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ℎ-Stability of set differential equations

Sihem BOUKTHIRo , Boulbaba GHANMIo , Imed BASDOURIo ,
Dalil ICHALALo and Jean LERBETo

In this paper, we introduce the notion of h-stability for set-valued differential equations.
Necessary and sufficient conditions are established by using Lyapunov theory. Then, based on
the obtained results, we study the ℎ-stability of perturbed and cascaded systems. Finally, an
example illustrates the proposed theorems.
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1. Introduction

The pressure of the various current problems arising in systems theory (con-
trol of evolution systems, viability, etc.) led to the development of the fundamental
concept of differential calculus. This pressure forced numerous applied mathe-
maticians to apply set-valued maps as evidently as the common single-valued
maps.
Mathematical sciences have shown a reluctance to deal with sequences of

sets and set-valued maps, despite the emergence of interesting new vistas for the
applications of mathematics.

Copyright © 2023. The Author(s). This is an open-access article distributed under the terms of the Creative Com-
mons Attribution-NonCommercial-NoDerivatives License (CC BY-NC-ND 4.0 https://creativecommons.org/licenses/
by-nc-nd/4.0/), which permits use, distribution, and reproduction in any medium, provided that the article is properly
cited, the use is non-commercial, and no modifications or adaptations are made

S.Boukthir (e-mail: sihem912010@gmail.com) iswithDepartment ofMathematics, Faculty of Sciences
of Sfax, Route Soukra Km 4, BP 802, 3018, Sfax, Tunisia and with The IBISC laboratory, University of
Evry Val d’Essonne, University of Paris Saclay University, 40, rue de Pelvoux, 91020, Evry Courcouronnes,
France.
B. Ghanmi (e-mail: bghanmi@gmail.com) and I. Basdouri (corresponding author, e-mail: bas-

dourimed@yahoo.fr) are with Department of Mathematics, Faculty of Sciences of Gafsa, Sidi Ahmed
Zarroug, 2112, Gafsa, Tunisia.
D. Ichalal (e-mail: dalil.ichalal@univ-evry.fr) is with The IBISC laboratory, University of Evry Val

d’Essonne, University of Paris Saclay University, 40, rue de Pelvoux, 91020, Evry Courcouronnes, France.
J. Lerbet (e-mail: jlerbet@gmail.com) is with The LaMME laboratory, UMR CNRS 8071, University

of Evry Val d’Essonne, University of Paris Saclay, 23 Bd de France, 91037, Evry CEDEX, France.
Received 10.01.2023. Revised 21.10.2023.

https://orcid.org/0000-0003-2208-4332
https://orcid.org/0000-0002-0890-7884
https://orcid.org/0000-0002-5029-1956
https://orcid.org/0000-0003-0465-6966
https://orcid.org/0000-0002-8889-1324
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:sihem912010@gmail.com
mailto:bghanmi@gmail.com
mailto:basdourimed@yahoo.fr
mailto:basdourimed@yahoo.fr
mailto:dalil.ichalal@univ-evry.fr
mailto:jlerbet@gmail.com


762 S. BOUKTHIR, B. GHANMI, I. BASDOURI, D. ICHALAL, J. LERBET

In his book ‘Topologie Generale’ (the first chapter in 1940), Bourbaki disre-
garded set-valued maps. He rather restricted his study to single-valued maps to
make them bijective. However, Kuratowski, in his important book “Topologie”
(1966), gave set-valued maps their appropriate status. Despite this, set-valued
maps remained confined to a period of time. Their generalization was no more
than a mathematical curiosity.
On the other hand, the need to solve problems that emerged in different fields

of knowledge, such as economics [24,25] and artificial intelligence [12]motivated
mathematicians to analyze set-valued maps, which in turn led to diverse appli-
cations. Set-valued analysis deals with the study of the continuity of set-valued
maps, the analysis of a linear or non-linear multivalued function (the existence
of solutions), and differentiation, convergence, integration, and measurability of
set-valued maps [13].
In 1990, Aubin and Frankowska [2] constructed a differential calculus of set-

valued maps by considering the map as a graph. The definition of the derivative
of a set-valued mapping on the space of nonempty convex compact subsets
of Euclidean space (nonlinear space) improves their theory. In fact, there exist
several procedures to differentiate between two sets [18], namely the Hukuhara
difference [15] and Hukuhara derivatives.
Thereafter, Stefanini [31,32] extended the Hukuhara difference to the concept

of a generalized Hukuhara difference. This generalized Hukuhara difference has
been widely adopted to study interval dynamical systems in order to determine
if a difference exists between any pair of intervals. It is therefore an inestimable
mathematical concept for investigating the theory of interval numbers.
After that, Stefanini and Bede [33] introduced the generalized Hukuhara

derivative version. Different types of derivatives can be used to investigate set-
valued equations compared with the Hukuhara derivative. The Hukuhara deriva-
tive has some weaknesses that make it difficult to examine the properties of
set-valued differential equations, as the Hukuhara difference does not always
exist for two set-values.
The stability of set-valued mappings leads to many difficulties. There are

some difficulties in defining the stability and asymptotic stability of set differ-
ential equations related to non-decreasing functions. Determining the stability
and asymptotic stability of set differential equations is not a trivial problem. To
resolve this problem, approaches are suggested in [11]. Although the properties
of stability and asymptotic stability are not common for set differential equations,
many studies [4,27,36] examining these solution properties have been published.
Furthermore, the use of Lyapunov functions served to study the stability of set
differential equations with Hukuhara derivative [20]. It is well known that Lya-
punov’s direct method and its applications play a significant role in the field of
theoretical development. This method is used to investigate the asymptotic stabil-
ity of dynamical systems with no need to solve any equation [23, 37]. However,
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the second Lyapunov method, also called Lyapunov’s indirect method, is efficient
for stability analysis and control system development.
There are multiple stability concepts, such as absolute stability, uniform sta-

bility, asymptotic stability, exponential stability and ℎ-stability. Recently, there
has been increasing interest in improving the ℎ-stability theory.

𝐻-stability was developed by Pinto [30] (1984), who ensured the stabil-
ity of a weaker stable system under few perturbations [29] compared to other
systems showing uniform Lipschitz stability and exponential stability. In other
words, Pinto extended his study of exponential asymptotic stability to diverse
reasonable systems named h-systems. The notion of ℎ-stability is flexible enough
because it combines the notion of exponential stability with uniform stability
to form one framework. In a study conducted by Choi, Koo and Ryu, the con-
cept of ℎ-stability is more useful compared to other research on asymptotic
stability and non-exponential types of stability [6, 7]. Choi, Koo and Goo [8, 9]
examined the ℎ-stability of nonlinear differential systems by using Lyapunov
functions. Moreover, they studied the ℎ-stability of nonlinear differential systems
associated with the principles of exponential asymptotic stability and Lipschitz
stability.
The major objective of our work is to investigate the ℎ-stability of set dif-

ferential equations. Inspired by [20, 31] and [7], we determine the conditions of
ℎ-stability that are also examined by using the generalized Hukuhara derivative
together with a Lyapunov function. Based on the strengths of the Lyapunov ap-
proach, stability can be checked without solving the underlying differential equa-
tion. This approach shows that if a suitable Lyapunov function may be found, then
the system will have some stability properties. Moreover, some theorems prove,
at least conceptually with respect to several Lyapunov stability theorems, that the
conditions given are indeed necessary. These theorems are generally known as
converse theorems (see [10,16,22,35]). Converse theorems are generally the most
difficult part of the theory and the first overall outcomes for nonlinear systems
were achieved by Massera [28] and Kurzweil [19]. In [17], an inverse theorem
for uniform exponential stability is established. It confirms that the origin is
uniformly exponentially stable. Then, a Lyapunov function that satisfies some
conditions exists. Inspired by the previously studied works, we present a converse
Lyapunov theorem for the h-stability of set-valued differential equations. To deal
with this situation, we propose that the system should be globally ℎ-stable for a
set of all non-empty, convex, and compact intervals of R. As a result, sufficient
conditions guarantee the ℎ-stability of perturbed systems and cascaded systems
using the Lyapunov theory.
The remaining of this paper is structured as follows: Section 2 presents some

basic definitions and notations to study the system of set-valued differential
equations. Section 3 summarizes the key results of the present work. In fact,
based on Lyapunov theory, a sufficient condition is given to guarantee not only
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the ℎ-stability of set differential equations (Theorem 5), but also the converse
ℎ-stability theorem (Theorem 6) for set interval-valued equations on 𝐾𝑐 (R) = I
(The necessary condition). Section 4 focuses on the ℎ-stability of the perturbed
system (Theorem 7) and the cascaded system (Theorem 8). Finally, an example
is used to illustrate the feasibility of the results of our theory.

2. Basic notations

This section presents the definitions and notions needed to build set-valued
differential equations with a generalized Hukuhara derivative in a metric space.
Let R𝑛 be the 𝑛-dimensional Euclidean space and let 𝐾𝑐 (R𝑛) denote the space

of all non-empty compact convex subsets of R𝑛. Minkowski addition and scalar
multiplication are defined by

𝑈 +𝑉 = {𝑢 + 𝑣 | 𝑢 ∈ 𝑈, 𝑣 ∈ 𝑉},
𝑘 𝑈 = {𝑘𝑢 | 𝑢 ∈ 𝑈},

for two subsets 𝑈, 𝑉 in R𝑛 and 𝑘 ∈ R and it is well known that addition is
associative and commutative and with neutral element denoted by Θ0.
Scalar multiplication gives the opposite −𝑈 = (−1)𝑈 = {−𝑢 | 𝑢 ∈ 𝑈}, if

𝑘 = −1, but in general,𝑈 + (−𝑈) ≠ Θ0 i.e. there is no difference between the two
sets due to the non-linearity of 𝐾𝑐 (R𝑛. Thus, Hukuhara offers a solution to the
problem described in the following definition

Definition 1 [15] Suppose that the sets U and V belong to R𝑛. If there exists a
convex compact subset 𝑊 ∈ R𝑛 such that 𝑈 = 𝑉 +𝑊 then we say the Hukuhara
difference of𝑈 and 𝑉 exists and it is then denoted by𝑈 �𝑉 i.e.

