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CONTROL, INFORMATICS AND ROBOTICS

An autonomous system for identifying and tracking
characters using neural networks
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Abstract. For the proper operation of intelligent lighting, the precise detection of a human silhouette on the scene is necessary. Correctly
adjusting the light beam divergence requires locating the detected figure in virtual three-dimensional coordinates in real time. The market is
currently dominated by the markers systems. This paper is focused on the advanced solution of the markerless system of identifying and tracking
characters based on deep learning methods. Analyses of the selected pose detection, holistic detection (including BalzePose and MoveNet
models), and body segmentation (BlazePose and tfbodypix) algorithms are presented. The BlazePose model was implemented for both pose
tracking and body segmentation in the markerless dynamic lighting and mapping system. This article presents the results of the accuracy analysis
of matching the displayed content to a moving silhouette. An assessment of the illumination precision was done as the function of the movement
speed for the system with and without delay compensation.
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1. INTRODUCTION
Dynamic lighting consists of creating a lighting scene accord-
ing to the current position and pose of a moving object on the
stage. Therefore, the lighting systems include devices that fol-
low moving objects, as well as lighting devices such as moving
heads and projectors. In more advanced systems, the devices
used to estimate the position of the markers can be comple-
mented by those that recognize real objects, people, etc. The
advanced solutions used for dynamic object lighting are avail-
able on the market. Their advantage is the possibility of seeing
the lighting effect using a built-in camera. However, the addi-
tional transmitter-receiver unit connected to the media server
is necessary to track an object. FollowSpot, Robe BMFL Fol-
lowSPot, T1 Profile FS, Forte TS, etc. [1] are examples of such
devices. It is essential to pay attention to the development of
semi-automatic and partially autonomous products that still re-
quire the operator’s control. The RoboSpot MotionCamera is
an example of such a device. It looks like a moving head but is
equipped with a camera. Thanks to this camera, it is possible to
follow objects on the stage and synchronise their direction with
the light from the lighting units.

In dynamic lighting systems, the precision of detecting and
estimating the position of a moving object and its characteristic
points in three-dimensional space is of key importance. This
object tracking can be obtained in three ways: marker-based,
markerless, and hybrid, combining both tracking variants. Most
commercial solutions [2–4] for tracking moving characters are
based on the use of markers. These types of systems require the
use of passive or active markers. They are placed on the target
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moving object in the form of mini passive or active external
devices or even special clothes. X , Y , and Z coordinates of the
object in space and the information about its movement and
rotation in three directions are determined by the position of the
infrared transmitters or the information from radio transmitters.
The prediction of characteristic points is limited to the position
of the specific markers used. This is the significant limitation of
these types of systems.

As far as markerless tracking is concerned, identifying the
object and predicting its characteristic points are based on the
analysis of images from scene digital recording devices, e.g.,
RGB, IR, and depth cameras [5–12]. This identification method
is very complex and requires a lot of data throughput, but it of-
fers more possibilities than marker-based tracking. It allows one
to track any number of objects and also to estimate their char-
acteristic points, such as human skeletal points, without addi-
tional devices. This identification method has the potential to
estimate not only the position of the character itself in three-
dimensional space but the information about its pose, size, or
texture as well.

The precision of directing moving fixtures and matching the
displayed graphic content to the moving object in real time are
the key elements of dynamic lighting and mapping systems of
moving objects. Moreover, it is crucial that in such systems
the identification follows the dynamics of the illuminated ob-
ject. Even the object identification should anticipate its posi-
tion based on predicting the direction and calculating move-
ment speed. Thus, the precision of the dynamic lighting is in-
fluenced by three aspects: the detection of the object in three-
dimensional space, the accuracy of identification and the pre-
diction of its characteristic points, and the delay. However, de-
lays, shifts, or identification errors are unacceptable in the case
of the dynamic mapping of objects with graphic content. So,
computing and image processing time is critical. It is one of the

Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 6, p. e147923, 2023 1

https://orcid.org/0000-0003-0347-1601
https://orcid.org/0000-0002-2941-4958
mailto:01027471@pw.edu.pl
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reasons why such advanced, commercially-ready systems are
essentially non-existent.

The problem of pose estimation in images is widely studied
in the field where machine learning (ML) methods are used.
It should be noted that over recent years deep learning (DL)
models have been researched extensively. This research focuses
on the solutions for estimating the poses based on RGB im-
ages from one or more cameras simultaneously. The use of DL
methods has resulted in the development of algorithms with in-
creased efficiency and precision in pose estimation.

