
Jour nal of P lant Protect ion R esearc h eISSN 1899-007X

Tomato fruit disease detection based
on improved single shot detection algorithm

Benedicta Nana Esi Nyarko* , Wu Bin, Zhou Jinzhi , Justice Odoom ..

School of Information Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China

Abstract
The tomato crop is more susceptible to disease than any other vegetable, and it can be
infected with over 200 diseases caused by different pathogens worldwide. Tomato plant
diseases have become a challenge to food security globally. Currently, diagnosing and pre-
venting tomato plant diseases is a challenge due to the lack of essential methods or tools.
The traditional techniques of detecting plant disease are arduous and error-prone. Utiliz-
ing precise or automatic detection methods in spotting early plant disease can improve
the quality of food production and reduce adverse effects. Deep learning has significantly
increased the recognition accuracy of image classification and object detection systems in
recent years. In this study, a 15-layer convolutional neural network is proposed as the back-
bone for single shot detector (SSD) to improve the detection of healthy, and three classes
of tomato fruit diseases. The proposed model performance is compared with ResNet-50,
AlexNet, VGG 16, and VGG19 as the backbone for Single shot detector. The findings of
the experiment showed that the proposed CNN-SDD achieved 98.87% higher detection
accuracy, which outperformed state-of-the-art models.

Keywords: convolutional neural network, deep learning, feature extraction, model back-
bone, plant disease detection, single shot detector algorithm

Vol. 63, No. 4: 405–417, 2023

DOI: 10.24425/jppr.2023.146877

Received: May 17, 2023
Accepted: July 06, 2023
Online publication: October 02, 2023

*Corresponding address:
benedictanyarko41@gmail.com

Responsible Editor:
Rafał Kukawka

ORIGINAL ARTICLE

Introduction

Modern technologies can produce enough food to
meet the requirements of over 7 billion people (He-
mathilake and Gunathilake 2022). Yet, several issues,
such as decreasing pollinators, climate change, and
plant disease continually pose a threat to food stability
(Hofman-Bergholm 2023). In addition to endangering
the safety of the world’s food supply, plant diseases can
have tragic effects on smallholder farmers whose liveli-
hoods depend on robust crops. Several initiatives have
been created to stop crop loss from diseases (Khan et
al. 2023). The integrated pest management approach
has largely substituted conventional techniques for ap-
plying insecticides in the past 10 years (Golan et al.
2023). The environment, human health, and plant

health are all harmed by the extensive use of these
chemical techniques. Additionally, these techniques
raise production costs. Plant disease management is
effective when diseases are detected at an early stage.

Lycopersicon esculentum (Mohan et al. 2023) (To-
mato) previously referred to as Solanum Lycopersi-
con L (Leite and Fialho 2018) belongs to the family
Solanaceae (Knapp and Peralta 2016) and emanates
from the Andes region of South America. Cur-
rent global research indicates that approximately
182 million tons of tomato crops are cultivated from
5 million hectares of land (Caruso 2022, Bhujel et al.
2022). With 0.2 million hectares, it is the lead-
ing vegetable with the largest yield in southern

https://orcid.org/0000-0002-1738-6048
https://orcid.org/0000-0001-8686-5213
https://orcid.org/0000-0003-2765-6977

Journal of Plant Protection Research 63 (4), 2023406

Europe. Turkey, Egypt, and Italy are the leading pro-
ducers. This is a blooming species, most frequently
a sprawling and nightshade plant that is usually grown
for its edible fruit (Liu et al. 2022).

Phonological changes in the tomato plant can in-
clude aberrant growth, pigmentation, spots, deformi-
ties, wilting, desiccation, and necrosis on the leaves
(Humbal and Pathak 2023, Kremneva et al. 2023;
Nkongho et al. 2023; Sreedevi and Manike 2023). To-
mato disease control is best when all available methods
are used (Albattah et al. 2022). Cultural operations are
aimed at preventing disease or impeding its occur-
rence. Common tomato diseases include: black mold,
rot, crown and root rot, spotted wilt virus, radial rings
cankers, mildews, blights, and many more (Ates et al.
2019, Gatahi 2020). Black mold fungus, Alternaria al-
ternate, is one of the most common fungi experienced.
It breeds dead organic matter whenever moisture
is present and can be found on fruit and fermenting
leaves in tomato fields before the fruit ripens (Rashid
and Shoala 2020). Alternaria fungi is also responsi-
ble for early blight, and stem canker, which are often
confused with black mold (Sánchez et al. 2022). These
two diseases are caused by A. solani and A. alternata
f.s. It is an economically destructive disease on tomato
plants (Nazari et al. 2022). Controlling the most prev-
alent type of Fusarium crown and root-rot disease is
very challenging because it is a soil-borne disease that
economically restricts the production of greenhouse
tomatoes. Due to the spread of microconidia, espe-
cially in greenhouses, FORL causes recurrent infec-
tions throughout the growing season and can cause up
to 90% crop losses in greenhouse tomato cultivation.
(Özbay et al. 2002). Commercially viable, agent-resist-
ant indigenous varieties with adequate resistance to
Fusarium crown and root-rot induced by FORL have
not yet been developed (Ozbay and Newman 2004).
A Gram-positive actinobacterium named Clavibac-
ter michiganensis causes bacterial canker of tomatoes,
a disease affecting millions of people worldwide (Per-
itore-Galve et al. 2020). Due to its rapid migration
through the plant’s vascular system and its ability to
induce systemic symptoms, bactericidal agents are in-
sufficient to manage this disease