𝑈 �𝑉 = 𝑊 ⇔ 𝑈 = 𝑉 +𝑊. (1)

An interesting property of � is that 𝑈 � 𝑈 = Θ0 for all 𝑈 ∈ 𝐾𝑐 (R𝑛). The
Hukuhara difference is unique, but it does not always exist unless the translation
{𝑤} + 𝑉 of 𝑉 is included in 𝑈 (a necessary condition for the existence of 𝑈 � 𝑉
see [20]). The following definition suggests a solution to overcome this problem.

Definition 2 [31] Let 𝑈, 𝑉 ∈ 𝐾𝑐 (R𝑛), the generalized Hukuhara difference of
𝑈 and 𝑉 is defined as:

𝑈 �𝑔𝐻 𝑉 = 𝑊 ⇔
{ (𝑎) 𝑈 = 𝑉 +𝑊,
or (𝑏) 𝑉 = 𝑈 + (−1)𝑊, (2)

where the set𝑊 ∈ 𝐾𝑐 (R𝑛) and (−1)𝑊 is the opposite set of𝑊 .
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Remark 1
1. If𝑈 �𝑉 exists and if𝑈 �𝑔𝐻 𝑉 also exists, it is unique, then
𝑈 �𝑔𝐻 𝑉 = 𝑈 �𝑉 [31].

2. A necessary condition for the existence of 𝑈 �𝑔𝐻 𝑉 is that either 𝑈 con-
tains a translation of 𝑉 (as for 𝑈 � 𝑉) or 𝑉 contains a translation of 𝑈.
This means that for each 𝑤 ∈ 𝑊 , we obtain 𝑉 + {𝑤} ⊆ 𝑈 from (a) or
𝑈 + {−𝑤} ⊆ 𝑉 (b) [32].

The case of set intervals of R

If 𝑛 = 1 the set of all nonempty, convex and compact intervals of R is denoted
by 𝐾𝑐 (R) = I.
For two arbitrary compact convex intervals, the generalized Hukuhara differ-

ence always exists [31].
If 𝑈 = [𝑢−, 𝑢+] ∈ I, then the length (or diameter) of the interval 𝑈 will be

denoted by 𝑙𝑒𝑛(𝑈) = 𝑢+ − 𝑢−.
Proposition 1 [31, 32] The generalized Hukuhara difference 𝑊 = 𝑈 �𝑔𝐻 𝑉 of
the two intervals𝑈 = [𝑢−, 𝑢+] and 𝑉 = [𝑣−, 𝑣+] is:

[𝑢−, 𝑢+] �𝑔𝐻 [𝑣−, 𝑣+] = [𝑤−, 𝑤+]

⇔
{

(𝑎) {𝑢− = 𝑣− + 𝑤−, 𝑢+ = 𝑣+ + 𝑤+,

𝑜𝑟 (𝑏) {𝑣− = 𝑢− − 𝑤+, 𝑣+ = 𝑢+ − 𝑤−,
(3)

with 𝑤− = min{𝑢− − 𝑣−, 𝑢+ − 𝑣+}, 𝑤+ = max{𝑢− − 𝑣−, 𝑢+ − 𝑣+}.
The two conditions (a) and (b) in (2) are satisfied concurrently if and only if

both lengths of the intervals are the same and 𝑤− = 𝑤+.

If 𝑈 ∈ I, the norm of U is defined by ‖𝑈‖ = max {|𝑢− |, |𝑢+ |} . Then
(I, +, ., ‖.‖) becomes the normed quasilinear space such that ‖.‖ is a norm on I.
The metric structure on I is determined by the Hausdorff distance between

two intervals: 𝐷 : I× I→ R+∪ {0}. The Hausdorff distance is defined as follows:

𝐷 [𝑈, 𝑉] = max
{
|𝑢− − 𝑣− |, |𝑢+ − 𝑣+ |

}
,

where𝑈 = [𝑢−, 𝑢+] and 𝑉 = [𝑣−, 𝑣+] . Then, the following properties hold:

𝐷 [𝑘𝑈, 𝑘𝑉] = |𝑘 |𝐷 [𝑈, 𝑉], ∀𝑘 ∈ R,
𝐷 [𝑈 + 𝐴, 𝑉 + 𝐴] = 𝐷 [𝑈, 𝑉],
𝐷 [𝑈 + 𝐴, 𝑉 + 𝐵] ¬ 𝐷 [𝑈, 𝑉] + 𝐷 [𝐴, 𝐵],

for all 𝑈, 𝑉, 𝐴, 𝐵 ∈ I. Clearly, the metric 𝐷 is related to the norm ‖.‖ by
𝐷 [𝑈, {0}] = ‖𝑈‖. (I, 𝐷) is a complete separable metric space (see [31]).
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Proposition 2 [33] For𝑈, 𝑉 ∈ I, we get

𝐷 [𝑈, 𝑉] = 𝐷 [𝑈 �𝑔𝐻 𝑉, {0}] . (4)

Since I is a complete separable metric space, the continuity and the limits of
an interval-valued function 𝐹 : ]𝛼, 𝛽[→ I, such that 𝐹 (𝑡) = [𝐹−(𝑡), 𝐹+(𝑡)], can
be characterized in the 𝐷-metric sense (see [33]).
Based on the generalized Hukuhara difference, we make the following defi-

nition

Definition 3 [34] Let 𝑡 ∈]𝛼, 𝛽[ and 𝜏 be such that 𝑡 + 𝜏 ∈]𝛼, 𝛽[, then an
interval-valued function 𝐹 : ]𝛼, 𝛽[→ I has a generalized Hukuhara derivative
at 𝑡 as follows

𝐹′
𝑔𝐻 (𝑡) = lim

𝜏→0

1
𝜏

[
𝐹 (𝑡 + 𝜏) �𝑔𝐻 𝐹 (𝑡)

]
. (5)

If 𝐹′
𝑔𝐻

(𝑡) ∈ I satisfying (5) exists, then we can say that 𝐹 is generalized
Hukuhara differentiable (gH-differentiable for brevity) at 𝑡.

The following outcome gives a characterization of the generalized Hukuhara
differentiability of interval-valued functions.

Theorem 1 (see [34]) Let 𝐹 : ]𝛼, 𝛽[→ I be an interval-valued function where
𝐹 (𝑡) = [𝐹−(𝑡), 𝐹+(𝑡)] for all 𝑡 ∈]𝛼, 𝛽[. Suppose that the real valued functions
𝑡 ↦→ 𝐹−(𝑡) and 𝑡 ↦→ 𝐹+(𝑡) are differentiable. Then, the function 𝑡 ∈]𝛼, 𝛽[↦→ 𝐹 (𝑡)
is generalized-Hukuhara differentiable at 𝑡 ∈]𝛼, 𝛽[ and

𝐹′
𝑔𝐻 (𝑡) =

[
min

{
(𝐹−)′(𝑡), (𝐹+)′(𝑡)

}
, max

{
(𝐹−)′(𝑡), (𝐹+)′(𝑡)

}]
, (6)

According to Theorem 1, two cases can be distinguished.

Definition 4 [34] Let 𝐹 : ]𝛼, 𝛽[→ I be a generalized-Hukuhara differentiable
at 𝑡 in ]𝛼, 𝛽[ function. Then we can say that:

• 𝐹 is (i)-generalized Hukuhara differentiable at 𝑡 if

(𝑖) 𝐹′(𝑡) =
[
(𝐹−)′(𝑡), (𝐹+)′(𝑡)

]
(7)

• 𝐹 is (ii)-generalized Hukuhara differentiable at 𝑡 if

(𝑖𝑖) 𝐹′(𝑡) =
[
(𝐹+)′(𝑡), (𝐹−)′(𝑡)

]
. (8)

Remark 2 In [34], example 8 illustrates that 𝐹 : [𝛼, 𝛽] → I is generalized
Hukuhara differentiable at 𝑡, which is not the case for (i) and (ii).
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So an interval-valued differential equation is defined by

𝑋′
𝑔𝐻 (𝑡) = 𝐹 (𝑡, 𝑋 (𝑡)), 𝑋 (𝑡0) = 𝑋0, (9)

where 𝐹 : [𝛼, 𝛽] × I → I with 𝐹 (𝑡, 𝑋) = [𝐹−(𝑡, 𝑋), 𝐹+(𝑡, 𝑋)], 𝑋′
𝑔𝐻
is the

generalized Hukuhara derivative of the interval set 𝑋 ∈ I, 𝑋 = [𝑋−, 𝑋+] and
𝑋0 = [𝑋−

0 , 𝑋
+
0 ] .

Therefore, the continuous mapping 𝑋 : 𝑇0 = [𝑡0, 𝑡0 + 𝑎] → I (𝑎 > 0) is a
solution of the system (9) if and only if 𝑋 : 𝑇0 = [𝑡0, 𝑡0 + 𝑎] → I satisfies the
following interval integral equation

𝑋 (𝑡) �𝑔𝐻 𝑋0 =
𝑡∫

𝑡0

𝐹 (𝑠, 𝑋 (𝑠))d𝑠, (10)

on some interval 𝑇0 = [𝑡0, 𝑡0 + 𝑎] (Lemma 33 [33]).
Generalized Hukuhara difference shows that integral equation (10) is a unified

expression of the following integral equations

𝑋 (𝑡) � 𝑋0 =
𝑡∫

𝑡0

𝐹 (𝑠, 𝑋 (𝑠))d𝑠,

and

𝑋0 � 𝑋 (𝑡) = −
𝑡∫

𝑡0

𝐹 (𝑠, 𝑋 (𝑠))d𝑠,

where � represents the usual Hukuhara difference.
If 𝐹 (𝑡, {0}) = {0}, then 𝑋 (𝑡) = {0} is an interval-valued of stationary

solution to (9).
Then, we list the already known results of problem (9) (see [3]). These results

are useful for our study. In what follows, we present the two following theorems:
Theorem 2 (see [3]) Let 𝐹 ∈ 𝐶 [𝑇0 × 𝐵̄[𝑋0, 𝑟], I] and as 𝐹′

𝑔𝐻
(𝑡, 𝑋) exists and

is continuous on 𝑇0 × 𝐵̄[𝑋0, 𝑟], where 𝐵̄[𝑋0, 𝑟] ⊂ I the closed ball with centre
𝑋0 and radius 𝑟.

