k Arch. 
Numbe

r 

Learning Rate Learning Rate 

1e-3 1e-4 1e-5 1e-3 1e-4 1e-5 

High 

1 85 88 80 86 85 80 
2 83 83 81 83 82 82 
3 85 83 82 84 85 83 
4 82 82 80 84 80 82 
5 82 81 74 87 82 75 
6 83 84 69 82 84 72 
7 89 82 71 85 86 71 
8 82 83 80 81 88 81 
9 86 80 75 85 80 75 

10 83 81 80 83 83 82 
11 85 80 76 84 81 72 
12 84 80 1 83 80 1 

Medium 

1 471 469 476 179 71 101 
2 475 482 484 1 293 204 
3 478 482 446 73 1 101 
4 489 467 478 1 322 453 
5 482 465 431 1 1 101 
6 486 480 410 1 263 234 
7 487 482 406 87 1 101 
8 481 485 483 1 290 472 
9 488 486 367 159 82 109 

10 479 481 482 1 280 243 
11 476 471 487 68 1 258 
12 478 481 71 14 297 1 

 
In addition, at this point it is also necessary to analyze the 
decrease in the quality of the learned agent's work with an 
increase in the interval between the reference points as seen in 
Table 4, Table 5. and Table 6. The intention of the first 
experiment was to test the ability of the studied algorithm to 
replicate the performance of the RPRO algorithm. Wanting to 
ensure the constancy of as many parameters as possible while 
reducing the computation time, the authors assumed that the 
aforementioned maximum length of the episode would be 300. 
Less frequently distributed reference points obviously 
lengthen the machining process, and limiting the episode to 
the given value meant that for an average distribution of them, 
the agent was not able to achieve as good results as for densely 
distributed points, since it did not have the opportunity to 
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experience the end of the machining process during learning. 
For densely spaced reference points, on the other hand, the 
agent was unable to achieve satisfactory results at all having 
had the opportunity to experience only a small initial portion 
of the entire machining process (300 out of 4446 steps or less 
than 7%). The last noteworthy fact is the indication of the 
presented results that potentially the best values of 
hyperparameters could be learning rate equal to 0.001 and 

discount factor equal to 0.99, respectively. All tested 
architectures performed very well with a slight advantage for 
those using sigmoidal activation function. This is very good 
news in terms of the development of the idea and the 
complication of the environment to achieve control in multiple 
dimensions of motion. 
 

 
TABLE 5 Results of the second experiment - median correlation coefficient between the number of steps in the processing performed by the 

RPRO algorithm and the trained agent 
Steps Count Correlation Network Architecture Number 

Learning 
Rate 

Train 
Trajectories 

Count 
1 2 3 4 5 6 7 8 9 10 11 12 

0.001 

2 0.827 0.839 0.853 --- 0.807 0.832 0.828 0.833 0.846 0.835 0.855 0.844 
3 0.858 0.846 0.851 0.850 0.801 0.838 0.799 0.856 0.858 0.858 0.848 0.840 
4 0.843 0.840 0.836 0.827 0.842 0.833 0.798 0.835 0.814 0.848 0.831 0.832 
5 0.803 0.816 0.810 0.808 0.805 0.821 0.810 0.807 0.807 0.820 0.822 0.808 
6 0.819 0.813 0.814 0.812 0.818 --- 0.811 0.824 0.815 0.821 0.817 0.825 
7 0.793 0.834 0.828 0.831 0.796 0.837 0.799 0.833 0.835 0.835 0.828 0.838 
8 --- 0.855 0.844 0.848 0.717 0.850 0.842 0.851 0.851 0.850 0.844 0.850 