1.1. Aim and scope of the research
The purpose of this research is to identify and implement a re-
liable, markerless system for identifying positions and body
poses with the use of deep learning algorithms. This research
aims to eliminate the limitations of systems based on tracking
motion with the use of markers (most often infrared or radio
radiators). The implementation of a markerless system of ac-
tive tracking of the human silhouette in the scene requires fast
processing of images from recording devices in real time. In
addition, the key aspect of markerless pose tracking is the high
efficiency and precision of identifying the pose in motion for
each recorded frame of the video material. The research pre-
sented in this article aims to demonstrate the possibility of us-
ing deep learning methods in the original, markerless, dynamic
lighting system and projection mapping of a moving silhouette.
The scope of this research covers two main problems. The first
one concerns the analysis of the selected human detection algo-
rithms in the identification accuracy and the throughput of the
analysed input data. The second one relates to the implementa-
tion of selected DL algorithms in the target system which en-
ables, among others, real-time illumination and mapping with
the graphic content of moving characters. The algorithms for
intelligent identification of the human figure and motion pre-
diction are implemented to compensate for the mapped object
speed and direction of movement in real time.

2. LITERATURE REVIEW
By analysing existing solutions based on Deep Learning in the
context of detecting human silhouette parts, the current mod-
els can be divided into categories depending on the obtained
output information. The first group of models consists of the

models that detect a specific part of the body, e.g., a head,
a face [13–17], eyes, hands, or the whole body. The second
group includes the models for single-pose detection [7, 18] or
multiple-pose detection [6, 9, 19, 20]. In the case of face de-
tection, a significant difference between available approaches
concerns the number of the estimated characteristic points, in-
cluding eyes, a mouth, a nose, or a face oval. An additional
difference is whether the returned values apply only to the coor-
dinates of the 2D image or whether they are three-dimensional
coordinates with the information about the depth. The depth is
usually calculated considering one selected point, e.g., in the
case of detected face points, the centre of the head [17] is the
reference point. When estimating the pose of the whole human
body, the midpoint between the hips [7] is the reference.

The approaches to face or head detection involve models that
estimate the area with a detected face in the form of the so-
called bounding box (Fig. 1a) [21, 22]. Other models also re-
turn information about five (Fig. 1b) [15] or six [14] character-
istic facial points, i.e., eyes, nose, and mouth corners. The third
group concerns the models that estimate 68 points of the face
(Fig. 1c) [16, 23, 24] which include its contours, eyes, mouth,
nose, and eyebrows. The received points are in the form of 2D
or 3D points. The most advanced models facilitate the estima-
tion of 468 2D or 3D facial points (Fig. 1d) [17]. If these are
3D points, it is possible to reproduce the whole face geometry.

In the process of human pose detection and estimation
through image analysis, convolutional neural networks (CNN)
with two different implementation approaches are mainly used.
These approaches are bottom-up [6, 9] and top-down [20, 25,
26]. In the first solution, all limbs are detected first, and then
the poses are estimated. In the top-down approach, the areas
with people are predicted then the human pose in each region is
calculated.

The detection and prediction of skeletal points of the whole
body are realised by the models for single pose detection [7,18]
or multiple pose detection [6, 9, 20, 26, 27]. Additionally, these
models differ in the number of the estimated skeletal points.
The MPII model (Fig. 2a) is the simplest model and it fa-
cilitates the estimation of 15 human body points. The COCO
model (Fig. 2b) is another example that predicts 17 points of
the body. Compared with the previously mentioned models, the
BlazePose model (Fig. 2c) facilitates the calculation of as many
as 33 points.

Fig. 1. Face detection models as (a) a bounding box with a face, (b) a bounding box with a face and its five points, (c) a bounding box and 68
facial points (d) 468 facial points
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Fig. 2. Pose estimation models (a) the MPII model, (b) the COCO
model, and (c) the BlazePose model

The BlazePose model [7] is a convolutional neural network
that allows 33 skeletal points of one pose to be estimated as 3D
coordinates (Fig. 2c). The depth reference point is the midpoint
between the hips. In addition to the information about the co-
ordinates in the image and Z, the model returns a visibility pa-
rameter for each estimated point. It indicates whether the point
is visible from the camera point of view. The model operation
is based on two steps. Firstly, the ROI (region of interest) in
which the pose is located is predicted and its resolution of the
network input image size is adjusted, i.e., to 256× 256. Then,
the pose is estimated as 33 skeleton points. Moreover, the body
segmentation is possible. A mask is predicted in which pixels
not belonging to the character take the value 0 and the others
take the value 1. The full model runs at 10 fps on the GPU of
a Pixel 2 mobile device [7].