Then we have

𝐹 (𝑡, 𝑋1) �𝑔𝐻 𝐹 (𝑡, 𝑋2) =
1∫
0

𝐹′
𝑔𝐻 (𝑡, 𝑠𝑋1 + (1 − 𝑠)𝑋2)

· (𝑋1 �𝑔𝐻 𝑋2)d𝑠, 𝑡 ∈ 𝑇0, (11)

for all 𝑋1, 𝑋2 ∈ 𝐵̄[𝑋0, 𝛽] and 𝑡 ∈ 𝑇0.
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Suppose that the unique solution 𝑋 (𝑡, 𝑡0, 𝑋0) of (9) exists and that
𝜕𝑋 (𝑡, 𝑡0, 𝑋0)

𝜕𝑋0
exists and is continuous. Then, this leads to the next theorem.

Theorem 3 (see [3])We assume that 𝐹 ∈ 𝐶 [𝑇0× 𝐵̄[𝑋0, 𝑟], I], 𝐹′
𝑔𝐻

(𝑡, 𝑋) exists
and is continuous on 𝑇0 × 𝐵̄[𝑋0, 𝑟] and a unique solution 𝑋 (𝑡, 𝑡0, 𝑋0) of (9)
exists on 𝑇0 = [𝑡0, 𝑡0 + 𝑎], 𝑎 > 0. Then,

1. 𝜓(𝑡, 𝑡0, 𝑋0) =
𝜕𝑋 (𝑡, 𝑡0, 𝑋0)

𝜕𝑋0
exists and 𝜓(𝑡, 𝑡0, 𝑋0) is a solution of

𝑈′
𝑔𝐻 (𝑡) = 𝐺 (𝑡, 𝑡0, 𝑋0)𝑈 (𝑡), (12)

where 𝐺 (𝑡, 𝑡0, 𝑋0) = 𝐹′
𝑔𝐻

(𝑡, 𝑋 (𝑡, 𝑡0, 𝑋0)) such that 𝜓(𝑡0, 𝑡0, 𝑋0) =

𝜕𝑋 (𝑡0, 𝑡0, 𝑋0)
𝜕𝑋0

= 𝐼 is the identity matrix as element in I;

2. 𝜙(𝑡, 𝑡0, 𝑋0) =
𝜕𝑋 (𝑡, 𝑡0, 𝑋0)

𝜕𝑡0
exists, is a solution of (12) and satisfies:

𝜙(𝑡, 𝑡0, 𝑋0) + 𝜓(𝑡, 𝑡0, 𝑋0)𝐹 (𝑡0, 𝑋0) = 0, (13)

with 𝜙(𝑡0, 𝑡0, 𝑋0) = −𝐹 (𝑡0, 𝑋0).

The next outcomes (14) and (15), inspired by those examined in classic case
studies [21], are still applicable to our space I.

Remark 3 When we integrate

𝜕𝑋 (𝑡, 𝑡0, 𝑠𝑋0)
𝜕𝑠

=
𝜕𝑋 (𝑡, 𝑡0, 𝑠𝑋0)

𝜕𝑋0
.𝑋0 = 𝜓(𝑡, 𝑡0, 𝑠𝑋0).𝑋0

from 𝑠 = 0 into 𝑠 = 1. Then the solution 𝑋 (𝑡0, 𝑡0, 𝑋0) of (9) is associated with
𝜓(𝑡, 𝑡0, 𝑠𝑋0) [21] which is defined in Theorem 3 by

𝑋 (𝑡, 𝑡0, 𝑋0) =

1∫
0

𝜓(𝑡, 𝑡0, 𝑠𝑋0).𝑋0d𝑠
 . (14)

The following outcomes show an expression that estimates the difference of
two solutions 𝑋 (𝑡, 𝑡0, 𝑋1) and 𝑋 (𝑡, 𝑡0, 𝑋2) of (9). Thus, these findings will be
useful in later discussions.
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Theorem 4 Let 𝐹 ∈ 𝐶 [𝑇0 × 𝐵̄[𝑋0, 𝑟], I] such that 𝐹′
𝑔𝐻

(𝑡, 𝑋) exists and is
continuous on 𝑇0 × 𝐵̄[𝑋0, 𝑟]. Suppose that 𝑋 (𝑡, 𝑡0, 𝑋1) and 𝑋 (𝑡, 𝑡0, 𝑋2) are the
solutions of (9) where (𝑡, 𝑋1) and (𝑡, 𝑋2), respectively, exist for 𝑡 ∈ 𝑇0. Then

𝑋 (𝑡, 𝑡0, 𝑋1) �𝑔𝐻 𝑋 (𝑡, 𝑡0, 𝑋2)

=


1∫
0

𝜓(𝑡, 𝑡0, 𝑋2) + 𝑠(𝑋1 − 𝑋2).(𝑋1 �𝑔𝐻 𝑋2)d𝑠
 , (15)

for 𝑡 ∈ 𝑇0.

The case of set valued of R𝑛

If 𝑛 ­ 1 the metric structure is generally given by the Hausdorff distance
between two nonempty subsets U and V on 𝐾𝑐 (R𝑛) which is defined by

𝐷 [𝑈, 𝑉] = max
{
𝑑𝐻 (𝑈, 𝑉), 𝑑𝐻 (𝑉, 𝑈)

}
where 𝑑𝐻 (𝑈, 𝑉) = sup{𝑑 (𝑢, 𝑉); 𝑢 ∈ 𝑈} is a Hausdorff separation, 𝑑 (𝑢, 𝑉) =
inf{‖𝑢 − 𝑣‖; 𝑣 ∈ 𝑉} is the distance from a point u to a set V and ‖.‖ is the
Euclidean norm. Then, the next properties hold:

𝐷 [𝛼𝑈, 𝛼𝑉] = |𝛼 |𝐷 [𝑈, 𝑉], ∀𝛼 ∈ R,
𝐷 [𝑈 + 𝐴, 𝑉 + 𝐴] = 𝐷 [𝑈, 𝑉],
𝐷 [𝑈 + 𝐴, 𝑉 + 𝐵] ¬ 𝐷 [𝑈, 𝑉] + 𝐷 [𝐴, 𝐶],

for all 𝑈, 𝑉, 𝑊, 𝑄 ∈ 𝐾𝑐 (R𝑛) and (𝐾𝑐 (R𝑛), 𝐷) is complete separable metric
space [20].

Remark 4 Let ‖𝑈‖ = sup{‖𝑢‖ : 𝑢 ∈ 𝑈} be the supremum of a nonempty subset
U of 𝐾𝑐 (R𝑛), which is reached. Then

𝐷 [𝑈, Θ] = ‖𝑈‖ (16)

for𝑈 ∈ 𝐾𝑐 (R𝑛), with Θ the zero element of R𝑛.
Moreover, from (16) and (1.3.20) of [20],it obviously follows that��‖𝑈‖ − ‖𝑊 ‖

�� ¬ 𝐷 [𝑈, 𝑊],

for all𝑈, 𝑊 ∈ 𝐾𝑐 (R𝑛) (see [3, 20]).

Let 𝐹 be a multivalued (set valued) mapping from a domain Ω in R𝑝 into the
metric space (𝐾𝑐 (R𝑝), 𝐷): 𝐹 : Ω → 𝐾𝑐 (R𝑝) identically equal to 𝐹 (𝑡) ∈ 𝐾𝑐 (R)𝑝,
for all 𝑡 ∈ Ω. And the next definition reveals that F is generalized Hukuhara
differentiable
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Definition 5 (see [20]) The multivalued mapping 𝐹 : 𝑇0 → R𝑛 is generalized
Hukuhara differentiable at a point 𝑡 ∈ 𝑇0, if there exists 𝐷𝑔𝐻𝐹 (𝑡) ∈ R𝑛 such that
the limits

lim
𝜏→0+

𝐹 (𝑡 + 𝜏) �𝑔𝐻 𝐹 (𝑡)
𝜏

(17)

and

lim
𝜏→0+

𝐹 (𝑡) �𝑔𝐻 𝐹 (𝑡 − 𝜏)
𝜏

(18)

both exist and are equal to 𝐷𝑔𝐻𝐹 (𝑡), where 𝑇0 is an interval of R.

Then, the system of set differential equations is defined by

𝐷𝑔𝐻𝑋 = 𝐹 (𝑡, 𝑋), 𝑋 (𝑡0) = 𝑋0 ∈ 𝐾𝑐 (R𝑛), 𝑡0 ­ 0, (19)

where 𝐹 ∈ 𝐶 [R+ × 𝐾𝑐 (R𝑛), 𝐾𝑐 (R𝑛)] is a set-valued mapping, 𝐷𝑔𝐻𝑋 is the
generalized Hukuhara derivative of the set 𝑋 .
The mapping 𝑋 ∈ 𝐶1 [𝑇0, 𝐾𝑐 (R𝑛)] where 𝑇 = [𝑡0, 𝑡0 + 𝑎], 𝑎 > 0, is said to

be a solution of (19) on 𝑇0, if it satisfies (19) on 𝑇0.
Since 𝑋 (𝑡) is continuously differentiable, we have

𝑋 (𝑡) = 𝑋0 +
𝑡∫

𝑡0

𝐷𝐻𝑋 (𝑠)d𝑠, 𝑡 ∈ 𝑇0 , (20)

according to (19)

𝑋 (𝑡) = 𝑋0 +
𝑡∫

𝑡0

𝐹 (𝑠, 𝑋 (𝑠))d𝑠, 𝑡 ∈ 𝑇0 . (21)

If 𝐹 (𝑡, Θ0) = Θ0, then 𝑋 (𝑡) = Θ0 is a set of stationary solutions to (19). We
will use this form (19) in analyzing the obtained results.

