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SPECIAL SECTION

Turbine wheel reduced modal model for self-excited
vibration suppression by inter-blade dry-friction

damping

Luděk PEŠEK ∗∗∗ , Pavel ŠNÁBL, and Chandra Shekhar PRASAD

Institute of Thermomechanics of the CAS, v. v. i., Dolejškova 1402/5, 182 00 Praha 8, Czech Republic

Abstract. A new approach to calculations based on the modal synthesis method is proposed for the evaluation of structural and dry-friction
damping effects on self-excited vibrations due to aeroelastic instability in bladed turbine wheels. The method described herein is used to study
dry-friction damping of self-excited vibration of an industrial turbine wheel with 66 blades. For evaluating damping effects, the blade couplings
are applied to this particular turbine wheel. Therefore, neighbouring blades are interconnected by rigid arms that are fixed on one side to one
blade and are in frictional contact on their free side with the other blade. Due to relatively normal motions in contacts, the prescribed contact
forces vary over time. The aerodynamic excitation arises from the spatially periodical flow of steam through the stator blade cascade. In this
paper, we attempt to model flow-induced instabilities with the Van der Pol model linked to relative motion between neighbouring blades. The
proposed modal synthesis method as ROM is a computationally efficient solution allowing substantial parametrization. The effect of the angles
of contact surfaces on the wheel dynamics and on the level of the self-excitation suppression will be discussed herein.
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1. INTRODUCTION
The trend in the development of power turbines and jet engines
is to continuously improve performance and energy efficiency.
With thinner, lighter and high-aspect ratio blades in the LP stage
of a steam turbine, the dynamic effect of steam on the blades be-
comes a controlling factor in the aeroelastic stability of a blade.
The research on these physical phenomena is based on mod-
ern computational methods and experimental studies of the dy-
namics of rotating blade wheels and the unsteady flow in blade
cascades.

In the case of flutter instability, the higher-level vibration
is caused by aeroelastic coupling between the blades and a
flow field. According to flow distortion and its volumetric rate
around the blade airfoil, the different types of self-excited vi-
bration occur synchronously or non-synchronously with respect
to the rotation frequency. These states in full operational range
are more difficult to predict. A bladed wheel with sufficient dis-
sipation of mechanical energy protects against this. Since the
material damping of the metal blades is very low, it is neces-
sary to increase the damping by additional construction damp-
ing, namely dry-friction damping. Dry-friction damping can be
introduced into the turbine design [1] by couplings in roots,
shrouds or platforms of the blades.
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1.1. Dry-friction damping
Dry-friction damping in bladed discs in combination with their
mistuning or at travelling wave deformation modes was stud-
ied already in the 80s [2–4]. The influence of friction damp-
ing on the dynamic behaviour of the blading is, however, a
complex nonlinear problem of continuum mechanics relating
to the dynamic behaviour of spatially distorted blades coupled
by disk and time-variant boundary conditions at contacts with
friction [5].

The first papers on finite element methods as applied to con-
tact problems appeared in the 70s [6]. Since then, much liter-
ature on linear and complex nonlinear contact approaches un-
der the FEM has appeared [7, 8]. Nonlinear contact couplings
[9–11] are influenced by production accuracy, roughness of the
contact surfaces, thermomechanical coupling, etc.

There are different approaches to this problem, ranging from
analytical models with several degrees of freedom [12–14] to
numerical spatial 3D finite element models [15–19]. Friction
is described here from a phenomenological point of view. The
general Coulomb’s law is commonly used to describe the fric-
tional forces in contacts, where the friction coefficient is a func-
tion of the relative velocity and the quality of the surfaces. The
contact friction model can be simplified for stationary harmonic
oscillations by linearizing the nonlinear contact forces using
the harmonic balance method (HBM) [20]. HBM is very well-
developed theoretically and computationally very efficient in
the dynamics of bladed disks with frictional contacts [21–27].

The other methods for solution of dynamics of bladed discs
with dry-friction contacts are based on the reduced order mod-
els (ROM), where the linear blades and discs are reduced, e.g.,
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by modal synthesis method, to small numbers of DOFs, and the
non-linearity remains only in contacts [28, 29].