MoveNet [18] is an example of a model estimating 17 2D
body points (Fig. 2b). The model is available in two versions
that differ in speed and precision analysis, and they are re-
ferred to as a lightning model and a thunder model. The first
model accepts the image with a 192× 192 px resolution as an
input, whereas a thunder version is intended for a 256×256 px
image size. MoveNet is the bottom-up model that was trained
on the Active (Google’s internal set) and COCO datasets. Mo-
bileNetV2 [28] is the feature extractor in the MoveNet model.

In addition to the solutions for pose estimation and face de-
tection, some models allow for the obtaining of information
such as body segmentation and body parts segmentation [7,19].
Body segmentation (Fig. 3a) involves the extraction of pixels
from an image representing the entire body, while body part
segmentation (Fig. 3b) allows specific image pixels to be as-
signed to particular body parts.

BodyPix [19, 27] is an example of a body segmentation ap-
proach. BodyPix is an open-source model using convolutional
neural networks, enabling body segmentation, body part seg-
mentation, and 18-point 2D detection of multiple poses from an
image. For this approach, Resnet50 [29] and MobileNetV1 [30]
were used as base networks. In addition, it is possible to adjust
the accuracy and tracking speed using three parameters: output-
Stride (8, 16, or 32), multiplier (1, 0.75, or 0.5), and quantBytes
(control of the bytes used to quantise the weight which can take
values of 1, 2 or 4).

In the scientific literature, there are approaches for 3D pose
detection and estimation systems based on the analysis of RGB

Fig. 3. (a) Body segmentation and (b) body part segmentation

images from multiple cameras. This type of CNN system is pre-
sented in [31–36]. The authors in [32] propose a 3D pose esti-
mation approach based on images from unsynchronised and un-
calibrated cameras. In [31], the prediction of 2D points in each
view was made using HR-Net [37]. The 3D pose reconstruction
was based on the plane sweep stereo. The authors of [31] used
the Cascade Pyramid Network [38] to estimate the 2D poses
on the corresponding camera images. A multi-view alignment
algorithm was used to identify the poses in the images and the
3D poses were estimated on the basis of this algorithm. The pa-
per [36] presents the estimation of the 3D pose by the flexible
selection of the number of recording cameras and IMUs placed
on the tracked person. OpenPose was used to detect 2D poses
on each image [6].

It is worth highlighting that DL methods offer many possi-
bilities for tracking moving figures on the stage, such as the
prediction of skeletal points, detection of specific body parts
and their characteristic points, or a body segmentation from an
image. That is why using the DL method will enable the imple-
mentation of dynamic lighting in a markerless way.

3. RESEARCH SYSTEM DESCRIPTION
The research [8, 39] shows the possibility of realising a dy-
namic lighting system and mapping with any content of moving
objects based on markerless identification. The system facili-
tates the illumination of specific parts of the human body with
the possibility of adjusting the light spot and its colour [39].
In addition, equipping the system with projectors as illumina-
tion units allows the surfaces of moving objects, e.g. things [8]
or characters [39] to be mapped precisely without going be-
yond their contours in real time. Another advantage is the pos-
sibility of reducing the discomfort glare phenomenon by using
a multimedia projector system for lighting purposes. This can
be achieved by lowering the luminance levels for selected body
parts such as the face or eye zones [39]. It is possible to elim-
inate the lighting pollution [40] of the natural environment by
masking objects from the surroundings for projectors used as
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a device to illuminate the objects. Furthermore, this approach
provides the opportunity to dynamically dark people who can
enter the area of the illuminating beam and experience a dis-
comfort glare.

In the research [8,39], background subtraction and corner de-
tection of the tracked objects were implemented to identify flat
or cuboidal objects. Background subtraction and the informa-
tion about the detected poses returned by the RGB-D Kinect v2
camera were used to track a moving character [39].

In the authors’ research, in order to eliminate the limitations
of Kinect-type devices and the need for precise identification,
it was decided to analyse the available machine learning (ML)
methods for detecting and tracking moving figures. In partic-
ular, it was decided to focus on the methods based on deep
neural networks. The objective of the performed analysis was
to investigate the possibility of implementing these object de-
tection methods in markerless lighting systems. The analysis
consisted of determining the delay level resulting from the op-
eration of a given character identification algorithm as the func-
tion of the resolution of the input images. Furthermore, the ef-
ficiency of the correct detection of the selected algorithms was
investigated.