Remark 5 If the generalized Hukuhara differences 𝑋1 �𝑔𝐻 𝑋2 and 𝐹 (𝑡, 𝑋1) �𝑔𝐻
𝐹 (𝑡, 𝑋2) both exist for all 𝑋1, 𝑋2 ∈ 𝐵[𝑋0, 𝑏] = {𝑋 ∈ 𝐾𝑐 (R𝑛) : 𝐷 [𝑋, 𝑋0] ¬
𝑏} ⊂ 𝐾𝑐 (R𝑛) and 𝑡 ∈ 𝑇0, then all estimates from (11) to (15) are satisfied where
𝐹 ∈ 𝐶 [𝑇0 × 𝐵[𝑋0, 𝑏], 𝐾𝑐 (R𝑛)] and as 𝐷𝑔𝐻𝐹 (𝑡, 𝑋) exists and is continuous on
𝑇0 × 𝐵[𝑋0, 𝑏] (see [3, 21]).

Let ℎ : R+ → R∗+ be a continuous positive bounded function. The last notion
is called ℎ-stability.
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Definition 6 (see [30]) The stationary solution 𝑋 (𝑡) = Θ0 to equations (19) is
(ℎS) ℎ-stable if there is a positive, bounded and continuous function ℎ on R+ and
constants 𝐶 ­ 1, 𝛿 ∈ R̄∗+ such that

𝐷 [𝑋 (𝑡, 𝑡0, 𝑊0), Θ0] ¬ 𝐶𝐷 [𝑊0, Θ0]ℎ(𝑡)ℎ−1(𝑡0), (22)

for 𝑡 ­ 𝑡0 ­ 0 and 𝐷 [𝑊0, Θ0] ¬ 𝛿 and (GℎS) globally ℎ-stable if, in (ℎS), 𝛿 < ∞.

Note that Lyapunov function is an important factor in stability theory and it
changes the set differential equations to scalar differential equations (see [23]).
The total derivatives 𝐷+𝑉(𝐹) (𝑡, 𝑋) with respect to the system (19) are defined as
follows:

𝐷+𝑉(𝐹) (𝑡, 𝑋) = lim
𝜎→0+

sup
1
𝜎
[𝑉 (𝑡 + 𝜎, 𝑋 + 𝜎𝐹 (𝑡, 𝑋)) −𝑉 (𝑡, 𝑋)], (23)

for (𝑡, 𝑋) ∈ R+ × 𝐾𝑐 (R𝑛), where 𝑉 ∈ 𝐶 [R+ × 𝐾𝑐 (R𝑛), R+] [22].
Since 𝑋 (𝑡) = 𝑋 (𝑡, 𝑡0, 𝑋0) is a solution of (19),

𝐷+𝑉 (𝑡, 𝑋 (𝑡)) = lim
𝜎→0+

sup
1
𝜎
[𝑉 (𝑡 + 𝜎, 𝑋 (𝑡 + 𝜎)) −𝑉 (𝑡, 𝑋)] . (24)

If 𝑋 ↦→ 𝑉 (𝑡, 𝑋) is Lipschitzian (in 𝑋) for each 𝑡 ∈ R+, then

𝐷+𝑉(𝐹) (𝑡, 𝑋) = 𝐷+𝑉 (𝑡, 𝑋 (𝑡)) (25)

see Yoshizawa [(1.7), p. 3, [37]].
We note that𝑉(19) (𝑡, 𝑋) and𝑉(9) (𝑡, 𝑋) are relative to the systems (19) and (9),

respectively.

3. Major results

The most important findings deal with Converse ℎ-stability theorem for set-
valued mappings. These results are obtained using a Lyapunov-Like function.

3.1. ℎ-stability of set-valued mappings

Our first issue focuses on sufficient conditions for the ℎ-stability of the sys-
tem (19) based on Lyapunov’s second method.

Theorem 5 Assume that the positive function ℎ(𝑡) is continuously differentiable
and bounded on R+. Further, suppose there exist a constant 𝑐 ­ 1 and a function
𝑉 (𝑡, 𝑋) satisfying the following properties:
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i) 𝑉 ∈ 𝐶 [R+ × 𝐾𝑐 (R𝑛), R+] and 𝑉 (𝑡, 𝑋) is Lipschitzian in 𝑋 ∈ 𝐾𝑐 (R𝑛) for
each 𝑡 ∈ R+,

ii) 𝐷 [𝑋, {0}] ¬ 𝑉 (𝑡, 𝑋) ¬ 𝑐𝐷 [𝑋, {0}], (𝑡, 𝑋) ∈ R+ × 𝐾𝑐 (R𝑛), 𝑐 ­ 1,

iii) 𝐷+𝑉(19) (𝑡, 𝑋) ¬
ℎ′(𝑡)
ℎ(𝑡) 𝑉 (𝑡, 𝑋), (𝑡, 𝑋) ∈ R+ × 𝐾𝑐 (R

𝑛).

Then, the stationary solution 𝑋 (𝑡) = Θ0 of (19) is ℎ-stable.

Proof. Let 𝑋 (𝑡) = 𝑋 (𝑡, 𝑡0, 𝑊0) be any solution of (19) and 𝑡 ­ 𝑡0 ­ 0. From (iii),
we obtain

𝑉 (𝑡, 𝑋 (𝑡)) ¬ 𝑉 (𝑡0, 𝑊0) exp
©­«

𝑡∫
𝑡0

ℎ′(𝑠)
ℎ(𝑠) d𝑠

ª®¬ = 𝑉 (𝑡0, 𝑊0) ℎ(𝑡)ℎ(𝑡0)
.

From (ii) we have

𝐷 [𝑋 (𝑡), Θ0] ¬ 𝑉 (𝑡, 𝑋 (𝑡)) ¬ 𝑉 (𝑡0, 𝑊0)
ℎ(𝑡)
ℎ(𝑡0)

¬ 𝑐𝐷 [𝑊0, Θ0]
ℎ(𝑡)
ℎ(𝑡0)

.

Then

𝐷 [𝑋 (𝑡), Θ0] ¬ 𝑐𝐷 [𝑊0, Θ0]ℎ(𝑡)ℎ−1(𝑡0), 𝐷 [𝑊0, Θ0] ¬ 𝛿,

for 𝑡 ­ 𝑡0 ­ 0, 𝑐 > 0 and 𝛿 > 0.
This completes the proof. 2

From Theorem 5, we obtain the following Corollary

Corollary 1 Assume that the positive function ℎ(𝑡) is continuously differentiable
and bounded on R+. Further, suppose there exist constants 𝑐, 𝑝 ­ 1 and function
𝑉 (𝑡, 𝑋) satisfying the properties below.

i) 𝑉 ∈ 𝐶 [R+ × 𝐾𝑐 (R𝑛), R+] and 𝑉 (𝑡, 𝑋) is Lipschitzian in 𝑋 ∈ 𝐾𝑐 (R𝑛) for
each 𝑡 ∈ R+,

ii) 𝐷 [𝑋, {0}] 𝑝 ¬ 𝑉 (𝑡, 𝑋) ¬ 𝑐𝐷 [𝑋, {0}] 𝑝, (𝑡, 𝑋) ∈ R+ × 𝐾𝑐 (R𝑛), 𝑐 ­ 1,

iii) 𝐷+𝑉(19) (𝑡, 𝑋) ¬
ℎ′(𝑡)
ℎ(𝑡) 𝑉 (𝑡, 𝑋), (𝑡, 𝑋) ∈ R+ × 𝐾𝑐 (R

𝑛).

Then, the stationary solution 𝑋 (𝑡) = Θ0 of (19) is ℎ
1
𝑝 -stable.
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Proof. Let 𝑋 (𝑡) = 𝑋 (𝑡, 𝑡0, 𝑊0) be any solution of (19) and 𝑡 ­ 𝑡0 ­ 0. From (iii),
we obtain

𝑉 (𝑡, 𝑋 (𝑡)) ¬ 𝑉 (𝑡0, 𝑊0) exp
©­«

𝑡∫
𝑡0

ℎ′(𝑠)
ℎ(𝑠) d𝑠

ª®¬ = 𝑉 (𝑡0, 𝑊0) ℎ(𝑡)ℎ(𝑡0)
.

From (ii) we have

𝐷 [𝑋 (𝑡), Θ0] 𝑝 ¬ 𝑉 (𝑡, 𝑋 (𝑡)) ¬ 𝑉 (𝑡0, 𝑊0)
ℎ(𝑡)
ℎ(𝑡0)

¬ 𝑐𝐷 [𝑊0, Θ0] 𝑝
ℎ(𝑡)
ℎ(𝑡0)

.

Then

𝐷 [𝑋 (𝑡), Θ0] ¬ 𝑐
1
𝑝𝐷 [𝑊0, Θ0]ℎ

1
𝑝 (𝑡)ℎ−

1
𝑝 (𝑡0), 𝐷 [𝑊0, Θ0] ¬ 𝛿,

for 𝑡 ­ 𝑡0 ­ 0, 𝑐
1
𝑝 > 0 and 𝛿 > 0.

Then the stationary solution 𝑋 (𝑡) = Θ0 of (19) is ℎ
1
𝑝 -stable. 2

Remark 6

1. If ℎ(𝑡) = 𝑐 where c is a positive constant, then the system (19) is uniformly
Lipschitz stable i.e. there exist 𝑘 > 0 and 𝛿 > 0 such that

𝐷 [𝑋 (𝑡, 𝑡0, 𝑋0), Θ0] ¬ 𝑘𝐷 [𝑋0, Θ0],

where 𝐷 [𝑋0, Θ0] ¬ 𝛿, 𝑡 ­ 𝑡0 ­ 0.