New methods of computational contact mechanics based on
finite element technology are still under investigation. Here,
contact forces are calculated using e.g., Penalty, Lagrangian
or Augmented Lagrangian methods. These methods are usable
for general dynamic excitation with smooth and non-smooth
contact surfaces since the bladed disc dynamics with non-
holonomic contact constraints are solved as a discretized fully-
coupled nonlinear problem in a time domain. However, this so-
lution tends to lead to a need for high-performance computing
(HPC) [30].

1.2. Flutter phenomena
As to the flutter stability of LP turbine, it dominates the de-
sign characteristics and is the subject of much attention [31–33]
to ensure uninterrupted and safe power production in nuclear
power plants. The unsteady phenomenon of flutter occurs when
the sum of mechanical damping of the blades and aerodynamic
damping of the airflow becomes zero. At this point, the blades
experience severe self-excited vibrations that reduce turbine ef-
ficiency and increase blade fatigue damage. Flutter in steam tur-
bine LP stages is a very complex physical phenomenon, and to
date the fundamental physics behind is not fully understood, so
it remains a very active topic of research [34–37].

Numerically, it is linked with solving fluid and structure
domains and their interaction. The solution is very computa-
tionally costly by use of standard discretisation methods, e.g.
CFD-CSD numerical tools. Though CFD-CSD model yields
quite accurate estimations and manages to capture the com-
plex physics of blade-flow interaction, these tools are compu-
tationally very expensive and demand advance computing in-
frastructures to execute. This can be observed in the work of
[38–40], where each of the researchers has employed conven-
tional CFD-RANS/URANS flow solvers loosely coupled with
FEM-structural solvers to estimate the aerodynamic damping
of turbine blade cascade. In the first step, a FEM-based struc-
tural solver was employed to determine the mode shape and
frequency of the blade which then was fed as an input to the
transient CFD-solver for aerodynamic damping estimation. In
this method, the flow fields around one or more blade channels
are discretised using FV elements to be used in CFD-solver.

Therefore, in a quest to reduce the computational cost in
the preliminary design phase, a new reduced order of aeroe-
lastic model (ROAM) approaches arises. Using ROAM numer-
ical methods is a good compromise of speed and accuracy.
In the recent past, ROAM has gained noticeable popularity in
field of turbomachinery flutter modelling in both industrial and
academic research. ROAMs have been adopted by many re-
searchers, e.g., panel method [41–45]. In one of the most recent
works [45] the ROAM approach was used to model aeroelas-
tic stability problem in turbomachinery. In this work, ROAM
for uncoupled and coupled flutter analysis in cascade was em-
ployed and has demonstrated a significant reduction in com-
putational time without compromising the accuracy of the so-
lution. However, in both the uncoupled and coupled ROAM
models the unsteady aerodynamic load is estimated using a

time-linearised CFD-model, which can make this ROAM ap-
proach slower for large 3D models. Therefore, to further reduce
the computational cost of ROAM model, a boundary element
method (BEM) based ROAM model for turbomachinery blade
flutter estimation was proposed recently [43]. It has employed
the BEM-based ROAM to model the aeroelastic stability pa-
rameters in annular cascade and compared the results against
CFD-CSD based models. The results show a significant reduc-
tion in computational time.

Furthermore, in [46], a posterior alternative method called
the Tie-Dye (TD) method was proposed to quickly check the
influence of mode shape and the reduced frequency on the sta-
bility characteristics of the LP-stage blade cascade in the pre-
liminary design stage. Since then, the TD method has been used
reliably by a number of researchers and industrial designers
for the quick estimation of aeroelastic stability of the system
for both subsonic and supersonic cascade flow [33, 47]. How-
ever, the TD method itself requires either time or frequency
domain CFD analyses to create a TD map for each blade ge-
ometry, so it can take longer to create the TD map for dif-
ferent blade geometries. Consequently, the overall computa-
tional cost can be higher than those harmonic balancing (HB),
or frequency domain methods, and it is definitely slower then
BEM-based ROAM [43]. Therefore, it can be safely said that
ROAM methods are more suitable for numerical flutter analy-
sis at a preliminary design stage and can be used in industrial
research.