0.0001 

2 0.855 0.837 0.842 0.840 0.852 0.843 0.838 0.847 0.840 0.845 0.835 0.829 
3 0.861 0.841 0.849 0.843 0.852 0.849 0.846 0.842 0.842 0.854 0.839 0.836 
4 0.837 0.844 0.838 0.827 0.839 0.837 0.839 0.824 0.831 0.828 0.832 0.822 
5 0.811 0.815 0.821 0.808 0.815 0.808 0.812 0.819 0.819 0.812 0.815 0.804 
6 0.820 0.819 0.817 0.815 0.827 0.823 0.813 0.826 0.818 0.812 0.822 0.811 
7 0.837 0.836 0.838 0.834 0.842 0.835 0.828 0.833 0.831 0.835 0.834 0.828 
8 0.849 0.854 0.848 0.847 --- 0.845 0.852 0.849 0.845 0.853 0.844 0.841 

0.00001 

2 0.827 0.832 --- 0.829 --- --- --- 0.834 --- 0.831 --- --- 
3 0.837 0.853 --- 0.842 --- --- --- 0.843 --- 0.840 --- --- 
4 0.824 0.842 --- 0.835 --- --- --- 0.824 --- 0.827 --- --- 
5 0.805 0.827 0.803 0.806 --- --- --- 0.810 --- 0.808 --- --- 
6 0.818 0.824 0.815 0.812 --- --- --- 0.810 --- 0.809 --- --- 
7 0.833 0.855 0.828 0.840 --- --- --- 0.837 --- 0.840 --- --- 
8 0.848 0.859 0.853 0.842 --- --- --- 0.849 --- 0.849 --- --- 

 
TABLE 6 Results of the second experiment - median of average error of the machining process 

Mean Error Network Architecture Number 

Learning 
Rate 

Train 
Trajectories 

Count 
1 2 3 4 5 6 7 8 9 10 11 12 

0.001 

2 2.44 2.04 2.42 2.10 1.81 2.19 1.93 2.44 2.29 2.51 2.43 2.48 
3 2.38 2.46 2.47 2.55 2.47 2.59 2.24 2.48 2.64 2.51 2.58 2.58 
4 2.48 2.54 2.28 2.58 2.47 2.51 2.59 2.50 2.47 2.47 2.59 2.58 
5 2.30 2.55 2.36 2.53 2.38 2.48 2.58 2.48 2.54 2.49 2.48 2.19 
6 2.59 2.59 2.65 2.48 2.48 3.03 2.59 2.58 2.69 2.58 2.59 2.59 
7 2.49 2.59 2.63 2.61 2.05 2.53 2.30 2.59 2.59 2.59 2.59 2.59 
8 2.19 2.36 2.48 2.41 2.27 2.21 2.27 2.24 2.36 2.31 2.39 2.27 

0.0001 

2 2.47 2.47 2.47 2.48 2.44 2.56 1.80 2.47 2.51 2.58 2.43 2.51 
3 2.47 2.56 2.57 2.49 2.47 2.58 2.13 2.58 2.57 2.45 2.51 2.58 
4 2.58 2.47 2.48 2.59 2.59 2.59 2.40 2.48 2.60 2.58 2.48 2.58 
5 2.59 2.48 2.58 2.57 2.56 2.58 2.50 2.52 2.55 2.54 2.48 2.58 
6 2.56 2.59 2.66 2.60 2.59 2.59 2.56 2.58 2.59 2.59 2.52 2.58 
7 2.59 2.59 2.59 2.59 2.59 2.59 1.68 2.60 2.59 2.59 2.59 2.59 
8 2.19 2.48 2.25 2.32 2.71 2.47 2.16 2.48 2.48 2.43 2.42 2.41 