2. If ℎ(𝑡) = 𝑒−𝛾𝑡 , where 𝛾 is a positive constant, then the system (19) is exponen-
tially stable.

3. If the function 𝑡 ↦→ ℎ(𝑡) is strictly decreasing and tends to 0 when 𝑡 → +∞,
then the system (19) is asymptotically stable.

3.2. Converse ℎ-stability theorems

In the previous section, we proved that the existence of a Lyapunov function
generates a sufficiently strong condition for the partially desired ℎ-stability.
Now, the converse question is posed. We propose to investigate whether

global ℎ-stability involves the existence of Lyapunov functions of the type given
in Theorem 5. Such issues are resolved in a classical case by Lakshmikantham
and Leela [22] and Choi, Koo and Ryu [7].
In this part, the main challenge is to construct a Lyapunov- Like function

when the system is globally ℎ-stable. There are two obstructions that prove this
converse result.



774 S. BOUKTHIR, B. GHANMI, I. BASDOURI, D. ICHALAL, J. LERBET

First, because of the existence of the generalized Hukuhara difference on
𝐾𝑐 (R𝑛), we prove the converse theorem only for 𝑛 = 1, namely I, since it always
exists in this case.
Second, the following statement (H1), which is in usual cases a consequence

of ℎ-stability, must be regarded as an assumption. In the linear framework, this
assumption is automatically satisfied.

(H1): There exist a constant 𝐶 ­ 1 and a continuous positive function ℎ
(respectively continuous, bounded) on R+, so that, if 𝐷 [𝑋0, {0}] is sufficiently
small such that the system (12) is ℎ-stable, then

𝐷
[
𝜓(𝑡, 𝑡0, 𝑋0), {0}

]
¬ 𝐶ℎ(𝑡)ℎ−1(𝑡0), (26)

for 𝑡 ­ 𝑡0 ­ 0 and the fundamental matrix 𝜓(𝑡, 𝑡0, 𝑋0) is a solution of the
system (12).
Now, we formulate the conserve theorem to provide the necessary conditions

for globally ℎ-stable (GℎS).

Theorem 6 Suppose that the stationary solution 𝑋 = {0} of the system (9) is
globally ℎ-stable and that the solution 𝑈 = {0} of the system (12) is globally
ℎ-stable. Assume further that ℎ′(𝑡) exists and is continuous on R+.

Then, there exists a function (𝑡, 𝑋) ↦→ 𝑉 (𝑡, 𝑋) fulfilling the following prop-
erties:

i) 𝑉 ∈ 𝐶 [R+ × I, R+] and 𝑋 ↦→ 𝑉 (𝑡, 𝑋) is Lipschitzian in 𝑋 ∈ I for each
𝑡 ∈ R+,

ii) 𝐷 [𝑋, {0}] ¬ 𝑉 (𝑡, 𝑋) ¬ 𝑐𝐷 [𝑋, {0}], (𝑡, 𝑋) ∈ R+ × I, 𝑐 ­ 1,

iii) 𝐷+𝑉(9) (𝑡, 𝑋) ¬
ℎ′(𝑡)
ℎ(𝑡) 𝑉 (𝑡, 𝑋), (𝑡, 𝑋) ∈ R+ × I.

Proof. Set up a Lyapunov function

𝑉 (𝑡, 𝑋) = sup
𝜏­0

{
𝐷 [𝑋 (𝑡 + 𝜏, 𝑡, 𝑋), {0}]ℎ−1(𝑡 + 𝜏)ℎ(𝑡)

}
,

where 𝑋 (𝑡, 𝑡0, 𝑋0) is a solution of (9) for (𝑡, 𝑋) ∈ R+ × I.
Based on the global ℎ-stability of (9) we get

𝐷 [𝑋 (𝑡, 𝑡0, 𝑋0), {0}] ¬ 𝐶𝐷 [𝑋0, {0}]ℎ(𝑡)ℎ−1(𝑡0), 𝐷 [𝑋0, {0}] < ∞.

Moreover, we get

sup
𝜏­0

{
𝐷 [𝑋 (𝑡+𝜏, 𝑡, 𝑋), {0}]ℎ−1(𝑡+𝜏)ℎ(𝑡)

}
­ 𝐷 [𝑋 (𝑡, 𝑡, 𝑋), {0}] = 𝐷 [𝑋, {0}],
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and

𝑉 (𝑡, 𝑋) ¬ 𝑐𝐷 [𝑋, {0}]ℎ(𝑡 + 𝜏)ℎ−1(𝑡)ℎ−1(𝑡 + 𝜏)ℎ(𝑡) = 𝑐𝐷 [𝑋, {0}] .
Then (ii) is satisfied, and 𝑉 (𝑡, 𝑋) is defined on R+ × I.
Let (𝑡, 𝑋1), (𝑡, 𝑋2) ∈ R+ × I.

|𝑉 (𝑡, 𝑋1) −𝑉 (𝑡, 𝑋2) |
= | sup

𝜏­0
{𝐷 [𝑋 (𝑡 + 𝜏, 𝑡, 𝑋1), {0}]ℎ−1(𝑡 + 𝜏)ℎ(𝑡)}

− sup
𝜏­0

{𝐷 [𝑋 (𝑡 + 𝜏, 𝑡, 𝑋2), {0}]ℎ−1(𝑡 + 𝜏)ℎ(𝑡)}|

¬ sup
𝜏­0

{|𝐷 [𝑋 (𝑡 + 𝜏, 𝑡, 𝑋1), {0}] − 𝐷 [𝑋 (𝑡 + 𝜏, 𝑡, 𝑋2), {0}] |ℎ−1(𝑡 + 𝜏)ℎ(𝑡)}

¬ sup
𝜏­0

{|𝐷 [𝑋 (𝑡 + 𝜏, 𝑡, 𝑋1), 𝑋 (𝑡 + 𝜏, 𝑡, 𝑋2)] |ℎ−1(𝑡 + 𝜏)ℎ(𝑡)}.

By using the estimates (4) and (15) we have

|𝑉 (𝑡, 𝑋1)−𝑉 (𝑡, 𝑋2) | ¬ sup
𝜏­0

{
|𝐷 [𝑋 (𝑡 + 𝜏, 𝑡, 𝑋1), 𝑋 (𝑡 + 𝜏, 𝑡, 𝑋2)] |ℎ−1(𝑡 + 𝜏)ℎ(𝑡)

}
¬ sup

𝜏­0

{
|𝐷 [𝑋 (𝑡 + 𝜏, 𝑡, 𝑋1) �𝑔𝐻 𝑋 (𝑡 + 𝜏, 𝑡, 𝑋2), {0}] |ℎ−1(𝑡 + 𝜏)ℎ(𝑡)

}
¬ sup

𝜏­0

{
𝐷

[ 1∫
0

𝜓(𝑡 + 𝜏, 𝑡, 𝑋2 + 𝑠(𝑋1 �𝑔𝐻 𝑋2)).(𝑋1 �𝑔𝐻 𝑋2)d𝑠, {0}
]

ℎ−1(𝑡 + 𝜏)ℎ(𝑡)
}
.

Since for every 𝑋1, 𝑋2 ∈ 𝐵̄[𝑋0, 𝑟] ⊂ I with 𝐷 [𝑈, {0}] = ‖𝑈‖ for all 𝑈 ∈ I,
we obtain

𝐷


1∫
0

𝜓(𝑡 + 𝜏, 𝑡, 𝑋2 + 𝑠(𝑋1 �𝑔𝐻 𝑋2)).(𝑋1 �𝑔𝐻 𝑋2)d𝑠, {0}


=








1∫
0

𝜓(𝑡 + 𝜏, 𝑡, 𝑋2 + 𝑠(𝑋1 �𝑔𝐻 𝑋2)).(𝑋1 �𝑔𝐻 𝑋2)d𝑠








¬ sup
𝑌∈𝐵̄[𝑋0, 𝑟]

|𝜓(𝑡 + 𝜏, 𝑡, 𝑌 ) |‖𝑋1 �𝑔𝐻 𝑋2‖

¬ sup
𝑌∈𝐵̄[𝑋0, 𝑟]

|𝜓(𝑡 + 𝜏, 𝑡, 𝑌 ) |𝐷 [𝑋1 �𝑔𝐻 𝑋2, {0}] .
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Based on global ℎ-stability properties such that 𝜓(𝑡 + 𝜏, 𝑡, 𝑋0) satisfies (H1),
we have

|𝑉 (𝑡, 𝑋1) −𝑉 (𝑡, 𝑋2) |
¬ sup

𝜏­0
{𝐶 𝐷 [𝑋1 �𝑔𝐻 𝑋2, {0}] ℎ−1(𝑡 + 𝜏)ℎ(𝑡)ℎ−1(𝑡)ℎ(𝑡 + 𝜏)}

¬ 𝐶 𝐷 [𝑋1, 𝑋2] .

It follows that 𝑋 ↦→ 𝑉 (𝑡, 𝑋) is Lipschitzian in 𝑋 for each 𝑡.
We shall now verify the continuity of (𝑡, 𝑋) ↦→ 𝑉 (𝑡, 𝑋) on R+ × I. Let (𝑡, 𝑋2)

be in R+ × I and let 𝜖 ­ 0. Then,

|𝑉 (𝑡 + 𝜖, 𝑋1) −𝑉 (𝑡, 𝑋2) | ¬ |𝑉 (𝑡 + 𝜖, 𝑋1) −𝑉 (𝑡 + 𝜖, 𝑋2) |
+ |𝑉 (𝑡 + 𝜖, 𝑋2) −𝑉 (𝑡 + 𝜖, 𝑋 (𝑡 + 𝜖, 𝑡, 𝑋2)) |
+ |𝑉 (𝑡 + 𝜖, 𝑋 (𝑡 + 𝜖, 𝑡, 𝑋2)) −𝑉 (𝑡, 𝑋2) |.

