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MECHANICAL AND AERONAUTICAL ENGINEERING

Non-bifurcation behavior of laminated composite
plates under in-plane compression
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Abstract. The paper deals with bifurcation and/or non-bifurcation post-buckling curves of composite plates under biaxial compression. For
different lay-up sequences, a coupling, i.e. extension-bending (EB) is considered. The current investigations present distinct equilibrium paths
describing when they have bifurcation-type and/or non-bifurcation-type responses. The novel parameter (i.e. EB coupling imperfection) is
calculated to show the amount of non-bifurcation in the equilibrium path as a quantitative parameter. For the case of non-square plates, a novel
mixed-mode analysis is conducted. The effects of different characters in laminated composites such as layer arrangement, loading ratio, aspect
ratio, and boundary conditions are investigated. A novel result concluded in the numerical examples where there are some possibilities to have
different mode shapes in linear and non-linear buckling analysis. FEM results of ANSYS software verify the results of analytical equations.
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1. INTRODUCTION

Unlike traditional isotropic materials, the next generations may
have some complexities in their modelling and analysis. As it
is well known, according to classical lamination theory, the
couplings between different pairs of behaviors, e.g. “extension”,
“shearing”, “bending” and “twisting" can exist. Herein, the cou-
plings between extension and bending were the scope of the cur-
rent study. Such coupling comes when the material distribution
has no symmetry to the middle plane of the structure. According
to the classical lamination theory for thin-walled structures, this
non-symmetry causes a coupling behavior in which exposing
in-plane loads leads a structure to undergo deflection and vice
versa. This is the main reason for observing the non-bifurcation
equilibrium path in the initial post-buckling for plates under
in-plane compressions.

There are a large number of materials that violate the symme-
try across the thickness. One of the familiar cases is functionally
graded materials (FGMs), in which ceramic and/or steel volume
fractions may vary through thickness [1]. Reinforcing structure
by adding a stiffener on one side of the structure (eccentrically
stiffened) may cause a coupling between extension and bend-
ing [2]. A ubiquitous lightweight material with the ability to have
such a coupling is laminated composites where lay-up sequence
is vital in this field [3]. An analogous situation is observed for
materials that are much newer, such as nanotube-reinforced com-
posites [4], shape memory alloys [5], heterogeneous auxetic [6],
and so on. To tackle this problem, such materials can be consid-
ered as a symmetric structure (e.g. for FGM [7,8] and graphene
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platelet [9–11]). However, the problem persists in the case of
unsymmetric cases and there is a need to define a quantitative
parameter to describe coupling effects on the non-bifurcation
equilibrium path. This paper tries to define a parameter for lam-
inated composite plates for the first time in literature. Also, it
can be useful for other types of unsymmetric materials.

According to the literature review, some investigators stated
that there is no bifurcation point for unsymmetric structures
under compression. Due to the presence of coupling (i.e.
“extension-bending” or “stretching-bending”), by applying a
low value of in-plane load, the deflection starts to grow. Such
studies were based on numerical methods like the finite element
method [12] or finite strip method [13]. Also, this condition
can be seen in time-dependent loads, where deflection is non-
zero before dynamic buckling [14]. Lal et al. [15] added the
possibility of eigenvalue/bifurcation in the case of unsymmet-
ric laminates, in which the bending-extension coupling coef-
ficients become zero when in-plane loads coincide with the
neutral plane. Zhang [16] presented the thermal post-buckling
of FGM beams based on a physically neutral surface. In con-
trast to these reports [12–14], some other investigators show
that there is a bifurcation-type equilibrium path in the presence
of extension-bending coupling. Huang and Han [17, 18] inves-
tigated the static and dynamic response of the FGM cylindrical
shell. Duc et al. presented the post-buckling behavior of stiffened
FGM for plates [19], shells [20], and panels [21]. Bich et al. [22]
worked on the non-linear response of FGM shallow spherical
shells under combined thermal and mechanical loads. Sofiyev
et al. [23] studied the non-linear buckling of laminated coni-
cal shells by non-symmetric layer arrangement. Bohlooly and
Malekzadeh Fard [24] presented the post-buckling of rectan-
gular plates with general laminates and considered a concentric
stiffener. Foroutan and Dai [25] examined the static and dynamic
analysis of sigmoid FGM cylindrical shells. Zhu et al. [26] per-
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formed electro-thermo-mechanical post-buckling of the FGM
cylindrical shell while considering piezoelectric layers. In refer-
ences [17–26], the equilibrium and compatibility equations are
derived based on deflection and a stress function. The solution
is based on the Galerkin method, which gives a closed-form
solution in static loads, and it is expeditious in dynamic analy-
sis compared to numerical ways. Such benefits led investigators
to present work (much of which is not cited here) on different
types of materials, geometries, static/dynamic loads, etc. This
method gives reliable results for symmetric structures. How-
ever, the contradictory result between numerical [12,13] and the
Galerkin methods [17–26] is a serious mystery. Therefore, an
attempt is made to find out the main reason for non-bifurcation
post-buckling curves in the presence of the EB coupling matrix
in the current investigation.