0.00001 

2 2.55 2.51 2.28 2.47 3.15 5.15 5.47 2.50 3.21 2.55 4.59 427.33 
3 2.56 2.58 2.21 2.47 3.10 5.10 4.14 2.47 2.86 2.53 5.58 448.67 
4 2.57 2.58 2.47 2.51 2.98 5.20 5.63 2.59 3.09 2.59 4.18 438.00 
5 2.58 2.54 2.62 2.48 3.06 5.25 5.77 2.48 3.06 2.47 3.51 427.33 
6 2.54 2.59 2.59 2.51 3.06 5.13 6.17 2.66 3.06 2.59 3.65 427.33 
7 2.66 2.65 2.59 2.62 2.76 4.92 5.12 2.63 2.76 2.59 3.22 427.33 
8 2.55 2.53 2.48 2.30 2.69 4.28 4.81 2.48 2.69 2.36 2.69 448.67 
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In the second experiment, the authors decided to investigate 
whether increasing the diversity of reference point trajectories 
in the learning dataset has a positive effect on the quality of 
the trained agent's match with the RPRO algorithm's behavior. 
Thus, it was decided to gradually increase the number of 
trajectories in the learning set starting with 2 and ending with 
8. This time, the virtual window of the training set moved 
sequentially through a number of trajectories resulting in 8, 7, 
6, ..., 2 combinations of trajectories, respectively. The results 
were again combined by calculating the corresponding 
medians, which are shown in Table 7. and Table 8. In 
addition, in each row of Table 7, both the largest values of the 
correlation coefficient of the number of steps, as well as its 
second best values, are marked in bold. It should also be noted 
that for this experiment the maximum number of possible 
episodes was reduced by 20%, resulting in a value of 400. 
Analyzing the data presented, it can be indicated that the three 
best performing architectures are those numbered 2, 8 and 10, 
respectively. In accordance with previous observations, their 
common feature is the use of sigmoidal activation functions. 
The results also indicate that increasing the diversity of 
reference point paths in the learning dataset had no noticeable 
effect on the quality of the trained agent's performance. Thus, 
it can be conjectured that as few as two paths are sufficient for 
an agent to learn decision-making to a satisfactory degree 
while optimizing the machining process. It can be also 

observed that the choice of a learning rate coefficient equal to 
1e-5 led to a disturbance in the stability of the learning process 
by, in several cases, failing to successfully complete a single 
trial. This clearly indicates that it should be avoided, such 
small values of this coefficient in the studied case. 
At the end of this section is a comparison of the simulation run 
of an example processing performed by the RPRO algorithm 
and in the way proposed by the authors on the Figure 3 and 
Figure 4, respectively. The values shown on them are both the 
normalized spindle velocity and its normalized acceleration in 
successive time steps. The presented case shows the 
observations described so far, where the solution proposed by 
the authors creates a g-code that improves the machining 

process (realizing it in fewer steps and with higher accuracy). 
The RPRO algorithm completed the task during 86 steps 
achieving an average accuracy of 47.94 micrometers , while 
the proposed solution completed the task during 69 time steps 
achieving an average accuracy of 32.98 micrometers. Another 
interesting aspect is the way in which the dynamics of the 
spindle's movement changes, namely, unlike the RPRO 
algorithm, which pursued the highest possible acceleration, 
only to later reduce it just as sharply and reduce the speed as 
well, the solution obtained by the algorithm proposed by the 
authors relies on the gradual acceleration of the spindle until it 
reaches its maximum speed, taking into account minor 
adjustments that allow it to hit the reference points more 
accurately. 
 

4. CONCLUSIONS 
The authors presented a novel approach to the problem of 
optimizing the motion dynamics of a cnc machine. It consisted 
of using a deep learning algorithm with reinforcement to map 
the operation of the RPRO algorithm used in industry. The 
presented solution achieved very good results - it mapped the 
operation of the RPRO algorithm to a satisfactory degree, and, 
in addition, it accelerated the machining process and provided 
a much higher accuracy (much lower average error). However, 
in order for the proposed solution to be put into industrial use, 
some improvements still need to be made and movement in 
multiple axes needs to be integrated simultaneously, which 
will be the main focus of the authors' further research. 
Attention will also be paid to optimizing other parameters of 
the machining process such as smoothing of acceleration and 
deceleration cycles, which has a direct impact on extending 
both machine service intervals and tool life. 
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