We begin with the third term,

|𝑉 (𝑡 + 𝜖, 𝑋 (𝑡 + 𝜖, 𝑡, 𝑋2)) −𝑉 (𝑡, 𝑋2) |
= | sup

𝜏­0
{𝐷 [𝑋 (𝑡 + 𝜖 + 𝜏, 𝑡 + 𝜖, 𝑋2), {0}]ℎ−1(𝑡 + 𝜖 + 𝜏)ℎ(𝑡)}

− sup
𝜏­0

{𝐷 [𝑋 (𝑡 + 𝜏, 𝑡, 𝑋2), {0}]ℎ−1(𝑡 + 𝜏)ℎ(𝑡)}|

= | sup
𝜏­𝜖

{𝐷 [𝑋 (𝑡 + 𝜏, 𝑡, 𝑋2), {0}]ℎ−1(𝑡 + 𝜏)ℎ(𝑡 + 𝜖)}

− sup
𝜏­0

{𝐷 [𝑋 (𝑡 + 𝜏, 𝑡, 𝑋2), {0}]ℎ−1(𝑡 + 𝜏)ℎ(𝑡)}|.

Let

𝑏(𝜖) = sup
𝜏­𝜖

{𝐷 [𝑋 (𝑡 + 𝜏, 𝑡, 𝑋2), {0}]ℎ−1(𝑡 + 𝜏)ℎ(𝑡 + 𝜖)},

we note that 𝑏(𝜖) is nondecreasing and 𝑏(𝜖) → 𝑏(0) as 𝜖 → 0, such that
𝐷 [𝑋 (𝑡 + 𝜏, 𝑡, 𝑋2), {0}]ℎ−1(𝑡 + 𝜏)ℎ(𝑡) is a bounded continuous function, for
𝜏 ­ 0. Then

|𝑉 (𝑡 + 𝜖, 𝑋 (𝑡 + 𝜖, 𝑡, 𝑋2)) −𝑉 (𝑡, 𝑋2) | = |𝑏(𝜖) − 𝑏(0) |,

tends to zero as 𝜖 → 0.
We observe that 𝑋 (𝑡 + 𝜖, 𝑡, 𝑋) is continuous in 𝜖 and 𝑋 ↦→ 𝑉 (𝑡 + 𝜖, 𝑋)

is Lipschitzian in 𝑋 for all 𝜖 , the first two terms of the preceding inequality are
small enough where 𝐷 [𝑋1, 𝑋2] and 𝜖 are small enough.
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This implies that 𝑉 (𝑡, 𝑋) is continuous.
Based on the definition of ℎ-stabilities and uniqueness of solutions, we obtain

𝐷+𝑉 (𝑡, 𝑋 (𝑡))

= lim
𝜎→0+

sup
1
𝜎
[𝑉 (𝑡 + 𝜎, 𝑋 (𝑡 + 𝜎)) −𝑉 (𝑡, 𝑋)]

= lim
𝜎→0+

sup
1
𝜎
[sup
𝜏­0

{𝐷 [𝑋 (𝑡 + 𝜎 + 𝜏, 𝑡 + 𝜎, 𝑋), {0}]ℎ−1(𝑡 + 𝜎 + 𝜏)ℎ(𝑡)}

− sup
𝜏­0

{𝐷 [𝑋 (𝑡 + 𝜏, 𝑡, 𝑋), {0}]ℎ−1(𝑡 + 𝜏)ℎ(𝑡)}]

= lim
𝜎→0+

sup
1
𝜎
[sup
𝜏­𝜎

{𝐷 [𝑋 (𝑡 + 𝜏, 𝑡, 𝑋), {0}]ℎ−1(𝑡 + 𝜏)ℎ(𝑡 + 𝜎)}

− sup
𝜏­0

{𝐷 [𝑋 (𝑡 + 𝜏, 𝑡, 𝑋), {0}]ℎ−1(𝑡 + 𝜏)ℎ(𝑡)}]

¬ lim
𝜎→0+

sup
1
𝜎
[sup
𝜏­0

{𝐷 [𝑋 (𝑡 + 𝜏, 𝑡, 𝑋), {0}]ℎ−1(𝑡 + 𝜏)ℎ(𝑡)

(ℎ(𝑡 + 𝜎)ℎ−1(𝑡) − 1)}]

¬ lim
𝜎→0+

sup
1
𝜎
(ℎ(𝑡 + 𝜎)ℎ−1(𝑡) − 1)𝑉 (𝑡, 𝑋),

¬
ℎ′(𝑡)
ℎ(𝑡) 𝑉 (𝑡, 𝑋).

Since, for 𝜎 > 0,

𝑉 (𝑡 + 𝜎, 𝑋 + 𝜎𝐹 (𝑡, 𝑋)) −𝑉 (𝑡, 𝑋)
¬ |𝑉 (𝑡 + 𝜎, 𝑋 + 𝜎𝐹 (𝑡, 𝑋)) −𝑉 (𝑡 + 𝜎, 𝑋 (𝑡 + 𝜎, 𝑡, 𝑋)) |
+ |𝑉 (𝑡 + 𝜎, 𝑋 (𝑡 + 𝜎, 𝑡, 𝑋)) −𝑉 (𝑡, 𝑋) |

¬ 𝐿𝐷 [𝑋 + 𝜎𝐹 (𝑡, 𝑋) �𝑔𝐻 𝑋 (𝑡 + 𝜎, 𝑡, 𝑋), {0}]
+ |𝑉 (𝑡 + 𝜎, 𝑋 (𝑡 + 𝜎, 𝑡, 𝑋)) −𝑉 (𝑡, 𝑋) |,

it follows that
𝐷+𝑉(9) (𝑡, 𝑋) ¬

ℎ′(𝑡)
ℎ(𝑡) 𝑉 (𝑡, 𝑋).

Then the theorem is proven. 2

The comparison result is true even if 𝐹 (𝑡, 𝑋) is linear in 𝑋 . The following
corollary substantiates this statement.

Corollary 2 If the stationary solution 𝑋 = {0} of the system (9) is globally
ℎ-stable and 𝐹 (𝑡, 𝑋) is linear in 𝑋 , then, ℎ′(𝑡) exists and is continuous on R+.
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Then, there exists a function 𝑉 (𝑡, 𝑋) fulfilling the following properties:

i) 𝑉 ∈ 𝐶 [R+ × I, R+] and 𝑉 (𝑡, 𝑋) is Lipschitzian in X for each 𝑡 ∈ R+,

ii) 𝐷 [𝑋, {0}] ¬ 𝑉 (𝑡, 𝑋) ¬ 𝑐𝐷 [𝑋, {0}], (𝑡, 𝑋) ∈ R+ × I, 𝑐 ­ 1,

iii) 𝐷+𝑉(9) (𝑡, 𝑋) ¬
ℎ′(𝑡)
ℎ(𝑡) 𝑉 (𝑡, 𝑋), (𝑡, 𝑋) ∈ R+ × I.

Proof. Set up a Lyapunov function

𝑉 (𝑡, 𝑋) = sup
𝜏­0

{
𝐷 [𝑋 (𝑡 + 𝜏, 𝑡, 𝑋), {0}]ℎ−1(𝑡 + 𝜏)ℎ(𝑡)

}
,

where 𝑋 (𝑡, 𝑡0, 𝑋0) is a solution of (9) for (𝑡, 𝑋) ∈ R+ × I.
Let us show that 𝑋 ↦→ 𝑉 (𝑡, 𝑋) satisfies the Lipschitz condition.
Let (𝑡, 𝑋1), (𝑡, 𝑋2) ∈ R+ × I. By using the estimates (4) and the properties

of globally ℎ-stable we have��𝑉 (𝑡, 𝑋1) −𝑉 (𝑡, 𝑋2)��
=

��� sup
𝜏­0

{
𝐷 [𝑋 (𝑡 + 𝜏, 𝑡, 𝑋1), {0}]ℎ−1(𝑡 + 𝜏)ℎ(𝑡)

}
− sup
𝜏­0

{
𝐷 [𝑋 (𝑡 + 𝜏, 𝑡, 𝑋2), {0}]ℎ−1(𝑡 + 𝜏)ℎ(𝑡)

} ���
¬ sup

𝜏­0

{
|𝐷 [𝑋 (𝑡 + 𝜏, 𝑡, 𝑋1), {0}] − 𝐷 [𝑋 (𝑡 + 𝜏, 𝑡, 𝑋2), {0}] |ℎ−1(𝑡 + 𝜏)ℎ(𝑡)

}
¬ sup

𝜏­0
{|𝐷 [𝑋 (𝑡 + 𝜏, 𝑡, 𝑋1), 𝑋 (𝑡 + 𝜏, 𝑡, 𝑋2)] |ℎ−1(𝑡 + 𝜏)ℎ(𝑡)}

¬ sup
𝜏­0

{|𝐷 [𝑋 (𝑡 + 𝜏, 𝑡, 𝑋1) �𝑔𝐻 𝑋 (𝑡 + 𝜏, 𝑡, 𝑋2), {0}] |ℎ−1(𝑡 + 𝜏)ℎ(𝑡)}

¬ sup
𝜏­0

{|𝐷 [𝑋 (𝑡 + 𝜏, 𝑡, 𝑋1 �𝑔𝐻 𝑋2), {0}] |ℎ−1(𝑡 + 𝜏)ℎ(𝑡)}

¬ sup
𝜏­0

{𝐶 𝐷 [𝑋1 �𝑔𝐻 𝑋2, {0}] ℎ−1(𝑡 + 𝜏)ℎ(𝑡)ℎ−1(𝑡)ℎ(𝑡 + 𝜏)}

¬ 𝐶 𝐷 [𝑋1, 𝑋2] .

The relationships between (ii) and (iii) can be proved in the same way as the
proof of Theorem 6. The proof is fully complete. 2

Remark 7

1. If ℎ(𝑡) = 𝑐 where c is a positive constant, then we have a converse theorem for
the stability of the system (9).
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2. If ℎ(𝑡) = 𝑒−𝛾𝑡 , where 𝛾 is a positive constant, then we get a converse theorem
for the exponential stability of the system (9).