It was decided to choose the models that enable tracking the
entire silhouette: BlazePose model and two MoveNet models
for single pose detection. In addition, the algorithms for body
segmentation were investigated. The approach available in the
MediaPipe library is the first of these algorithms. BodyPix is
the second model and it allows one to segment both the whole
body and the specific body parts. Additionally, the performance
of the algorithm for holistic tracking based on the BalzePose
and BlazeFace models (also available in the MediaPipe library)
was conducted. This solution returns 468 face points, 25 hand
points each, and 33 human skeletal points.

Following the analysis of the image processing speed and de-
tection efficiency of the selected algorithms, a markerless real-
time dynamic lighting and mapping system was performed. In
this system, the BlazePose model and the body segmentation
available in the MediaPipe library were used to detect and track
a moving character on the stage. In addition, proprietary algo-
rithms were implemented to compensate for the latency caused
by the total analysis, processing time of the images, and the
dynamics of the character’s movement. The description of the
system and its calibration process are presented in Section 3.2,
and the results of the system without and with delay compensa-
tion are presented in Section 4.4.

3.1. Description of ML approaches implementation
The machine learning algorithms that enable pose detection
(Fig. 2), holistic detection, and body segmentation (Fig. 3) were
analysed. The performed tests consisted of analysing the data
throughput as the function of the resolution of the input im-
age for each tested detection algorithm. All algorithms were
tested on the same data set to ensure the reliability of the ob-
tained results. Own video material was used for the analysis:
the sequence of 348 images for pose detection, holistic detec-
tion, and body segmentation. The tests were performed for six
input image resolutions. These resolutions were 320× 240 px,

640×480 px, 1280×960 px, 1920×1440 px, 2560×1920 px,
and 3840× 2880 px. These image sizes were used to analyse
the BlazePose and BodyPix models. However, 192× 192 px
and 256×256 px image sizes were considered for the MoveNet
models.

The mentioned algorithms were implemented and tested us-
ing the Python 3.9.7 programming language in the Windows
10 operating system. The implementation of a pose detection
models consisted of:
• BlazePose – a pose detection – using the functions available

in the MediaPipe library for two model variants differing in
computational complexity and identification precision.

• MoveNet – a pose detection – the lighting and thunder mod-
els were implemented using the TensorFlow library.

• BlazePose + BlazePalm – a holistic detection – MediaPipe
library was also used for the implementation of this ap-
proach.

• BodyPix – a body segmentation – one fastest MobileNetV1
model was implemented using the tfbodypix python pack-
age.

• BlazePose – a body segmentation – MediaPipe python
package was used.

The speed analysis of the DL algorithms was carried out on
the unit consisting of an Intel Core i7-9750H 6-Core Proces-
sor 2.4 GHz (4.5 GHz) 16 GB RAM with an NVIDIA GeForce
GTX 1660 Ti 8 GB mobile graphics card. The benchmark tests
were carried out in order to determine the performance of this
hardware configuration. Three kinds of benchmark software
were used: Novabench (“NovaBench,” n.d.), CineBench R15,
and CineBench R20 (“Cinebench,” n.d.). Cinebench is a tool
based on the Cinema 4D engine, designed to test the proces-
sor and graphic card. NovaBench evaluates the general perfor-
mance of a computer by assessing the processor, graphic card,
RAM, and disk. In the NovaBench test, the used PC scored
a total of 2838 pts, including 1294 pts CPU, 1104 pts GPU,
273 pts RAM, and 167 pts for disk read and write speeds. For
the Cinebench tests, the CPU reached the values of 3416 pts
and 1020 pts in the R20 and R15 tests, respectively. In the
Cinebench R15 test, the GPU obtained a rendering speed
of 139 fps.

3.2. The description of the dynamic lighting system and
its calibration

In order for the dynamic lighting system to work correctly,
a calibration of the camera-projector setup is first required.
It consists of determining the transformation matrix from the
camera to the projector layout (Fig. 4a). This transformation is
defined by the following formula (1):

Xp

Yp

Zp

1

=

[
R T
0 1

]
Xc

Yc

Zc

1

 . (1)

Then taking into account the conversion of 3D points to a 2D
plane for the pinhole camera model, the following dependence
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Fig. 4. (a) The point transformation from the camera to the projector layout, system. (b) diagram of the calibration process
of the camera-projector
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It means that each pixel of the image displayed by the projector
can be calculated based on the images from the RGBD cam-
era. For this purpose, a 3×4 calibration matrix has to be deter-
mined. Based on the 2D points of the camera image and their
depth information from the depth map this matrix enables the
2D points of the projector image to be calculated. The transfor-
mation matrix can be obtained from the corresponding camera
points (xc, yc, Zc) and projector points (xp, yp) and solving the
obtained system of linear equations.