The novelty of this paper is defining an analytical param-
eter that shows the amount of non-bifurcation of initial post-
buckling curves in the presence of EB coupling. In this re-
gard, three closed-form equilibrium equations are derived for a
simply supported rectangular plate under biaxial compression.
First, the analytical formulation of laminated composites based
on the Galerkin method is repeated from the available litera-
ture. It gives a bifurcation-type equilibrium path. Second, it is
improved by the virtual displacement principle by using novel
terms in the equilibrium equation and the same deflection func-
tion in the first step. It provides a non-bifurcation-type equilib-
rium path. However, it is accurate for only square plates. Third, a
novel mixed mode of deflection function is considered suitable
for non-square plates. It is found that the boundary condition
has a vital role in the bifurcation-type or non-bifurcation-type
equilibrium path. The solutions without satisfying such bound-
ary conditions yield inaccurate computations for non-symmetric
lay-up sequences. It is decided to fulfill these conditions by as-
suming an artificial rotational spring. This assumption causes
additional terms in the equilibrium equations. The amount of
non-bifurcation is demonstrated by a novel quantitative EB cou-
pling imperfection. The effects of different characters like lay-up
sequence, loading ratio, aspect ratio, and boundary conditions
are investigated. In all numerical results, the results of the present
study are verified by FEM in ANSYS.

2. ANALYTICAL SOLUTION

A plate is composed of laminated composite in this study. The
plate of length 𝑎, width 𝑏, and thickness ℎ and the Cartesian
coordinate system (𝑥, 𝑦, 𝑧) are shown in Fig. 1. The four edges
of the plate are considered movable and simply supported and
they are subjected to biaxial compression with a loading ratio
𝑅 which equals 𝑃𝑦/𝑃𝑥 . Both boundary conditions and in-plane
loads coincide in the middle plane (𝑧 = 0).

Based on classical lamination theory, the resultants of force
N and moment M can be written in a relationship between mid-
plane strains ε0 and curvatures κ by[

N
M

]
=

[
A B
B D

] [
ε0

κ

]
, (1)

Fig. 1. Schematic of a plate under biaxial compression

where A, B, and D matrices are the familiar extensional,
bending-extension coupling, and bending stiffnesses for com-
posite materials, respectively, which can be calculated for a
laminated composite with nr plies [27].

The equivalent form of equation (1) can be written as[
ε0

M

]
=

[
A∗ B∗

B∗∗ D∗

] [
N
κ

]
(2)

and A∗ = A−1, B∗ = −A−1B, B∗∗ = BA−1, and D∗ = D−BA−1B.
Other couplings (e.g. shear-extension and bend-twist) are out of
the scope of the current study and it is assumed that the coef-
ficients 𝐴16 = 𝐴26 = 𝐷16 = 𝐷26 = 0 are zero. One of the very
practical layer arrangements with these conditions is antisym-
metric cross-ply and/or angle-ply lamination.

The functions of stress 𝐹 (𝑥, 𝑦) and deflection 𝑤(𝑥, 𝑦) can be
substituted in the right-hand side of equation (2) by definition of
N𝑇 =

(
𝐹,𝑦𝑦 𝐹,𝑥𝑥 −𝐹,𝑥𝑦

)
and κ𝑇 = −

(
𝑤,𝑥𝑥 𝑤,𝑦𝑦 2𝑤,𝑥𝑦

)
, where

a comma in subscript denotes a partial derivative. According to
von Karman strains [28], the equilibrium equation is written as

𝜕2𝑀𝑥

𝜕𝑥2 +
𝜕2𝑀𝑦

𝜕𝑦2 +2
𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
+𝑁𝑥

(
𝜕2𝑤

𝜕𝑥2 + 𝜕
2�̆�

𝜕𝑥2

)
+ 𝑁𝑦

(
𝜕2𝑤

𝜕𝑦2 + 𝜕
2�̆�

𝜕𝑦2

)
+2𝑁𝑥𝑦

(
𝜕2𝑤

𝜕𝑥𝜕𝑦
+ 𝜕2�̆�

𝜕𝑥𝜕𝑦

)
= 0, (3)

and the compatibility equation is written as

𝜕2𝜀0
𝑥

𝜕𝑦2 +
𝜕2𝜀0

𝑦

𝜕𝑥2 −
𝜕2𝜀0

𝑥𝑦

𝜕𝑥𝜕𝑦
− 𝜕2𝑤

𝜕𝑥𝜕𝑦
· 𝜕

2𝑤

𝜕𝑥𝜕𝑦
+ 𝜕

2𝑤

𝜕𝑥2 · 𝜕
2𝑤

𝜕𝑦2

+ 𝜕
2𝑤

𝜕𝑥2 · 𝜕
2�̆�

𝜕𝑦2 + 𝜕
2�̆�

𝜕𝑥2 · 𝜕
2𝑤

𝜕𝑦2 −2
𝜕2𝑤

𝜕𝑥𝜕𝑦
· 𝜕

2�̆�

𝜕𝑥𝜕𝑦
= 0, (4)

and �̆� is the initial geometrical imperfection of the plate. By
substituting equation (2) into equations (3) and (4), one can
rewrite these equations with respect to 𝑤 and 𝐹 as
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𝑎1

(
𝜕4𝐹

𝜕𝑥2𝜕𝑦2

)
+ 𝑎2

(
𝜕4𝑤

𝜕𝑥2𝜕𝑦2

)
+ 𝑎3

(
𝜕4𝐹

𝜕𝑥4

)
+ 𝑎4

(
𝜕4𝐹

𝜕𝑦4

)
− 𝑎5

(
𝜕4𝑤

𝜕𝑥4

)
− 𝑎6

(
𝜕4𝑤

𝜕𝑦4

)
+

(
𝜕2𝐹

𝜕𝑥2

) (
𝜕2𝑤

𝜕𝑦2 + 𝜕
2�̆�

𝜕𝑦2

)
− 2

(
𝜕2𝑤

𝜕𝑥𝜕𝑦
+ 𝜕2�̆�

𝜕𝑥𝜕𝑦

) (
𝜕2𝐹

𝜕𝑥𝜕𝑦

)
+

(
𝜕2𝐹

𝜕𝑦2

) (
𝜕2𝑤

𝜕𝑥2 + 𝜕
2�̆�

𝜕𝑥2

)
= 0, (5)