To support and validate the numerical research, experiments
are still needed. Similarly to the numerics, where the models are
reduced as explained above, also in the experiments a certain
level of simplification is needed to allow the measurements that
would hardly be possible in a real rotating turbine wheel. Al-
though there are researchers that work with the annular cascade
design [48], which respects the geometry of the bladed wheel,
most of the researchers use so-called linear cascades with pris-
matic blades that respect the cross-cut at a certain diameter of
the bladed wheel. Because the flutter phenomenon is a very
complex problem - each research team usually focusing only
on a specific region of interest in terms of flow and mechanical
conditions. Some experiments have blades with two degrees of
freedom [49, 50], corresponding to blade bending and torsion,
some focus only on blade bending [51] and some only on blade
torsion [52]. The flow velocities in the experiments range from
subsonic [49, 50] to transonic [51, 52].

1.3. Flutter suppression by dry-friction damping
As shown in previous subsections, the solutions themselves of
either dry friction damping or flutter in turbine wheels are very
complex and are still under development. Therefore, there are
approaches to simplify the numerical solutions by ROM mod-
elling to bring it into their practical design tools. The solution
of both phenomena together is even more challenging.

Therefore, recently [53, 54], a new calculation approach
based on the modal synthesis method [55] was proposed for
evaluation of dry-friction damping effects on self-excited vibra-
tions induced by aeroelastic forces in the bladed wheels where
tie-boss and shroud couplings are applied (Fig. 1).
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Fig. 1. Schematic picture of the aeroelastic forces and frictional
elements

To simplify the model of inter-blade couplings, neighbour-
ing blades are interconnected by rigid arms that are on one side
fixed to one blade and are in frictional contact on their free
side with the other blade. Static normal contact forces are pre-
scribed in contact point pairs in the initial state. Due to relative
normal motions in contacts, the prescribed contact forces vary
over time. Frictional force in contacts is dependent on contact
surface angles and is driven by the modified Coulomb’s fric-
tion law.

The aerodynamic excitation arises from the spatially period-
ical flow of steam through the stator blade cascade. The self-
excited aeroelastic forces of blades were described by the Van
der Pol model [56]. In [54], we considered the Van der Pol
model linked to the absolute motion of the blades. The simu-
lations, however, showed that no angle of contact surfaces can
prevent the onset of flutter. Therefore, in this paper, we will
aim at the effect of Van der Pol model linked instead of abso-
lute motion of blades to relative motion between them. From
the point of view of the theory of flutter of blade cascades, this
type of motion can also play an important role in the occurrence
of flutter.

In general, the use of modal synthesis as a ROM method is
based on the assumption that the forced vibration response of
the turbine blade wheel is quasi-linear, and nonlinearity enters

the equation of motion only by self-excitation described by the
Van der Pol damping model, which can increase the vibration
amplitudes very quickly. If the amplitudes reach high values
and the material and geometrical linear limits are exceeded,
this assumption would be violated. However, the aim of this ap-
proach is to study the effect of dry friction on the suppression
of high amplitudes, where dry friction acts on the vibration at a
very early stage of self-excitation and the level of amplitudes is
kept at relatively low levels, so that this assumption is satisfied.

The proposed method as ROM is a computationally efficient
solution allowing a parametric optimization, for example, con-
tact surface angles, of a complex nonlinear mechanical system.
The paper will be aimed at the narrow frequency range of exci-
tation and on the case when a slip motion in the contacts pre-
vails. The effect of the angles of contact surfaces on the wheel
dynamics and on the level of the self-excitation suppression will
be discussed for the modified Van der Pol model.

2. VAN DER POL MODELS OF SELF-EXCITATION
IN BLADES TURBINE CASCADE

Steam flowing through the rotating blade cascade can cause a
decrease of damping and aeroelastic flutter instability. Since an
exact description of this aeroelastic phenomenon is very com-
plicated [32, 33], we proposed the Van der Pol model [57].
There are two types of the aerodynamic forces:
1. The velocity of steam flowing from the stator cascade has a

periodic profile due to the stator blades distortion, and the
wakes of flow from the stator blades produce forced vibra-
tion of the rotating blades. Varying numbers of blades of ro-
tor and stator wheels cause phase delays of excitation forces
produced by these wakes.

2. The flowing steam through the rotating blade cascade pro-
duces, besides the aforementioned periodic forced vibra-
tion, vertical and torsional aeroelastic self-exciting forces.