3. If the function ℎ(𝑡) is strictly decreasing and tends to 0 when 𝑡 to +∞, then we
obtain a converse theorem for the asymptotic stability of the system (9).

4. Perturbed and Cascaded Systems

In this section, we notice that perturbed and cascaded systems are globally
ℎ-stable by using a converse theorem. In particular, we show that this type of
system is globally ℎ-stable.
It is worth noting that, in this application of the converse Theorem 6, the in-

equality (26) is automatically verified and must not be considered as an additional
hypothesis.

4.1. ℎ-Stability of Perturbed Systems

We now focus on the relationships between solutions of the unperturbed
system (9) and solutions of the following perturbed system:

𝑌 ′
𝑔𝐻 = 𝐹 (𝑡, 𝑌 ) + 𝐺 (𝑡, 𝑌 ), 𝑌 (𝑡0) = 𝑌0 , (27)

where 𝐹, 𝐺 ∈ 𝐶 [R+ × I, I] and 𝐹 (𝑡, {0}) = {0}.
The same problem has been tackled in [1] using a common framework.
Specifically, we provide sufficient conditions to extend the global ℎ-stability

of the system (9) to the global ℎ̃-stability of the perturbed system (27) and we
provide an explicit relation between ℎ and ℎ̃.

Theorem 7 Suppose first that the stationary solution 𝑋 = {0} of (9) is globally
ℎ-stable. Further, assume that the solution𝑈 = {0} of the system (12) is globally
ℎ-stable, and that

𝐷 [𝐺 (𝑡, 𝑌 ), {0}] ¬ 𝜆(𝑡)𝐷 [𝑌, {0}], 𝑡 ­ 𝑡0 ­ 0, (28)

where 𝜆 ∈ 𝐿1(R+).
Then, the stationary solution 𝑌 = {0} of (27) is globally ℎ̃-stable where

ℎ̃(𝑡) = ℎ(𝑡)𝑒𝐿
∫ 𝑡

0 𝜆(𝑠)d 𝑠 .
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Proof.Based on Theorem 6, there exist functions (𝑡, 𝑋) ↦→ 𝑉 (𝑡, 𝑋) and 𝑡 ↦→ ℎ(𝑡)
satisfying the three properties indicated in that theorem. We obtain

𝐷+𝑉(27) (𝑡, 𝑌 ) = lim
𝜎→0+

sup
1
𝜎

[𝑉 (𝑡 + 𝜎, 𝑌 + 𝜎(𝐹 (𝑡, 𝑌 ) + 𝐺 (𝑡, 𝑌 )) −𝑉 (𝑡, 𝑌 )]

= lim
𝜎→0+

sup
1
𝜎

[
𝑉 (𝑡 + 𝜎, 𝑌 + 𝜎(𝐹 (𝑡, 𝑌 ) + 𝐺 (𝑡, 𝑌 ))

−𝑉 (𝑡 + 𝜎, 𝑌 + 𝜎𝐹 (𝑡, 𝑌 )) +𝑉 (𝑡 + 𝜎, 𝑌 + 𝜎𝐹 (𝑡, 𝑌 )) −𝑉 (𝑡, 𝑌 )
]

¬ lim
𝜎→0+

sup
1
𝜎
[𝑉 (𝑡 + 𝜎, 𝑌 + 𝜎𝐹 (𝑡, 𝑌 )) −𝑉 (𝑡, 𝑌 )]

+ lim
𝜎→0+

sup
1
𝜎

[
𝑉 (𝑡 + 𝜎, 𝑌 + 𝜎(𝐹 (𝑡, 𝑌 ) + 𝐺 (𝑡, 𝑌 ))

−𝑉 (𝑡 + 𝜎, 𝑌 + 𝜎𝐹 (𝑡, 𝑌 ))
]

¬ 𝐷+𝑉(9) (𝑡, 𝑌 )

+ lim
𝜎→0+

sup
1
𝜎

[
𝐿𝐷 [𝑌 + 𝜎(𝐹 (𝑡, 𝑌 ) + 𝐺 (𝑡, 𝑌 )), 𝑌 + 𝜎𝐹 (𝑡, 𝑌 )]

]
¬ 𝐷+𝑉(9) (𝑡, 𝑌 ) + 𝐿𝐷 [𝐺 (𝑡, 𝑌 ), {0}]

¬
ℎ′(𝑡)
ℎ(𝑡) 𝑉 (𝑡, 𝑌 ) + 𝐿𝜆(𝑡)𝐷 [𝑌, {0}]

¬
[
ℎ′(𝑡)
ℎ(𝑡) + 𝐿𝜆(𝑡)

]
𝑉 (𝑡, 𝑌 ),

where 𝐿 is the Lipschitz constant of the function 𝑉 .
Integrating between 𝑡0 and t and using the property (ii) of 𝑉 (𝑡, 𝑌 ) leads to

𝑉 (𝑡, 𝑋 (𝑡)) ¬ 𝑉 (𝑡0, 𝑌0)𝑒
∫ 𝑡

𝑡0
ℎ′ (𝑠)
ℎ (𝑠) +𝐿𝜆(𝑠)d 𝑠

= 𝑉 (𝑡0, 𝑌0)ℎ(𝑡)ℎ−1(𝑡0)𝑒
𝐿
∫ 𝑡

𝑡0
𝜆(𝑠)d 𝑠

¬ 𝑐𝐷 [𝑌0, {0}]ℎ(𝑡)ℎ−1(𝑡0)𝑒
𝐿
∫ 𝑡

𝑡0
𝜆(𝑠)d 𝑠

.

Then, for 𝑡 ­ 𝑡0, we get

𝐷
[
𝑌 (𝑡, 𝑡0, 𝑌0), {0}

]
¬ 𝑐𝐷 [𝑌0, {0}] ℎ̃(𝑡) ℎ̃−1(𝑡0),

where ℎ̃(𝑡) = ℎ(𝑡)𝑒𝐿
∫ 𝑡

0 𝜆(𝑠)d 𝑠 is a continuous, bounded, and positive function on
R+ and 𝑐 ­ 1. This implies that 𝑌 = {0} of (27) is globally ℎ̃-stable. 2
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4.2. ℎ-Stability of Cascaded Systems

Following [5] and [14], we now consider the cascaded systems of the form:

𝑋′
1𝑔𝐻 = 𝐹1(𝑡, 𝑋1) + 𝐺 (𝑡, 𝑋1, 𝑋2), (29)

𝑋′
2𝑔𝐻 = 𝐹2(𝑡, 𝑋2), (30)

where 𝑋1 ∈ I1, 𝑋2 ∈ I2 and 𝑋 = [𝑋1, 𝑋2]> ∈ I, are the states of the closed-loop
system, 𝐹1, 𝐹2 and 𝐺 are piecewise continuous in t and locally Lipschitz in
𝑋1, 𝑋2 and 𝑋 = [𝑋1, 𝑋2]>, respectively. Suppose that 𝐹1(𝑡, {0}) = {0I1} and
𝐹2(𝑡, {0}) = {0I2}.
In addition, assume that the system

𝑋′
1𝑔𝐻 = 𝐹1(𝑡, 𝑋1) (31)

and system (30) are globally ℎ-stable, to guarantee the global ℎ-stability of the
cascaded system (29)–(30).
Let 𝑋1(𝑡, 𝑡0, 𝑋10) and 𝑋2(𝑡, 𝑡0, 𝑋20) be the unique solutions of (31) and (30)

respectively, such that 𝑋1(𝑡, 𝑡0, 𝑋10) = 𝑋10 and 𝑋2(𝑡, 𝑡0, 𝑋20) = 𝑋20 are the
initial conditions.
Note that 𝑋 (𝑡, 𝑡0, 𝑋0) the unique solution of the cascaded system (29)-(30)
satisfies

𝑋 (𝑡0, 𝑡0, 𝑋0) = 𝑋 (𝑡0) = 𝑋0 = (𝑋10, 𝑋20) ∈ I1 × I2.
We take into account its associated systems

𝑈′
1𝑔𝐻 = 𝑊1(𝑡, 𝑡0, 𝑋1)𝑈1(𝑡), (32)

𝑈′
2𝑔𝐻 = 𝑊2(𝑡, 𝑡0, 𝑋2)𝑈2(𝑡), (33)

respectively where𝑊𝑖 (𝑡, 𝑡0, 𝑋𝑖) = 𝐹′
𝑖𝑔𝐻

(𝑡, 𝑋 (𝑡, 𝑡0, 𝑋𝑖)), 𝑖 = 1, 2.
The following results and techniques are similar to those obtained in [14].

Theorem 8 We assume that the two following conditions hold:

1. The subsystems (30) and (31) are globally ℎ-stable and the stationary solutions
𝑈1 = {0} and𝑈2 = {0} of (32) and (33), respectively are globally ℎ-stable.

2. For any 𝑋1 ∈ I1, 𝑋2 ∈ I2 the estimates

𝐷 [𝐺 (𝑡, 𝑋1, 𝑋2), {0}] ¬ 𝛾(𝑡) (𝐷 [𝑋1, {0}] + 𝐷 [𝑋2, {0}]) (34)

hold for all 𝑡 ­ 0, with
+∞∫
0

𝛾(𝑠)d𝑠 < +∞.



782 S. BOUKTHIR, B. GHANMI, I. BASDOURI, D. ICHALAL, J. LERBET

Then, the cascaded system (29)–(30) is globally ℎ̃-stable where

ℎ̃(𝑡) = ℎ(𝑡) 𝑒𝐿
∫ 𝑡

0 𝛾(𝑠)d 𝑠, 𝐿 ­ 0.