The process of calibration is shown in Fig. 4b. The display
resolution is automatically read out, and the image of the pro-
jector native resolution is created in order to enable calibra-
tion flexibility. First, the camera and projector points correlating
with each other are determined. For this, sequential images are
displayed with a single circle with variable but known coordi-
nates of its centre (Fig. 5a). For each of the images, a displayed
circle is detected, and the coordinates of its centre are read out
in the RGB image of the camera (Fig. 5b). At the same time,
the depth values are read in the depth map (Fig. 5c). The circle
detection must be carried out for different values of the distance
between the plane (which is used to display the image) and the
projector. Next, the system of linear equations is created from

the corresponding coordinates. The 3× 4 transformation ma-
trix is calculated using the SVD method (formula (2)). Then
the mismatch error is calculated to verify the calibration of the
camera-projector system. This error is determined as the largest
difference between the projector image points which were used
to calculate the calibration matrix and the points estimated with
the obtained calibration matrix and the camera points. In case
the obtained error is too high, the registration of points is re-
peated, and the calibration matrix and mismatch error are recal-
culated. For example, for a 1920×1080 px projector resolution,
a maximum error value of 3 px was considered acceptable.

The dynamic lighting and mapping system for the moving
figure consists of the projector, the RealSense D455 RGBD
camera, and a computer (Fig. 6a). The projector and camera
are positioned to provide the largest possible common field of
view. In the analysed system configuration, the projector and
camera covered a field of view of 2.55× 1.5 m and 5× 2.9 m,
respectively. The camera is set to capture an RGB image and
depth map of 1280× 720 px resolution with 30 fps, which is
the highest available depth image size. The captured RGB im-
age is matched to the viewpoint of the depth map. The system
enables the lighting of the moving character in real time. Ad-
ditionally, it is possible to display any graphic content on the
silhouette using a projector. By detecting the parameters and
the pose of the human figure, it is possible to adjust the image
to the body surface precisely.

The mapping process is shown in Fig. 6b. First, the RGB im-
age and depth map are registered simultaneously. Next, pose de-
tection and body segmentation are realised using the BlazePose

Fig. 5. The calibration process a) the image with one circle displayed by a projector, b) circle detection in the RGB image, c) reading the
corresponding depth value of the circle centre on the depth map
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S. Słomiński and M. Sobaszek

Fig. 6. (a) Dynamic lighting system, (b) diagram of the dynamic lighting process of a moving figure

model. Pose tracking consists of the detection of 33 3D skele-
tal points. Then, a 3D-to-2D transformation is applied to the
image with the binary character mask obtained in the previous
step. This image transformation adjusts the image to the resolu-
tion and field of view of the projector based on the calibration
matrix (formula (2)). Next, this image is converted to an RGB
image and multiplied with the selected image or colour in or-
der to add colour or texture. In order to increase the precision of
matching the displayed content to the moving figure surface, the
system facilitates compensation for the delay caused by image
detection and transformation. A block diagram of the delay and
offset of the displayed graphic content compensation process is
shown in Fig. 7.

The latency compensation is based on estimating the speed
of movement based on the current and previous frames. The
compensation consists of calculating the shift between the pro-
jected image and the moving figure position in the three di-
rections X , Y , and Z. The estimation of these three offsets is
done using the coordinates of the head midpoint in the previous
[xpi−1, ypi−1, Zci−1] and current frame [xpi, ypi, Zci] from
the projector point of view. Additionally, the time between the
registration of two consecutive frames and the figure tracking
and image processing time tp in the current frame is consid-
ered. The mismatch for the current frame is calculated from the
following formula:

∆X = (xpi− xpi−1) ·
tp

to
, ∆Y = (ypi− ypi−1) ·

tp

to
,

∆Z = (Zci−Zci−1) ·
tp

to
, scale = 1− ∆Z

Zci
.