and

𝑏2

(
𝜕4𝑤

𝜕𝑥2𝜕𝑦2

)
+ 𝑏1

(
𝜕4𝐹

𝜕𝑥2𝜕𝑦2

)
+ 𝑏3

(
𝜕4𝐹

𝜕𝑥4

)
+ 𝑏4

(
𝜕4𝐹

𝜕𝑦4

)
− 𝑏5

(
𝜕4𝑤

𝜕𝑥4

)
− 𝑏6

(
𝜕4𝑤

𝜕𝑦4

)
+

(
𝜕2𝑤

𝜕𝑦2 + 𝜕
2�̆�

𝜕𝑦2

) (
𝜕2𝑤

𝜕𝑥2

)
−

(
𝜕2𝑤

𝜕𝑥𝜕𝑦

)2

−2
(
𝜕2𝑤

𝜕𝑥𝜕𝑦

) (
𝜕2�̆�

𝜕𝑥𝜕𝑦

)
+

(
𝜕2�̆�

𝜕𝑥2

) (
𝜕2𝑤

𝜕𝑦2

)
= 0, (6)

and unmentioned coefficients are listed in the Appendix.

2.1. Galerkin method

A familiar and fast analytical solution of equations (5) and (6) is
based on the Galerkin method. Due to simply supported bound-
ary conditions, the deflection and geometrical imperfection can
be chosen in the form of sinusoidal function as

𝑤 = 𝑓 sin (𝑚1𝑥) sin (𝑛1𝑦) ,
�̆� = 𝑔 sin (𝑚1𝑥) sin (𝑛1𝑦) ,

𝑚1 =
�̄�𝜋

𝑎
, 𝑛1 =

�̄�𝜋

𝑏
,

(7)

where 𝑓 is an unknown amplitude of deflection, and 𝑔 is a
known amplitude of geometrical imperfection, and �̄� and �̄� are
the number of half waves in directions 𝑥 and 𝑦. By substituting
equation (7) in equation (6), the stress function can be derived
analytically as

𝐹 = 𝜓1 cos (2𝑚1𝑥) +𝜓2 cos (2𝑛1𝑦)
+ 𝜓3 sin (𝑚1𝑥) sin (𝑛1𝑦)

− 0.5𝑃𝑥ℎ𝑦
2 −0.5𝑃𝑦ℎ𝑥

2, (8a)

where

𝜓1 =
𝑓 ( 𝑓 +2𝑔) 𝑛2

1

32𝑏3𝑚
2
1

, 𝜓2 =
𝑓 ( 𝑓 +2𝑔)𝑚2

1

32𝑏4𝑛
2
1

,

𝜓3 = −
𝑓
(
𝑏2𝑚

2
1𝑛

2
1 − 𝑏5𝑚

4
1 − 𝑏6𝑛

4
1
)

𝑏1𝑚
2
1𝑛

2
1 + 𝑏3𝑚

4
1 + 𝑏4𝑛

4
1

.

(8b)

To solve the equilibrium equation (5), the assumed deflection
in equation (7) and the stress function in equation (8a) are substi-
tuted in equation (5). Since the deflection is only an assumption,

these substitutions do not lead to satisfaction in equation (5)
and they result in a residual. Then, the Galerkin integral can be
written as [29, 30]

𝑏∫
0

𝑎∫
0

residual · sin (𝑚1𝑥) sin (𝑛1𝑦) d𝑥d𝑦 = 0. (9)

By integrating, simplifying, and neglecting small values, the
result can be obtained as

𝑓 + 𝑃𝑥

𝑃𝑐𝑟

( 𝑓 +𝑔) + 𝑐1 𝑓
3 + 𝑐2 𝑓

2 = 0, (10a)

where the buckling load 𝑃𝑐𝑟 and other coefficients are listed
in the Appendix. Equation (10a) is a closed-form relationship
between load 𝑃𝑥 and deflection 𝑓 . It should be noted that the
value of 𝑐2 is exceedingly small and negligible. Then, for the
perfect plates (𝑔 = 0), equation (10a) can be rewritten as

𝑃𝑥

𝑃𝑐𝑟

= 1+ 𝑐1 𝑓
2. (10b)

It is a parabolic relation between 𝑃𝑥/𝑃𝑐𝑟 and 𝑓 . In other
words, there will be a bifurcation in the equilibrium path. In
addition, the results of previous investigations [17–26] indicate
that there is a bifurcation-type equilibrium path for the case of
perfect plates. However, the results of other numerical methods
like the finite element method [12, 13] are contrary and their
results may have a non-bifurcation equilibrium path for some
cases of non-zero coupling matrix. Then, the authors of the
current study tried to find the conflict between different methods
and understand when the coupling matrix leads to non-zero
deflection before buckling.

It is found that it is vital to satisfy the boundary condition.
In other words, when the EB coupling matrix is non-zero, some
boundary conditions are not satisfied in previous work [17–26].
For simply supported edges, the following essential conditions
should be satisfied [31]

𝑥 = 0, 𝑎 : 𝑤 = 0, 𝑁𝑥 = −𝑃𝑥ℎ, 𝑁𝑥𝑦 = 0, 𝑀𝑥 = 0,

𝑦 = 0, 𝑏 : 𝑤 = 0, 𝑁𝑦 = −𝑃𝑦ℎ, 𝑁𝑥𝑦 = 0, 𝑀𝑦 = 0,
(11)

where deflection 𝑤 is zero at all edges due to defining a sinu-
soidal function in equation (7). The force resultants 𝑁𝑥 , 𝑁𝑦 ,
and 𝑁𝑥𝑦 are satisfied as a weak form condition (or integral
form) [31]. However, the moment resultants 𝑀𝑥 and 𝑀𝑦 are
non-zero due to the existence of the EB coupling matrix. This is
the main reason for contradictory results in the literature review.
To scrutinize this lack, equation (2) can be rewritten in detail as