Both of these sources of excitation interact mutually, and the
running waves of forced vibration initiate the flutter running
waves. The proposed Van der Pol models can describe two aero-
dynamic effects: the first acting on individual blades controlled
by only one blade’s motion and the second acting on neigh-
bouring blades controlled by relative motions of the blades. For
1DOF profile with vertical motion (Fig. 2), the first form of the
Van der Pol model is described by the equation

Gi =−µ0

(
1−
(yi

r

)2
)

ẏi (1)

and the other by

Fe,i =−µ1

(
1−
(

yi− yi−1

r

)2
)
(ẏi− ẏi−1)+

+µ1

(
1−
(

yi+1− yi

r

)2
)
(ẏi+1− ẏi), (2)

where Gi, Fe,i are the aerodynamic forces, yi, ẏi are vertical dis-
placement and velocity of blade i, r is the amplitude at which
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the negative damping changes to positive. This property allows
us to study the behaviour in the unstable regions because it pre-
vents the amplitude from growing to infinity. The values µ0 and
µ1 give the intensity coefficients of the Van der Pol models.
Equation 2 describes force couplings of the blade i with mo-
tions of neighbouring blades i−1, i+1. The stiffness and vis-
cous damping in direction y is k and b. The aerodynamic forces
act in aerodynamic centre O.

yi-1

b k

Gi+1Gi-1

kb b k

O O O

yi yi+1

Fe,i+1Fe,i

Gi

Fig. 2. Section of a blade cascade

3. MODAL SYNTHESIS METHOD
The modal synthesis method comes from the coupling of sub-
systems defined in modal space. The homogeneous equation of
motion of the undamped subsystem can be written in matrix
form as

Mü+Ku = 0, (3)

where M and K ∈ Rn×n are square mass and stiffness matrices
of dimension n, ü, u are acceleration, displacement vectors of
the DOFs.

Which leads to the eigenvalue problem

(K− ΛΛΛM)X = 0. (4)

The solution of equation (2) yields the matrices of eigenvalues
ΛΛΛ and eigenvectors X

Diag(ΛΛΛ) = [λ1,λ2, . . . ,λn], X = [x1,x2, . . . ,xn]. (5)

If the eigenvector matrix satisfies the orthonormal condition,
then

TXMX = I, TXKX = ΛΛΛ. (6)

The homogenous equation of motion of a global system com-
posed of subsystems is

Mcüc +Kcuc = 0 (7)

where Mc, Kc are global mass and stiffness matrices and uc
displacement with eigenvalue characteristics ΛΛΛc, Xc. Matrices
Kc, Mc, Xc, ΛΛΛc ∈ Rnnr×nnr ( n is the number of DOFs of the
segment, nr is the number of segments).

To couple the subsystems in global matrices, we must create
a coupling between them. Each connection between the blade
subsystems can be described by a constraint vector Tv. To cre-
ate the full modification stiffness matrix in the original DOFs,
the constraint can be expressed by a constraint vector Tv and
stiffness of connection c1 as in [56]

c1
TTvuc = F1. (8)

Then the modification stiffness is constituted as

∆K = Tv
TTvc1. (9)

The full synthesized system can be described by the equation
of motion

McücN +(Kc +∆K)ucN = fcE , (10)

which leads to the eigenvalue problem

(−ΛΛΛcNMc +(Kc +∆K))XcN = 0. (11)

To reduce the full DOF space of the synthesized structure
equation (9), we chose the modal subspace

Xc =


X 0 0 0

X 0 0
sym . . . 0

X

 ,
where X ∈ Rn×m is matrix of m arbitrarily-chosen eigenvec-
tors of X ∈ Rn×n of the original one-blade subsystem. In-
troducing the transformation ucN = XcQcNRuR and ücN =
−XcΛΛΛcNRQcNRüR and pre-multiplying by TXc in equation (8),
when the eigenvector matrix Xc satisfies the orthonormal condi-
tion given by equation (4), leading to a new eigenvalue problem

[−ΛΛΛcNR +(ΛΛΛcR +∆KcR)]QcNR = 0. (12)

where ∆KcR = TXc∆KXc is the reduced modification matrix of
Rmnr×mnr . The calculated eigenvector matrix QcNR is a trans-
form matrix between the modal subspace Xc and a modal ma-
trix of the reduced system.