(3)

The X- and Y -axis offset is calculated in pixels, while the
Z-axis displacement is calculated in mm. In order to eliminate
delay compensation errors, the final values of the ∆X , ∆Y and
∆Z shifts are determined as the arithmetic means of the last ten
calculated displacements for each considered direction with the
rejection of outliers. Next, these data are used to estimate the
affine transformation matrix applied to the display image. This
transformation takes into account the X- and Y -direction image
shifts and the scaling of the image based on the Z-axis offset in
the following formula (4):x′p

y′p
1

=

scale 0 ∆X
0 scale ∆Y
0 0 1


xp

yp

1

 . (4)

4. RESULTS ANALYSIS
4.1. Pose detection processing time
Two approaches were analysed to detect and estimate key body
points of a pose: MoveNet and BlazePose. For the first solution,
two models were tested: Lightning and Thunder. They differ
in the size of the input image (192×192 px and 256×256 px)
which affects the precision of identification. These models were
obtained using the TensorFlow Lite to ensure the highest pos-
sible performance on the CPU. For MoveNet, the analysis was
conducted for CPU and GPU. In the case of the CPU, the anal-
ysis times were 9.81±2.5 ms for Lightning and 33.22±3.4 ms
for Thunder model. For GPU, these models reached the times
of 12.17±4.5 ms and 13.74±5 ms, respectively. It can be seen
that for the less precise model, the obtained difference in times

the previus frame
[xc i-1,yc i-1, Zc i-1] -> [xp i-1, yp i-1]

of the head midpoint

the current frame
[xc i,yc i, Zc i] -> [xp i, yp i]
of the head midpoint

Calcula�on of current ∆X, ∆Y
and ∆Z displacement based

on formula (3)

measurement of the current
tracking and processing �me

tp

calcula�on of the average shi� of
∆X, ∆Y and ∆Z based on the 10
latest shi� measurements and

es�ma�on of affine
transforma�on matrix (formula

(4))
�me measurement between
the previous and the current

frame to

Fig. 7. Diagram of the delay compensation
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between CPU and GPU is about 2.5 ms. For the Thunder model,
the use of GPU as a computational unit reduced the detection
time by 20 ms in comparison to the CPU.

For BlazePose, a CPU performance analysis was carried out
for two complexity factors equal to 0 and 1. A higher value
indicates the model with higher estimation precision of body
points. The analysis of the processing data speed was performed
as a function of the input image resolution. The obtained results
for the used CPU are shown in Fig. 8. For a 320× 240 px im-
age resolution, the processing times were around 16.0±1.1 ms
for a model complexity of 0 and 23.5± 2 ms for a model with
a complexity of 1. For the highest considered resolution, the
computational time of these models increased to 22.6±1.9 ms
and 30.4±2 ms.

Fig. 8. Processing time for the two BlazePose models depending on
the resolution of the input image

The results obtained for MoveNet and BlazePose solutions
are below 40 ms. So, these pose-tracking methods enable the
realisation of dynamic lighting and video mapping in real time.

4.2. Body segmentation and holistic detection processing
time

In addition to face detection or character body point predic-
tion, the models based on neural networks enable complex so-
lutions such as holistic detection. Furthermore, there are CNN-
based methods for body segmentation or body parts segmenta-

tion from an image. Therefore, the data processing analysis was
conducted for two solutions available in the MediaPipe library
– body segmentation and holistic detection. Additionally, the
models for the body and its parts segmentation available in the
tfbodypix library (corresponding to the model for pose track-
ing) were tested. The analysis was carried out on CPU and the
results are shown in Fig. 9.

Analysing the results for holistic detection, the processing
times obtained for CPU were in the range of 33.1 to 40.8 ms
(Fig. 9a). For MediaPipe body segmentation, these times were
3.2 ms to analyse the 320×240 px image resolution and 7.2 ms
to analyse the largest image resolution.

BodyPix body segmentation approach was slower than Me-
diaPipe segmentation (Fig. 9b). For a 320×240 px resolution,
the analysis time was twice as long as the result obtained for
the BlazePose model. For a 640× 480 px frame size, the av-
erage processing time was 22.3 ms. Whereas the analysis time
increased to over 600ms for the highest image resolution tested.
In the case of a body part segmentation, the shortest time was
25.1 ms for 320×240 px resolution. For higher resolutions, the
processing time was longer than 40 ms.