𝑀𝑥 = 𝐵
∗∗
11𝐹,𝑦𝑦 +𝐵

∗∗
12𝐹,𝑥𝑥 −𝐵

∗∗
16𝐹,𝑥𝑦 −𝐷

∗
11𝑤,𝑥𝑥

+ 𝐷∗
12𝑤,𝑦𝑦 ,

𝑀𝑦 = 𝐵
∗∗
21𝐹,𝑦𝑦 +𝐵

∗∗
22𝐹,𝑥𝑥 −𝐵

∗∗
26𝐹,𝑥𝑦 −𝐷

∗
21𝑤,𝑥𝑥

+ 𝐷∗
22𝑤,𝑦𝑦 ,

(12a)
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where their values at the edges are

𝑀𝑥 = −𝐵∗∗
11𝑃𝑥ℎ−𝐵∗∗

12𝑃𝑦ℎ ≠ 0,

𝑀𝑦 = −𝐵∗∗
21𝑃𝑥ℎ−𝐵∗∗

22𝑃𝑦ℎ ≠ 0.
(12b)

To overcome this problem, it can be assumed that four ro-
tational springs are distributed along four edges of the plate.
Therefore, the right-hand side of equation (12b) should equal

𝑀𝑥

���
𝑥=0

= −𝐵∗∗
11𝑃𝑥ℎ−𝐵∗∗

12𝑃𝑦ℎ = −𝐾1

(
𝜕𝑤

𝜕𝑥

)
𝑥=0

,

𝑀𝑥

���
𝑥=𝑎

= −𝐵∗∗
11𝑃𝑥ℎ−𝐵∗∗

12𝑃𝑦ℎ = +𝐾1

(
𝜕𝑤

𝜕𝑥

)
𝑥=𝑎

,

𝑀𝑦

���
𝑦=0

= −𝐵∗∗
21𝑃𝑥ℎ−𝐵∗∗

22𝑃𝑦ℎ = −𝐾2

(
𝜕𝑤

𝜕𝑦

)
𝑦=0

,

𝑀𝑦

���
𝑦=𝑏

= −𝐵∗∗
21𝑃𝑥ℎ−𝐵∗∗

22𝑃𝑦ℎ = +𝐾2

(
𝜕𝑤

𝜕𝑦

)
𝑦=𝑏

.

(12c)

However, due to the assumption of the artificial springs at the
edges, the equilibrium equation will be changed.

2.2. Virtual displacement principle

To derive the equilibrium equation of the plate surrounded by
the springs, the virtual displacement principle can be applied,
where a variation of total potential energy 𝛿Π is equal to the
subtraction of the variation of internal strain energy 𝛿U and the
variation of external loads 𝛿W (i.e. 𝛿Π = 𝛿U− 𝛿W = 0). The
variation of internal strain energy can be written as integral
form as

𝛿U =

𝑏∫
0

𝑎∫
0

[
𝑁𝑥𝛿𝜀

0
𝑥 +𝑁𝑦𝛿𝜀

0
𝑦 +𝑁𝑥𝑦𝛿𝜀

0
𝑥𝑦

+ 𝑀𝑥𝛿𝜅𝑥 +𝑀𝑦𝛿𝜅𝑦 +𝑀𝑥𝑦𝛿𝜅𝑥𝑦

]
d𝑥d𝑦. (13a)

By employing classical theory and von Karman non-linear
relationships, the final form of equation (13a) can be obtained as

𝛿U =

𝑏∫
0

𝑎∫
0

[
𝜕2𝑀𝑥

𝜕𝑥2 +
𝜕2𝑀𝑦

𝜕𝑦2 +2
𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦

+ 𝑁𝑥

(
𝜕2𝑤

𝜕𝑥2 + 𝜕
2�̆�

𝜕𝑥2

)
+𝑁𝑦

(
𝜕2𝑤

𝜕𝑦2 + 𝜕
2�̆�

𝜕𝑦2

)
+ 2𝑁𝑥𝑦

(
𝜕2𝑤

𝜕𝑥𝜕𝑦
+ 𝜕2�̆�

𝜕𝑥𝜕𝑦

)]
𝛿𝑤d𝑥d𝑦. (13b)

The inside of the above multiple integral is equal to the equi-
librium equation in equation (3). The variation of external loads
due to in-plane compression can be calculated as

𝛿W =

𝑏∫
0

[
−𝑃𝑥 (𝛿𝑢)

] 𝑥=𝑎
𝑥=0

d𝑦 +
𝑎∫

0

[
−𝑃𝑦 (𝛿𝑣)

] 𝑦=𝑏
𝑦=0

d𝑥, (14a)

where (𝑢, 𝑣) are in-plane displacements. The variation of exter-
nal loads due to moments of artificial springs can be calculated as

𝛿W = −
𝑏∫

0

[
𝑀𝑥

(
𝜕𝑤

𝜕𝑥

)] 𝑥=𝑎
𝑥=0

d𝑦−
𝑎∫

0

[
𝑀𝑦

(
𝜕𝑤

𝜕𝑦

)] 𝑦=𝑏
𝑦=0

d𝑥. (14b)

Therefore, by employing recent equations, the variation of
total potential energy will be equal to