In steam turbines the stator blades create so-called nozzle ex-
citation, i.e., a spatially periodical flow that acts on the rotor
blades with a periodic force whose frequency is dependent on
angular velocity of the rotor and number of stator blades. The
number of stator blades is usually chosen to be lower than the
number of rotor blades, and their difference gives the number
of nodal diameters (ND), which are excited by the nozzle exci-
tation. The excitation force can be described by

FEi = Fb cos
[

nsωrt−2π

(
1− ns

nr

)
i
]
, i = 1, . . . ,nr, (13)

where Fb is the force amplitude, ωr the angular velocity of the
rotor and nr and ns are the numbers of rotor and stator blades.

In addition to nozzle excitation, we assumed the Van der
Pol self-excitation aerodynamic forces in equation (2) that uni-
formly act on one selected mode of each blade

Fe,i =−µ1

(
1−
(

uRBi−uRBi−1

r

)2
)
(u̇RBi− u̇RBi−1)+

+µ1

(
1−
(

uRBi+1−uRBi

r

)2
)
(u̇RBi+1− u̇RBi),

i = 1, . . . ,nr, (14)

where uRBi displacements and u̇RBi velocities of defined modal
coordinates are calculated for each blade at each step of time
integration.
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To preserve the solution in modal space, the external and
self-excitation forces must then be expressed in reduced space
as well, so force vector TfcRE =

[
TfcRE1

TfcRE2 . . . TfcREn

]
of the nozzle excitation is composed of reduced external excita-
tion vectors fcREi = pEiFEi of each blade (i = 1, . . . ,nr), where
pEi =

TXdcEi is participation factor of i-blade. Distribution ex-
citation vector dcEi of the blade is the zero vector with unit val-
ues only on positions corresponding to the DOFs of the blade
where forces act.

The construction of the self-excitation vector Fe is analogous
to fcRE . The corresponding participation vectors designated for
this case as pi blades is multiplied by function equation (14).
Assuming uniformity of the self-excitation distribution along
the blades, the self-excitation vectors dci are set to unity.

Then equation of motion of the synthesized reduced wheel
system can be expressed as

McRüR+βD(KcR +∆KcNR)u̇R+Fe(uRB, u̇RB)+

+(KcR +∆KcNR)uR=fcRE(t)+ fcRt(t), (15)

where KcR = TXcKcXc, McR = TXcMcXc, βD is the coefficient
of proportional damping and fcRt the contact forces due to tie-
boss and shroud couplings.

4. FRICTION CONTACT MODEL
The kinematics of the relative displacements of profiles 1 and 2
at the contact point is shown in Fig. 3.

Fig. 3. Kinematics of relative displacement between contact pair C1,
A2 of blade profiles P1, P2, respectively

Generally, the blade i has a profile cross-section Pi with arm
placement height H. The profile Pi is interconnected with Pi+1

of the neighbouring blade by the arm described by vector
−−→
AiCi

of length L. The arm is fixed with the profile Pi. The contact
pairs of two neighbouring profiles consist of point Ci and point
Ai+1 lying on the upper edge of the profile Pi+1, these points
overlap in an undeformed state of cascade. With the deforma-
tion of blades, profiles displace and rotate to P′i and P′i+1 (shaded

areas). By rotating the rigid arm AiCi by angle α given by rota-
tion of profile Pi, we get the new position of Ci designated as C′i .

Since the initial positions of points Ai, Bi and their displace-
ments uAi, uBi

Ai = [xAi,yAi,zAi], uAi = [uxAi,uyAi,uzAi]

Bi = [xBi,yBi,zBi], uBi = [uxBi,uyBi,uzBi]

define deformed positions A′i, B′i in the global coordinate system
GCS (x,y,z), we can evaluate a deformed position of point Ci by
prolongation of the vector

−−→
A′iB
′
i. Then, coordinates of C′i can be

expressed as
Ci
′ = Ai

′+~aA′B′ ·L, (16)

where ~aA′B′ is direction unit vector of
−−→
A′iB
′
i. The total relative

displacement in contact pair can be simply expressed as

uc = Ai+1
′−Ci

′. (17)

In defining a plane of the sliding of each contact pair, we
introduce a local coordinate system LCS (ξi, ηi, ζi) in the initial
state Ci = Ai+1 of the contact points when a normal vector~ni of
the contact surface lies on axis ηi. Since axis x is identical with
axis ξ , a relative motion in the contact will be possible only
in directions ξ , ζ , and the transformation of displacement uc
from GCS to LCS is gained just by use of the rotation matrix
Tg2l given by angle β between axes y, z and η , ζ as

uc,i = Tg2luc,i =

1 0 0
0 cosβi sinβi

0 −sinβi cosβi


ucx,i

ucy,i

ucz,i

 . (18)

The slip velocity vc j,i ( j = η , ζ ) in the contact is calculated
from relative displacements of contacts as

vc j,i =
duc j,i

dt
.