4.3. The detection efficiency analysis
The analysis was conducted for the BlazePose and MoveNet
solutions in order to verify the efficiency and correctness of sil-
houette detection. Two image sequences depicting the fully vis-
ible moving figure which motion included movement around
a circle. The images included the figure sideways (Fig. 10b),
forwards (Fig. 10(a, c)), and backwards (Fig. 10d) in rela-
tion to the camera position. In addition, the videos differed
in the recording lighting conditions. The first sequence of im-
ages was recorded in a darkened room with little artificial light-
ing (at a level of 50 lx) (Fig. 10(c,d)). The second sequence
of images was recorded in a lobby where daylight was the
main light source (Fig. 10(a,b)). In addition, the first room
was small and the second room was fully equipped and fur-
nished.

The analysis of detection efficiency was conducted depend-
ing on the resolution of the input image. The considered image
sizes were from 320×180 px to 3840×2160 px for BlazePose,

Fig. 9. Processing time for a) holistic detection and body segmentation from MediaPipe library, b) body and body part segmentation available
in tfbodypix python package
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Fig. 10. Examples of images used to analyse the effectiveness of the algorithms (a) pose viewed from the front, (b) view of the pose from side
in the lobby and (c) view of the pose from the front, (d) view of the pose from the backside in the darkening room

192×192 px and 256×256 px for MoveNet models. The effi-
ciency analysis assessed the ratio of the number of frames with
correct detection to all analysed frames. Additionally, the aver-
age number of estimated pose points was examined.

Table 1 shows the results of the percentage effectiveness of
pose detection algorithms for two different lighting conditions
and eight input image resolutions. The average number of es-
timated points for pose detection was 33 points for Blaze Pose
and 17 points for MoveNet Thunder. These results are equal to
the number of points returned by a given pose detection solu-
tion. In addition, analysing the results obtained for the pose de-
tection solutions using BlazePose and MoveNet, it can be seen
that the detection efficiency was 100% for all considered cases.
These results are shown in Table 1. This means that in all pro-
cessed images, the pose was detected correctly. Nevertheless,
it should be noted that the prediction precision of the skeleton
points varied depending on the considered room and the size of
the input image.

Table 1
Analysis of the efficiency of pose detection depending on the resolu-

tion of the input

Resolution MoveNet Resolution BlazePose

[px×px] Room 1 Room 2 [px×px] Room 1 Room 2

192×192 100% 100% 320×180 100% 100%

256×256 100% 100% 640×360 100% 100%

960×540 100% 100%

1920×1080 100% 100%

2880×1620 100% 100%

3840×2160 100% 100%

The higher precision of a pose estimation was obtained by
the BlazePose model than by the MoveNet model. Figure 11
shows the difference in the precision of point estimation in the
head and torso regions. It is because in the MoveNet Thun-
der solution the processed image is scaled to the resolution
of the input image dedicated to this model, i.e. 256× 256 px.
Then, detection and pose estimation take place for the scaled
image. On the other hand, the BlazePose solution first detects
the area with the figure in the image without scaling. This im-
age region is then matched to the resolution of the model, i.e.
256×256 px.

Fig. 11. Comparison of pose detection precision by (a) the MoveNet
Thunder model with (b) the BlazePose model

4.4. Dynamic lighting and the delay compensation test
The analysis of the accuracy of the dynamic illumination of
a moving figure was performed for three different speeds of
its movement slow, normal, and fast. The dynamic illumina-
tion system described in Section 3.2 was used for the tests. The
figure movement included the movement to the right, left side,
and backwards to the camera. The average processing time per
frame was 37.7 ms, while the average time between two con-
secutive shots was 53.5 ms.

The additional striped pattern was projected using a second
projector with a resolution of 1024×768 px (Fig. 12a) to deter-
mine the movement speed and analyse the shifts resulting from
the latency. The width of one strip was 26px which translated
into the width of 6.8 cm. The effect of a dynamic illumination
of the moving figure for the considered speeds was recorded
with a high-speed acA1920 Basler 156 fps camera.

The calculation of the velocity of the figure movement and
the estimation of mismatch errors were performed on the basis
of the recorded image sequences for the three-figure motions.
The error analysis assessed the offset between the figure and
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Fig. 12. (a) Mismatch error of Motion I, (b) mismatch error of Motion II, (c) mismatch compensation for Motion II error of Motion III,
(d) adjustment result for delay

the displayed image frame by frame (Fig. 12). The velocity was
estimated based on the total displacement of the body and the
calculated time of this movement based on the number of over-
analysed frames.