Proof. Based on Theorem 6, there exist two Lyapunov functions (𝑡, 𝑋1) ↦→
𝑉1(𝑡, 𝑋1) and (𝑡, 𝑋2) ↦→ 𝑉2(𝑡, 𝑋2) satisfying the three properties below, for
𝑖 = 1, 2

i) 𝑉𝑖 ∈ 𝐶 [R+ × I𝑖, R+] and 𝑉𝑖 (𝑡, 𝑋𝑖) is Lipschitzian in 𝑋𝑖 for each 𝑡 ∈ R+,

ii) 𝐷 [𝑋𝑖, {0}] ¬ 𝑉𝑖 (𝑡, 𝑋𝑖) ¬ 𝑐𝑖𝐷 [𝑋𝑖, {0}], (𝑡, 𝑋𝑖) ∈ R+ × I𝑖, 𝑐𝑖 ­ 1,

iii) 𝐷+𝑉𝑖 (𝑡, 𝑋𝑖) ¬
ℎ′(𝑡)
ℎ(𝑡) 𝑉𝑖 (𝑡, 𝑋𝑖), (𝑡, 𝑋𝑖) ∈ R+ × I𝑖.

Let us define the function 𝑈 (𝑡, 𝑋) = 𝑉1(𝑡, 𝑋1) + 𝑉2(𝑡, 𝑋2) with 𝑋 =

[𝑋1, 𝑋2]> ∈ I1 × I2. The derivative of 𝑈 (𝑡, 𝑋) with respect to the systems
(29) and (30) is given by

𝐷+𝑈 (𝑡, 𝑋) = 𝐷+𝑉1(29) (𝑡, 𝑋1) + 𝐷+𝑉2(30) (𝑡, 𝑋2)
¬ 𝐷+𝑉1(31) (𝑡, 𝑋1) + 𝐷+𝑉2(30) (𝑡, 𝑋2) + 𝐿𝐷 [𝐺 (𝑡, 𝑋1, 𝑋2), {0}]

¬
ℎ′(𝑡)
ℎ(𝑡) 𝑉1(𝑡, 𝑋1) +

ℎ′(𝑡)
ℎ(𝑡) 𝑉2(𝑡, 𝑋2)

+ 𝐿𝛾(𝑡)
(
𝐷 [𝑋1, {0}] + 𝐷 [𝑋2, {0}]

)
¬

(
ℎ′(𝑡)
ℎ(𝑡) + 𝐿𝛾(𝑡)

)
(𝑉1(𝑡, 𝑋1) +𝑉2(𝑡, 𝑋2))

¬
(
ℎ′(𝑡)
ℎ(𝑡) + 𝐿𝛾(𝑡)

)
𝑈 (𝑡, 𝑋),

where 𝐿 is the Lipschitz constant of the function 𝑉 .
Let

𝜑(𝑡) = 𝑈 (𝑡, 𝑋 (𝑡))𝑒−
∫ 𝑡

𝑡0
ℎ′ (𝑠)
ℎ (𝑠) +𝐿𝛾(𝑠)d 𝑠

= 𝑈 (𝑡, 𝑋 (𝑡)) ℎ(𝑡0)
ℎ(𝑡) 𝑒

−𝐿
∫ 𝑡

𝑡0
𝛾(𝑠)d 𝑠

, for 𝑡 ­ 𝑡0 .
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Then

𝐷+𝜑(𝑡) =
[
𝐷+𝑈 (𝑡, 𝑋 (𝑡)) ℎ(𝑡0)

ℎ(𝑡) −𝑈 (𝑡, 𝑋 (𝑡)) ℎ(𝑡0)ℎ
′(𝑡)

ℎ2(𝑡)

−𝐿𝛾(𝑡)𝑈 (𝑡, 𝑋 (𝑡)) ℎ(𝑡0)
ℎ(𝑡)

]
𝑒
−𝐿

∫ 𝑡

𝑡0
𝛾(𝑠)d 𝑠

=

[
𝐷+𝑈 (𝑡, 𝑋 (𝑡)) −𝑈 (𝑡, 𝑋 (𝑡))

(
ℎ′(𝑡)
ℎ(𝑡) + 𝐿𝛾(𝑡)

)]
ℎ(𝑡0)
ℎ(𝑡) 𝑒

−𝐿
∫ 𝑡

𝑡0
𝛾(𝑠)d 𝑠

¬
[
𝑈 (𝑡, 𝑋 (𝑡))

(
ℎ′(𝑡)
ℎ(𝑡) + 𝐿𝛾(𝑡)

)
−𝑈 (𝑡, 𝑋 (𝑡))

(
ℎ′(𝑡)
ℎ(𝑡) + 𝐿𝛾(𝑡)

)]
· ℎ(𝑡0)
ℎ(𝑡) 𝑒

−𝐿
∫ 𝑡

𝑡0
𝛾(𝑠)d 𝑠

= 0.

Integrating between 𝑡0 and 𝑡:

𝜑(𝑡) − 𝜑(𝑡0) ¬ 0,

then
𝑈 (𝑡, 𝑋 (𝑡)) ℎ(𝑡0)

ℎ(𝑡) 𝑒
−𝐿

∫ 𝑡

𝑡0
𝛾(𝑠)d 𝑠

¬ 𝑈 (𝑡0, 𝑋 (𝑡0)),

which implies that

𝑈 (𝑡, 𝑋 (𝑡)) ¬ 𝑈 (𝑡0, 𝑋 (𝑡0))
ℎ(𝑡)
ℎ(𝑡0)

𝑒
𝐿
∫ 𝑡

𝑡0
𝛾(𝑠)d 𝑠

,

Thanks to the following inequalities

𝐷 [𝑋1(𝑡0), {0}] ¬ 𝐷 [𝑋 (𝑡0), {0}],
𝐷 [𝑋2(𝑡0), {0}] ¬ 𝐷 [𝑋 (𝑡0), {0}],
𝐷 [𝑋 (𝑡), {0}] ¬ 𝐷 [𝑋1(𝑡), {0}] + 𝐷 [𝑋2(𝑡), {0}],

we deduce that

𝐷 [𝑋 (𝑡, 𝑡0, 𝑋 (𝑡0)), {0}] ¬ (𝑐1𝐷 [𝑋1(𝑡0), {0}] + 𝑐2𝐷 [𝑋2(𝑡0), {0}]) ℎ̃(𝑡) ℎ̃−1(𝑡0)

¬ 𝐶𝐷 [𝑋 (𝑡0), {0}] ℎ̃(𝑡) ℎ̃−1(𝑡0),

where ℎ̃(𝑡) = ℎ(𝑡)𝑒𝐿
∫ 𝑡

0 𝛾(𝑠)d 𝑠, 𝑡 ­ 𝑡0, is a positive, continuous and bounded
function defined on R+ and 𝐶 = max{𝑐1, 𝑐2} ­ 1.
This completes the proof of Theorem. 2
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5. Example

Example 1 Consider the differential system shown below as investigated in [26]

𝐷𝑔𝐻𝑋 = 𝜇(𝑡)𝑋, 𝑋 (𝑡0) = 𝑋0 ∈ 𝐾𝑐 (R𝑛), (35)

where 𝜇 ∈ 𝐿1(R+), a real function 𝜇(𝑡) > 0 on R+.
Selecting the Lyapunov function

𝑉 (𝑡, 𝑋 (𝑡)) = 𝐷 [𝑋 (𝑡), Θ0], 𝑡 ­ 𝑡0

we have;
𝐷 [𝑋 (𝑡), Θ0] ¬ 𝑉 (𝑡, 𝑋 (𝑡)) ¬ 2𝐷 [𝑋 (𝑡), Θ0],

for all (𝑡, 𝑋1(𝑡)), (𝑡, 𝑋2(𝑡)) ∈ R+ × 𝐾𝑐 (R𝑛) we get��𝑉 (𝑡, 𝑋1(𝑡)) −𝑉 (𝑡, 𝑋2(𝑡))�� = ��𝐷 [𝑋1(𝑡), Θ0] − 𝐷 [𝑋2(𝑡), Θ0]
��

¬ 𝐷 [𝑋1(𝑡), 𝑋2(𝑡)],

and

𝑉 (𝑡 + 𝜎, 𝑋 (𝑡) + 𝜎𝜇(𝑡)𝑋 (𝑡)) = 𝐷 [𝑋 (𝑡) + 𝜎𝜇(𝑡)𝑋 (𝑡), Θ0]
¬ 𝐷 [𝑋 (𝑡), Θ0] + 𝜎𝐷 [𝜇(𝑡)𝑋 (𝑡), Θ0]
¬ 𝐷 [𝑋 (𝑡), Θ0] + 𝜎𝜇(𝑡)𝐷 [𝑋 (𝑡), Θ0],

then the derivative of V satisfies

𝐷+𝑉 (𝑡, 𝑋 (𝑡)) ¬ 𝜇(𝑡)𝐷 [𝑋 (𝑡), Θ0] =
ℎ′(𝑡)
ℎ(𝑡) 𝑉 (𝑡, 𝑋 (𝑡)),

with the positive function ℎ(𝑡) = 𝑒
∫ 𝑡

0 𝜇(𝑠)d 𝑠 is bounded defined on R+.
Consequently, all the assumptions in Theorem 5 are satisfied and thus the

system (35) is ℎ-stable.
It should be noted that, in [26], Martynyuk demonstrates the stability for

the same system on 𝐾𝑐 (R𝑛), while we show here its ℎ-stability when it is not
asymptotically stable.

6. Conclusion

This paper studies the ℎ-stability of set-valued differential equations. Based
on Lyapunov theory, sufficient conditions for the ℎ-stability of set-valued differ-
ential equations are proved. These results are even more general than exponential
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stability and asymptotic stability. As the system is globally ℎ-stable, we prove the
necessary conditions of ℎ-stability on I set of all non-empty, convex, and compact
intervals of R as well as the converse theorem due to the existence of the Lya-
punov function. The results of this theorem indicate that the global ℎ-stability of
perturbed and cascaded systems is established. Our future works will put special
focus on the extension of the converse theorem in the general case.
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