The modified Coulomb frictional force of each contact pair i
placed between the blades i and i+1 is depicted in Fig. 4. The
Fts, Ftd are static and dynamic Coulomb frictional forces, re-
spectively,

and vk defines the length of the interval of total slip velocity
vc in which the Coulomb frictional force discontinuity is ap-
proximated via a steep straight line (micro-slip phase) [13, 14].

F
t

F
td

v
k

v
c

F
ts

Fig. 4. Dependence of frictional force on relative velocity
in the contact
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The normal displacements in the contacts cause a change in
the normal contact forces and stiffness in the contact. This stiff-
ness is estimated from the blade stiffness calculated as an influ-
ence coefficient in the contact point and inter-blade connecting
arm depending on contact surface angles βi. For this purpose,
the model of one blade in ANSYS was loaded with unit forces
in both contact points in global coordinates y and z and the stiff-
ness was evaluated from the deformation of the blade for both
arms. Transformation into the normal direction was then used
based on the surface angles. The resulting stiffness is shown
in Fig. 5.

Fig. 5. Dependence of contact stiffness kc on the angle
of contact surface β

At the angles β = 90◦, stiffness reaches minimal values. At
those angles, the normal contact force is perpendicular to tie-
boss arm axis. As the angles approach zero, the level of normal
contact forces that loads the blade with torque becomes con-
tinually smaller, and the stiffness of the arms prevails. Since
tie-boss arms are much stiffer than the blades, the total stiffness
for β = 0◦ goes to high values (corresponding to the stiffness
of tie-bosses) because the normal forces act in the tie-boss axis.
Therefore, tie-boss axial stiffness was used to set the stiffness
values around zero angles of βi,2. The time-varying normal con-
tact forces were calculated as

Fn,i = F tη ,i = FN0− kcucη ,i (19)

where η is the normal direction of the contact surfaces, FN0 the
initial value of normal force in contacts. The normal forces in
equation (19) were, together with frictional forces, in directions
j = ξ , ζ for each contact pair i transformed to GCS by trans-
posed matrix Tg2l from equation (18).

To use the modal model of the blade segment, we must re-
distribute the effect of the contact force actuation at point Ci to
the profile Pi. Therefore, we must shift the forces to point Ai
and substitute moments Ft j,iL ( j = y,z) by adding force cou-
ples Ftm,i = ±Ft j,iL/l to points Ai, Bi, where l is the distance
between these points. Because the two contact pairs act on each
profile, the total forces will be

FAt j,i =−Ft j,i +Ftm j,i +Ft j,i−1, FBt j,i =−Ftm j,i (20)

at points Ai and Bi, respectively.

Then vector TfcRt =
[

TfcRt1
TfcRt2 . . . TfcRtn

]
from

equation (13) is composed of reduced frictional forces fcRti =
TXbcFi of each blade (i = 1, nr) where frictional force distribu-
tion vector bcFi is dependent both on arm placement and values
of total contact forces acting on the blade.

5. BLADED WHEEL MODEL DESCRIPTION AND RESULTS
The numerical models of the whole wheel with its mesh of
1 946 303 nodes and the one-blade segment used for an MSM
of 30 383 nodes (91 149 DOFs) were built in the program AN-
SYS 19.3. The node topology of one-blade segment including
blade and disc partition is shown in Fig. 7. In addition, the nodes
(N25201 and N25467) of y-axis nozzle excitation are depicted
here, too. The bottom nodes (light blue marks) of the model
(shaft area) were clamped in all DOFs. The couplings of 50
disc-node pairs between the left and right sides of neighbouring
segments lie on the red lines (Fig. 6). All DOFs of the paired
nodes were connected by springs with stiffness c1 = 2e8 N/m.
Then the modification matrix ∆KcR from equation (12) was cre-
ated. Since the modal matrix X ∈R91149×10 consisted of eigen-
modes of the first ten eigenfrequencies of the segment, the fi-
nal dimensions of the global matrices of equation (12) were
reduced (660x660). Modal reduction of the one-blade segment
and MSM of the wheel were performed in the MATLAB pro-
gram. Time response simulations of the bladed wheel were re-
alized in Simulink using the ‘ode3’ fixed step solver with time
step 5e-6s.