The alignment analysis of the displayed content to the mov-
ing person was done for the system without and with delay
compensation. The delay compensation is based on estimat-
ing and limiting displacements in three directions: X ,Y , and Z
between the displayed image and the moving person (Fig. 7
and formula (3), (4)). Table 2 shows the mismatch error results
for the three tested figure gait speeds. For the variant without
delay compensation, the estimated character movement speeds
were 57.6 cm/s, 88.9 cm/s, and 122.1 cm/s. The average mis-
match error was 7.34 cm (Fig. 12a), 11.76 cm (Fig. 12b), and
18.38 cm (Fig. 12c), considered from the lowest to the highest
velocity. The employment of delay compensation significantly
reduced the average mismatch error of the displayed content to
the moving figure (Fig. 12d). The average error was 0.78 cm for
slow motion, 0.89 cm for normal motion, and 1.18 cm for fast
motion.

Table 2
Analysis of the mismatch error of the dynamic illumination system
of a moving character without and with delay compensation for three

motion speeds of the figure

MOTION I –
SLOW

MOTION II –
NORMAL

MOTION III –
FAST

V
[cm/s]

error
[cm]

V
[cm/s]

error
[cm]

V
[cm/s]

error
[cm]

Without delay
compensation

57.6 7.34 88.9 11.76 122.1 18.38

Delay
compensation

51.7 0.78 75.2 0.89 123.5 1.18

5. CONCLUSIONS
This paper presents the results of the study that have a signifi-
cant impact on the realisation of dynamic lighting and object
mapping. The system is based on pose estimation and body
segmentation in a markerless system using deep learning (DL)
methods. It should be remembered that the successful imple-
mentation of dynamic lighting requires two conditions. The first
one is identifying the object position and its parts correctly. The
second condition is to calculate the speed and predict the direc-

tion of the movement of the object in order to adjust the dis-
played content to its surface properly. It should be noted that
resolution matching is a crucial element of the optimisation of
the analysed images. This determines the processing time to
obtain smooth video mapping and lighting effects.

The key part of the paper includes the analysis of the pro-
cessing time of the selected algorithms for pose detection and
body segmentation as a function of the resolution of the input
data. Additionally, the detection efficiency of the analysed al-
gorithms and the implementation of BlazePose model in the
dynamic lighting system of a moving figure were examined.
Finally, the results of the system without and with the delay
compensation are presented.

For a single pose detection, the average processing time for
both analysed solutions, MoveNet and BlazePose, is below
40 ms. In the case of body segmentation, the time of less than
10 ms for each resolution analysed was achieved by the solu-
tion available in the MediaPipe library (Fig. 9a). The models
available in the tfbodypix library have significantly lower per-
formance. The results of 22.3 ms and 25.1 ms were obtained
for the 640×480 px and 320×240 px resolutions for body and
body part segmentation, respectively (Fig. 9b).

For the research to be complete, the detection efficiency anal-
ysis was done. It is essential to realise that comparing process-
ing times does not directly correlate to a positive detection ef-
fect. The pose detection efficiency of BlazePose and MoveNet
models was analysed as the function of image resolution. The
experiment was conducted to demonstrate how precision is in-
fluenced by changing the resolution of the processed image to
make calculations faster. In the case of pose detection algo-
rithms, the detection efficiency was 100% for each analysed
resolution (Table 1). However, it needs to be emphasised that
the higher precision of the skeleton point estimation is obtained
by the BlazePose model (Fig. 11). The lower precision of the
MoveNet models is due to the limited resolution of the input
image to be only 256×256 px.

The obtained results regarding the data throughput and the
high pose detection performance of the DL methods demon-
strate the feasibility of implementing these methods in a real-
time dynamic illumination system for moving objects. The ef-
fect of such a system is presented by the results in Table 2 and
Fig. 12. The results obtained for a system without delay com-
pensation show that object tracking and image processing times
result in a large mismatch in the displayed content to the mov-
ing person (from 7.34 to 18.38 cm). Thus, it is necessary to
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S. Słomiński and M. Sobaszek

implement delay-compensating algorithms in this type of sys-
tem. These algorithms make it possible to significantly increase
the precision of illumination and mapping of moving figures in
real time. For the three analysed pose movement speeds, the de-
lay compensation reduces the mismatch error from as much as
18.4 cm to around 1 cm (Fig. 12).

The results of experiments and analysis prove that it is pos-
sible to conduct online image analysis for pose detection for
dynamic video mapping using machine learning algorithms.
Thanks to that, it is possible to eliminate problematic radio and
infrared markers used in the existing dynamic lighting systems.
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