𝑏∫
0

𝑎∫
0

[
𝜕2𝑀𝑥

𝜕𝑥2 +
𝜕2𝑀𝑦

𝜕𝑦2 +2
𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦

+ 𝑁𝑥

(
𝜕2𝑤

𝜕𝑥2 + 𝜕
2�̆�

𝜕𝑥2

)
+𝑁𝑦

(
𝜕2𝑤

𝜕𝑦2 + 𝜕
2�̆�

𝜕𝑦2

)
+ 2𝑁𝑥𝑦

(
𝜕2𝑤

𝜕𝑥𝜕𝑦
+ 𝜕2�̆�

𝜕𝑥𝜕𝑦

)]
𝛿𝑤d𝑥d𝑦

−
(
𝐵∗∗

11𝑃𝑥ℎ+𝐵∗∗
12𝑃𝑦ℎ

) 𝑏∫
0

[
𝜕𝑤

𝜕𝑥

] 𝑥=𝑎
𝑥=0

d𝑦

−
(
𝐵∗∗

21𝑃𝑥ℎ+𝐵∗∗
22𝑃𝑦ℎ

) 𝑎∫
0

[
𝜕𝑤

𝜕𝑦

] 𝑦=𝑏
𝑦=0

d𝑥 = 0. (15)

Again, by integrating, simplifying, and neglecting small val-
ues, the result can be obtained as

𝑓 + 𝑃𝑥

𝑃𝑐𝑟

( 𝑓 +𝑔 + 𝑟) + 𝑐1 𝑓
3 + 𝑐2 𝑓

2 = 0. (16)

The only difference between equation (10a) and equation (16)
is in coefficient 𝑟 which is defined as 𝑟 = 𝑘6/𝑘3, and

𝑘3 =
ℎ𝜋2 (

𝑅𝑎2�̄�2 + 𝑏2�̄�2)
4𝑏𝑎

,

𝑘6 =

ℎ
(
𝑅𝐵∗∗

12 +𝐵
∗∗
11

)
�̄�𝑏

(
−(−1)�̄� +1

+(−1)�̄�+�̄� − (−1) �̄�

)
𝑎�̄�

+
ℎ
(
𝑅𝐵∗∗

22 +𝐵
∗∗
21

)
�̄�𝑎

(
−(−1)�̄� +1

+(−1)�̄�+�̄� − (−1) �̄�

)
𝑏�̄�

.

(17)

It should be noted that the effect of the coefficient 𝑟 in equation
(16) is like the effect of geometrical imperfection 𝑔. So, this
novel parameter is called the EB coupling imperfection in the
next section, and it is useful to compare with respect to the
geometrical imperfection. According to equation (17), the EB
coupling imperfection can be calculated for different types of
composites (e.g. FGM) using their familiar A, B, and D matrices.
However, it is presented only for GFRP laminated composites
in this study.

2.3. Virtual displacement principle for non-square plates

For the case of square GFRP laminated composite plates, there
will be a one-half wave in both 𝑥 and 𝑦 directions (�̄� = �̄� = 1).
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Therefore, equation (17) can be simplified as

𝑟 =
16
𝜋2

(
𝐵∗∗

11 +𝐵
∗∗
21

)
. (18)

The results of an extensive finite element analysis in ANSYS
show that the deflection function in equation (7) is not suit-
able for the case of non-square (𝑎/𝑏 > 1.5) and unsymmet-
ric plates and there will be a mixed-mode response. The term
“mixed mode” was recently introduced in [32] for the first time
in the literature for far equilibrium path and dynamic response
of isotropic plates. However, this phenomenon will be demon-
strated in the next section for the case of non-square and un-
symmetric laminated plates. In other words, the EB coupling
imperfection leads to a mode shape �̄� = �̄� = 1 and the geom-
etry yields another mode. For instance, the mixed mode of a
plate with 𝑎/𝑏 = 3 is illustrated in Fig. 2. The deflection has two
modes as (�̄� = �̄� = 1) and (�̄� = 3, �̄� = 1). Therefore, a proper
deflection function is

𝑤 = 𝑓1 sin
( 𝜋
𝑎
𝑥

)
sin

( 𝜋
𝑏
𝑦

)
+ 𝑓2 sin

(
3𝜋
𝑎
𝑥

)
sin

( 𝜋
𝑏
𝑦

)
(19)

or equivalently for two pairs of arbitrary mode shapes

𝑤 = 𝑓1 sin (𝑚1𝑥) sin (𝑛1𝑦) + 𝑓2 sin (𝑚2𝑥) sin (𝑛2𝑦) (20)

and

�̆� = 𝑔1 sin (𝑚1𝑥) sin (𝑛1𝑦) +𝑔2 sin (𝑚2𝑥) sin (𝑛2𝑦) , (21)

where

𝑚1 =
�̄�1𝜋

𝑎
, 𝑛1 =

�̄�1𝜋

𝑏
, 𝑚2 =

�̄�2𝜋

𝑎
, 𝑛2 =

�̄�2𝜋

𝑏
. (22)

Fig. 2. The effect of mixed mode for a plate with
𝑎

𝑏
= 3, (a) the single

mode from equation (5) and (b) the mixed mode from equation (19)
when 𝑓1 · 𝑓2 < 0

By substituting equations (20) and (21) into equation (6),
the stress function can be derived analytically. However, due to
limitations in pages, it is not mentioned here. Then, the stress
and deflection functions can be substituted in the variation of
total potential energy in equation (15). By integrating and sim-
plifying, the results can be derived in two equilibrium equa-
tions for finding 𝑓1 and 𝑓2. However, the general solution will
have huge terms, and due to limitations in pages, a case study
(�̄�1 = �̄�1 = �̄�2 = 1, �̄�2 = 3) is listed here as

𝑓1 +
𝑃𝑥

𝑃𝑐𝑟1
( 𝑓1 +𝑔1 + 𝑟1)