Fig. 6. ANSYS model of bladed wheel with blade interconnections
(red lines)

Fig. 7. FE model of a single blade segment

By coupling between the 1st and the last (66th) blade, we
create a rotational periodicity of the assembly. These structures
are characterised by double eigenfrequencies of the eigenvalue
problem.
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The specifications of the tie-bosses and contact surfaces:
• Arms of the tie-bosses and shrouds are placed at height H =

H1 (tie-boss) and H2 (shroud), respectively, from the axis of
the wheel shaft;

• arms are rigid, massless 1D elements of length L = L1 (tie-
boss) and L2 (shroud), respectively;

• thickness of profile l = l1 (tie-boss) and l2 (shroud), respec-
tively;

• arms are perpendicular to radial axis (x) of the bladed wheel
(a small slope of 5.5◦ = 360/66 blades is negligible);

• contact surface angles βi = βi,1 (tie-boss) and βi,2 (shroud),
respectively.

Parameters of the computational model are written in Table 1.

Table 1
Table of simulation parameters

parameter value unit

blades
nr 66
ns 64

revolution frev 50 Hz

Van der Pol
r 5e-3 m
µ 100 Nsm−1

damping βD 5e-8

dry friction

fs 0.6
fd 0.4
d 2
vk 0.6 ms−1

tie-boss

Fn1 400 N
H1 1.6 m
β1 45 ◦

kc1 7.6e7 N/m
L1 0.15 m
l1 3.1e-2 m

shroud

Fn2 400 N
H2 2.18 m
L2 0.2 m
l2 3.46e-2 m

To evaluate the accuracy of the MSM method, we calculated
the first mode families, i.e., axial and tangential blade modes
with zero nodal circles, of eigenfrequencies of the bladed wheel
without inter-blade arms, see Fig. 8, ascertained by MSM and
full 3D finite element model. Both methods show very good
mutual agreement. The modal analysis was evaluated for rev-
olution speed 3000 rpm. The eigenfrequency characteristics of
both families are quite flat due to very stiff disc. The 5 ND axial
bending mode, the 10-th by order number, is depicted in Fig. 9.

Transient bladed disc responses on nozzle and Van der Pol
excitations are studied herein for one fixed angle of the contact
surfaces in tie-bosses, i.e., βi,1 = 45◦, and gradually changing
the contact angles βi,2 in step 5◦ within the interval [0, 90]◦ in
the shroud. The nozzle excitation of each blade is driven by har-
monic function equation (13) with nozzle frequency and phase
angle given by the ratio between stator and rotor blades.

0 20 40 60
80

100

120

140

160

Fig. 8. Calculated eigenfrequency versus mode order number charac-
teristics for the reduced wheel model (dashed) and full wheel model
(solid lines) at 3000 rpm: 1st family of tangential modes (blue) and

axial modes (red colour)

Fig. 9. 5 ND axial bending mode

Time dependencies of maximal vibration amplitudes of blade
tips (Fig. 10) and normal contact forces at tie-boss and shroud
contacts (Fig. 11) were evaluated in time resolution 37.5 ms,
i.e., in a time less than that of two revolutions at 3000 rpm dur-
ing simulations and are shown in graphs. It can be seen that for
angles βi,2 in the interval [50, 55]◦ the dry-friction damping suf-
ficiently suppresses the self-excitation with a small variance of

0 0.5 1 1.5
0
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90
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0.2

0.4

0.6

0.8

1

Fig. 10. Dependence of vibration amplitudes of the blades
on the angle of shroud contact surfaces in time
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normal contact forces. For angles out of this interval, the ampli-
tudes increase and the vibration reaches a state of self-excited
vibration. In addition, the contact normal forces drop to zero,
leading to loss of contacts and risk of impact in the contacts.
The loss of contacts causes a lowering of the dry friction damp-
ing as well. This decrease in the normal force does not have to
appear in the shroud and tie-boss at the same time, as seen in
βi,2 greater than 60◦ when only normal forces in tie-boss get
into zero.
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Fig. 11. Dependence of minimal normal forces in contacts on the an-
gle of contact surfaces in time: tie-boss (upper), shroud (bottom)

To better understand the dynamics of the bladed wheel dur-
ing excitation, FFTs of displacements of all 66 blades for two
contact angles βi,2: A) 55◦; B) 20◦ were calculated and plotted
(Fig. 12) in each evaluation step. This evaluation helps to deter-
mine the excited vibration modes by number of nodal diameters
(NDs). In both cases there is seen mode of 2 NDs from the very
beginning of the simulation. It is due to the nozzle excitation
that excites the mode of ND equal to difference in numbers of
stator and rotor blades (ns− nr = 2). However, this mode does
not get to self-excitation in case A) but it triggers an excitation
of other modes in a longer integration time but still at reason-
able levels. In the B) case, more modes are dominantly excited,
e.g. 0 ND, 25-33ND, that get into a high vibration amplitudes.
Excited modes are scattered almost in all ranges of NDs.
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Fig. 12. Mode shape of the wheel vibration characterized by number
of NDs: βi,2 = 55◦ (upper), βi,2 = 20◦ (bottom)

6. CONCLUSIONS

A modal synthesis method as a ROM method is proposed as an-
alytical tool for the study of dry-friction effects of inter-blade
connections on the turbine-bladed wheel at self-excitation due
to aeroelastic instabilities. This approach enables us to make
a numerically effective analysis of the connection parameters,
such as placement, arm length, contact surface angles, etc. The
numerical simulation of the transient response of the wheel for
one set of contact angles takes about a half-hour on a reg-
ular PC, which is drastically less than the computation time
which would take several weeks of high-performance comput-
ing for an unreduced 3D FE nonlinear solution with dry-friction
contacts at required integration times [14]. To demonstrate the
method, we chose one special case of a turbine wheel with
tie-boss and shroud connections. Results of the bladed disc
responses are studied for one fixed angle of the contact sur-
faces in tie-bosses and gradually changing the contact angles
in the interval [0, 90]◦ in the shroud. It can be seen that for
the shroud contact angles in interval [50, 55]◦ the dry-friction
damping sufficiently suppresses the self-excitation with a small
variance of normal contact forces in a short time (1.5 s) interval
of observation. Nowadays we deal with flutter development in
longer simulation times. Contrary to the previous form of Van
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der Pol model controlled by absolute motion of a profile, the
dry-friction damping at the right choice of the contact angles
can much better stabilize the self-excitation.
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[11] L. Pešek and L. Půst, “Blade couple connected by damping ele-
ment with dry friction contacts,” J. Theor. Appl. Mech., vol. 52,
no. 3, pp. 815–826, 2014.

[12] N. Bachschmid, S. Bistolfi, M. Ferrante, P. Pennacchi, E. Pe-
satori, M. Sanvito et al., “An investigation on the dynamic be-
havior of blades coupled by shroud contacts,” Proc. SIRM, pp.
1–10, 2011.

[13] P. Pennacchi, S. Chatterton, N. Bachschmid, E. Pesatori, and
G. Turozzi, “A model to study the reduction of turbine blade
vibration using the snubbing mechanism,” Mech. Syst. Signal
Process., vol. 25, no. 4, pp. 1260–1275, 2011, doi: 10.1016/
j.ymssp.2010.10.006.

[14] L. Pešek, F. Vaněk, J. Veselý, V. Bula, and J. Cibulka, “Design of
test excitation of traveling waves of rotating bladed wheels with
multipoint electromagnetic excitation,” in Proc. of 9th interna-
tional conference on vibrations in rotating machines, 2011, pp.
1–11.

[15] Y. Yamashita, K. Shiohata, T. Kudo, and H. Yoda, “Vibration
characteristics of a continuous cover blade structure with fric-
tion contact surfaces of a steam turbine,” in 10th Int. Conf. on
Vibrations in Rotating Machinery, 2012, pp. 323–332.
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