+ 1
ℎ4

(
ℎ1 𝑓

2
1 + ℎ2 𝑓

2
2 + ℎ3 𝑓1 𝑓2 + ℎ5 𝑓2

+ ℎ7 𝑓
3
1 + ℎ8 𝑓

3
2 + ℎ9 𝑓

2
1 𝑓2 + ℎ10 𝑓1 𝑓

2
2

+ ℎ11 𝑓
2
1 + ℎ12 𝑓

2
2 + ℎ13 𝑓1 𝑓2

)
= 0,

𝑓2 +
𝑃𝑥

𝑃𝑐𝑟2
( 𝑓2 +𝑔2 + 𝑟2)

+ 1
ℎ18

(
ℎ14 𝑓

2
1 + ℎ15 𝑓

2
2 + ℎ16 𝑓1 𝑓2 + ℎ17 𝑓1

+ ℎ20 𝑓
3
1 + ℎ21 𝑓

3
2 + ℎ22 𝑓

2
1 𝑓2 + ℎ23 𝑓1 𝑓

2
2

+ ℎ24 𝑓
2
1 + ℎ25 𝑓

2
2 + ℎ26 𝑓1 𝑓2

)
= 0,

(23)

where

𝑃𝑐𝑟1 =
ℎ4
ℎ6
, 𝑟1 =

ℎ27
ℎ6

, 𝑃𝑐𝑟2 =
ℎ18
ℎ19

, 𝑟2 =
ℎ28
ℎ19

, (24)

and the coefficients ℎ1, . . . , ℎ28 are some explicit functions that
can be provided at the request of the readers. As expected, there
are two types of EB coupling imperfections as 𝑟1 and 𝑟2 and two
geometrical imperfections as 𝑔1 and 𝑔2 in equation (23) which
are related to two mode shapes of mixed response.

3. NUMERICAL EXAMPLES

To illustrate the effect of EB coupling matrix on bifurcation-
type and/or non-bifurcation-type equilibrium paths of the lam-
inated composite plates, a lamina made of GFRP [33] with
the following material properties is considered: 𝐸1 = 40 GPa,
𝐸2 = 𝐸3 = 9 GPa, 𝐺12 = 𝐺31 = 3.4 GPa, 𝐺23 = 2.7 GPa and
𝜈12 = 0.28. Then, the matrices A, B, and D can be calculated for
different types of lay-up sequences [27]. Again, it is repeated that
the shear-extension and bend-twist couplings are out of scope,
and it is assumed that the coefficients 𝐴16 = 𝐴26 = 𝐷16 = 𝐷26 = 0
are zero. Therefore, a familiar example is the antisymmetric lay-
up sequence, which can be used in different cross-ply and/or
angle-ply cases. The geometrical parameters of different types
of examples (e.g. square, and rectangular) are 𝑎 = 𝑏 = 100 mm,
𝑎 = 2𝑏 = 200 mm, and 𝑎 = 3𝑏 = 300 mm, and the thickness is
ℎ = 1 mm. In all cases, the current results are compared with
the FEM results of ANSYS software (see [34] for element type).
In the figures, the variation of dimensionless load 𝑃/𝑃𝑐𝑟 versus
dimensionless deflection 𝑤max/ℎ or 𝑤𝑐/ℎ are plotted, where
𝑤max denotes the maximum deflection of the plate and 𝑤𝑐 is
the deflection corresponding to the center of the plate. The cal-
culation of 𝑃𝑐𝑟 in non-bifurcation cases are not sensible. It
should be noted that the calculation of this parameter in AN-
SYS is based on linear buckling analysis [34]. In the present
study, it is calculated from the explicit equation in the Appendix
for single mode and from equation (24) for mixed mode. Since
the in-plane displacements at edges remain straight in the post-
buckling range [31], this condition is provided by the coupling
boundary condition in ANSYS.

The results of solutions of equations (10a) and (16) are
compared in Fig. 3, for a square laminated composite plate
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[(0/90)4]𝑇 under uniaxial compression (𝑅 = 0). The geomet-
rical imperfection amplitude 𝑔/ℎ is equal to 0.001. As seen,
without considering the mentioned boundary condition in equa-
tion (12c), the equilibrium path tends to have bifurcation-type
buckling (when 𝑔/ℎ → 0). On the other hand, the effect of
such a boundary condition is like adding another imperfection,
which is called the EB coupling imperfection (𝑟) in the present
study. However, the value is negative in this case. Therefore, the
deflection grows in the opposite side (−𝑧). According to com-
parisons with FEM results, satisfying all boundaries is of great
significance to get reliable results.

Fig. 3. Equilibrium path of a plate with and without satisfying proper
boundary condition

According to equation (12b), when a plate is subjected to uni-
axial compression, only 𝐵∗∗

11 and 𝐵∗∗
21 have influence on the value

of coupling imperfection. However, a plate under biaxial com-
pression has more complexity due to the existence of 𝐵∗∗

11, 𝐵∗∗
21,

𝐵∗∗
12, and 𝐵∗∗

22. This effect is shown in Fig. 4 for a square laminated
composite plate [(90/0)4]𝑇 with a geometrical imperfection of
0.001. Unexpectedly, the biaxial loading does not make EB im-
perfection in the equilibrium path. Because the antisymmetric
cross-ply laminate has 𝐵∗∗

11 = −𝐵∗∗
22 and 𝐵∗∗

12 = −𝐵∗∗
21. According

to the Appendix and equation (17), 𝑟 has zero value for 𝑅 = 1.
Indeed, for other non-symmetric cases or different loading ratio
(𝑅 ≠ 1), there will be non-zero 𝑟. It is expected that the perfect
plate [(90/0)4]𝑇 under equally biaxial compression has exactly
a bifurcation-type equilibrium path.

There are two other points which can be found in Fig. 4.
First, by comparing Fig. 3 (blue line) and Fig. 4 (blue line), it
can be found that [(0/90)4]𝑇 and [(90/0)4]𝑇 have negative and
positive deflection growth, respectively. Because the value of
EB coupling imperfection is equal, it has a different sign, and
this sign is highly dependent on the lay-up sequence. Second,

Fig. 4. Equilibrium path of a plate under uniaxial/biaxial compression

for a plate under shear load (not presented here), also 𝐵∗∗
16 and

𝐵∗∗
26 will influence the value of EB coupling imperfection.
In Fig. 5, four different antisymmetric cross-ply laminated

composite square plates [(90/0)nr]𝑇 are investigated, where
𝑛𝑟 = 2,4,8,16, and the total thickness is the same. In all cases
of this example, the plate with zero value of geometrical im-
perfection is subjected to uniaxial compression. As can be seen,
alternatively, by increasing the number of 0- and 90-degree plies,
the magnitude of coefficients of the coupling matrix (or equiva-

Fig. 5. Equilibrium path of a plate with different number of plies
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lently B∗∗) are reduced. Subsequently, the last curves (𝑛𝑟 = 16)
are getting to be close to the bifurcation-type equilibrium path.
As seen, the coefficient 𝑟 is useful to demonstrate the amount of
EB coupling as a quantity.

One of the important case studies can be seen in the plates
with antisymmetric angle-ply lay-up sequences where non-zero
coefficients of B∗∗ are 𝐵∗∗

16, 𝐵∗∗
26, 𝐵∗∗

61, and 𝐵∗∗
62. However, these

coefficients are zero for cross-ply and other remaining coeffi-
cients of B∗∗ are non-zero (i.e. 𝐵∗∗

11, 𝐵∗∗
12, 𝐵∗∗

21, and 𝐵∗∗
22). As

explained before, 𝐵∗∗
16 and 𝐵∗∗

26 are significant for the plates un-
der shear load. Also, 𝐵∗∗

61 and 𝐵∗∗
62 have no effect in the amount of

EB coupling imperfection according to equation (17). To verify
this report, different types of antisymmetric angle-ply lay-up se-
quences (e.g. [(15/−15)4]𝑇 , [(30/−30)4]𝑇 , and [(45/−45)4]𝑇 )
are selected and their results are illustrated in Fig. 6. For conve-
nience, the lay-up sequence can be demonstrated as [(𝜃/−𝜃)4]𝑇 ,
which 𝜃 = 15,30,45. The geometrical imperfection of the square
plate is 0.001 and the plate is subjected to uniaxial compression.
As expected, both ANSYS and present results show that all anti-
symmetric angle-ply cases tend to have bifurcation points when
𝑔/ℎ→ 0.

Fig. 6. Equilibrium path of a plate with different angle-ply cases

In all the above examples, there was a unique half wave in 𝑥
and 𝑦 directions (i.e. �̄� = �̄� = 1). According to the definition of
coupling imperfection 𝑟 (see the Appendix), it is highly depen-
dent on the number of half waves. It can be observed that for
an even number of half waves, it will be zero. Then, a question
can arise if there is a bifurcation-type equilibrium path for a
rectangular plate with 𝑎/𝑏 = 2. To investigate this case, three
different cases of aspect ratio are considered, and the results are
shown in Fig. 7a. In this problem, the laminated composite plate
[(90/0)4]𝑇 with zero geometrical imperfection is subjected to
uniaxial compression. An interesting point can be seen in the

case of 𝑎/𝑏 = 2, in which the plate tends to have three half
waves (�̄� = 3). However, the eigenvalue buckling mode shape
is �̄� = 2. Because the plate cannot ignore the existence of the EB
coupling imperfection. Therefore, a novel finding of the current
paper is that there are some possibilities to have different mode
shapes in linear and non-linear buckling analysis. Another sig-
nificant finding is that the EB coupling imperfection has a mode

(a)

(b)

Fig. 7. Equilibrium path of a plate with considering different aspect
ratio by employing (a) equation (16) and (b) equation (23)
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shape like �̄� = �̄� = 1. When a plate has a non-square geometry,
the deflection will be mixed into two modes (in these cases,
�̄� = �̄� = 1 and �̄� = 3, �̄� = 1). Therefore, the assumed deflection
with a single mode (see equation (7)) is not enough to give more
accurate results. Therefore, the results of the deflection with si-
multaneous two modes in equation (23) are compared in Fig. 7b
and a good agreement can be seen between the two methods of
solution.

In the presence of the EB coupling matrix, many other ef-
fects cause bifurcation-type or non-bifurcation-type equilibrium
paths. For instance, it is proved that the main reason for non-
bifurcation is the simply supported boundary condition (see
equation (11)). Therefore, it is expected that for clamped con-
ditions, the plate gives a bifurcation-type equilibrium path. Due
to the assumed deflection function (see equation (7)) not being
suitable for this boundary condition, only the results of AN-
SYS are shown in Fig. 8. As seen, the clamped square plate
[(90/0)4]𝑇 with the geometrical imperfection of 0.001 is not
affected by EB coupling matrix and beyond the buckling load
the deflection grows relatively suddenly.

Fig. 8. Equilibrium paths with simply supported or clamped edges

4. CONCLUSIONS

First, the equilibrium and compatibility equations of laminated
composite plates are solved by an analytical Galerkin method,
and a closed-form solution of loading and deflection of the plate
is derived. It is explained that in the presence of the EB coupling
matrix, the essential boundary conditions will be changed. By
assuming an artificial rotational spring, the boundary conditions
are satisfied. Second, the equilibrium equation is modified by
additional terms in the virtual displacement principle. Third,
the deflection function was changed to cover non-square plates.

As a reflection of the prospect, such analytical formulations can
be employed to investigate whether the concept of bifurcation
buckling applies to unsymmetric laminated composite plates.
In the numerical results, it is demonstrated that satisfying all
boundaries is of great significance to obtain reliable results. It is
shown the existence of a coupling matrix does not always mean
giving a non-bifurcation-type equilibrium path and the value
(EB coupling imperfection) depends on:

Load: One of the influencing factors is the type of load. In the
case of uniaxial load, 𝐵∗∗

11, 𝐵∗∗
21 lead to the coupling imperfection.

In the case of biaxial load, all 𝐵∗∗
11, 𝐵∗∗

12, 𝐵∗∗
21, 𝐵∗∗

22 influence the
coupling imperfection. In the case of shear load, only 𝐵∗∗

16, 𝐵∗∗
26

make a condition for non-bifurcation.
Number of plies: By increasing the number of plies, the mag-

nitude of coefficients of 𝐵∗∗ decreases. This reduction makes
the equilibrium path of the plates closer to the bifurcation-type
one.

Antisymmetric angle-ply: This lay-up sequence has a non-
zero coupling matrix only in 𝐵∗∗

16, 𝐵∗∗
26, 𝐵∗∗

61, 𝐵∗∗
62. None of these

coefficients affects the coupling imperfection.
Rectangular Plate: The EB coupling matrix may change the

mode shape of the rectangular plate in the post-buckling regime,
in which the number of half waves will be odd. However, it can
be an even number in eigenvalue buckling analysis. Also, the
mode shape will be a mix of first (𝑚 = 𝑛 = 1) and a mode shape
with odd numbers with the lowest buckling load.

Clamped: In the case of a clamped boundary condition, there
is no effect of the coupling matrix on the non-bifurcation type
of the equilibrium path.

APPENDIX

The coefficients in equation (6), (8a), and (16) are defined as

𝑎1 = 𝐵
∗∗
11 +𝐵

∗∗
22 −2𝐵∗∗

66 , 𝑎2 = −𝐷∗
12 −𝐷

∗
21 −4𝐷∗

66 ,

𝑎3 = 𝐵
∗∗
12 , 𝑎4 = 𝐵

∗∗
21 , 𝑎5 = 𝐷

∗
11 , 𝑎6 = 𝐷

∗
22 ,

𝑏1 = 2𝐴∗
12 + 𝐴

∗
66 , 𝑏2 = −𝐵∗

22 +2𝐵∗
66 −𝐵

∗
11 ,

𝑏3 = 𝐴
∗
22 , 𝑏4 = 𝐴

∗
11 , 𝑏5 = 𝐵

∗
21 , 𝑏6 = 𝐵

∗
12 ,

𝑃𝑐𝑟 =

(
𝑘3
𝑘2

)−1
, 𝑐1 =

𝑘4
𝑘2
, 𝑐2 =

𝑘1
𝑘2

+ 𝑘5
𝑘2
,

𝑘1 =
𝜋2𝑚𝑛 (𝑎3𝑏4 + 𝑎4𝑏3) ((−1)𝑚−1− (−1)𝑚+𝑛 + (−1)𝑛)

6𝑏𝑎𝑏3𝑏4
,

𝑘2 = −

𝜋4

©«

𝑛8 (−𝑎4𝑏6 + 𝑎6𝑏4) 𝑎8

+𝑛6𝑏2𝑚2 (−𝑎1𝑏6 − 𝑎2𝑏4 + 𝑎4𝑏2 + 𝑎6𝑏1) 𝑎6

+𝑏4𝑚4𝑛4

(
𝑎1𝑏2 − 𝑎2𝑏1 − 𝑎3𝑏6

−𝑎4𝑏5 + 𝑎5𝑏4 + 𝑎6𝑏3

)
𝑎4

+𝑏6𝑚6𝑛2

(
−𝑎1𝑏5 − 𝑎2𝑏3

+𝑎3𝑏2 + 𝑎5𝑏1

)
𝑎2

+𝑏8𝑚8 (−𝑎3𝑏5 + 𝑎5𝑏3)

ª®®®®®®®®®®®®¬
4𝑎3𝑏3 (

𝑎4𝑏4𝑛4 + 𝑎2𝑏2𝑏1𝑚2𝑛2 + 𝑏4𝑏3𝑚4) ,

8 Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 2, p. e148874, 2024



Non-bifurcation behavior of laminated composite plates under in-plane compression

𝑘3 =
ℎ𝜋2 (

𝑅𝑎2𝑛2 + 𝑏2𝑚2)
4𝑏𝑎

, 𝑘4 = −
𝜋4 (

𝑎4𝑏4𝑛
4 + 𝑏4𝑏3𝑚

4)
64𝑏3𝑎3𝑏3𝑏4

,

𝑘5 =

2𝑛
©«

𝑎4𝑏6𝑛
4

−𝑎2𝑏2𝑏2𝑚
2𝑛2

+𝑏4𝑏5𝑚
4

ª®®¬𝑚𝜋2 (−1+ (−1)𝑚) ((−1)𝑛 −1)

3𝑏𝑎
(
𝑎4𝑏4𝑛4 + 𝑎2𝑏2𝑏1𝑚2𝑛2 + 𝑏4𝑏3𝑚4) ,

𝑘6 =

ℎ
(
𝑅𝐵∗∗

12 +𝐵
∗∗
11

)
𝑚𝑏

(
−(−1)𝑚 +1

+(−1)𝑚+𝑛 − (−1)𝑛

)
𝑎𝑛

+
ℎ
(
𝑅𝐵∗∗

22 +𝐵
∗∗
21

)
𝑛𝑎

(
−(−1)𝑚 +1

+(−1)𝑚+𝑛 − (−1)𝑛

)
𝑏𝑚

.
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