Image processing and computer vision is key for
detecting plant diseases (Ouhami et al. 2021). It is
a technique that gathers plant images using comput-
er vision tools and uses those images to determine
whether or not pests and diseases are present (Vishnoi
et al. 2021). Deep learning has recently been used in
the evaluation and identification of plant diseases, fa-
cilitating early disease detection and diagnosis, there-
by quickening the development of novel plant disease
technology (Thakur et al. 2023). Deep learning offers

very innovative methods to aid in the identification of
diseases because of their computing capacity. For im-
age-based research, CNN models are frequently used.
They are effective at extracting high-level features from
images (Ma et al. 2023). This study focused on detect-
ing tomato fruit disease by proposing a 15-layer CNN
architecture as a base network for single shot detector
(SSD) to extract high features from tomato fruit. The
article is organized as follows: the related work of this
research, followed by the materials and methods used
for this study, the proposed backbone, and finally, the
experimental setup, results and discussion.

Materials and Methods

The proposed model architecture, hardware, data-
set, and software resources used for this research are
briefly discussed in this section. A single short shot
detector with a proposed CNN base network was used
in this study for tomato fruit disease detection. SSD
was proposed to accurately locate the infected area of
the tomato fruit. The experiments were carried out on
a Lenovo laptop with an Intel Core i7 2.50 GHz proces-
sor and NVidia GeForce GTX 860M GPU.

Data collection and pre-processing

Tomato fruit images were collected from the internet
and screened carefully to correspond with the disease
classes. This included black mold diseases, radial ring
diseases, spotted wilt diseases, and healthy tomato
fruits. A training set and a testing set were created
from the dataset in the following proportions: 8 : 2.
Figure 1 shows samples of the tomato fruit classes in
the dataset.

A total of 2500 images were obtained and a total of
650 images were obtained for the radial ring class rep-
resenting 26% of the total data. Seven hundred images
were obtained for the healthy class representing 28%
of the total data, 600 images for the spotted wilt class
representing 24% of the total data, and 550 images
for the black mold class representing 22% of the total
class. The data distribution is graphically presented in
Figure 2.

To make the tomato fruit detectable by SSD, the
MATLAB Image labeler app was used to annotate the
datasets. The app offers a simple method for creating
interactively a variety of shapes to classify as regions
of interest (ROI). A rectangle shape was used to mark
the disease spot’s size and shape on the tomato fruit.
Figure 3 shows sample annotated data in the MATLAB
image labeler.

Nyarko B.N.E. et al.: Tomato fruit disease detection based on improved single shot detection algorithm 407

Fig. 1. Sample tomato images: A – black mold disease; B – spotted wilt virus; C – radial ring disease; D – Healthy tomato fruit

Fig. 2. Graphical presentation of dataset

Convolutional neural network
CNNs (Haar et al. 2023), or convolutional neural net-
works, have a complicated network topology and are
capable of performing convolution operations. There
are two broad categories of CNN-based image detec-
tion systems. In the first category, samples consisting
of several candidate frames are created and then classi-
fied using CNN models. Several domains have success-
fully used deep neural networks. For the best possible
image detection, CNN was used (Nyarko et al. 2022).

The input layer, convolution layer, pooling layer, full
connection layer, and output layer make up the con-
volutional neural network design (Ji et al. 2022). One
model repeatedly alternates between the convolution
layer and the pooling layer, and when the neurons of
the convolution layer are connected to the neurons of
the pooling layer, full links are not necessary. In image
identification, CNN is frequently used because of its
magnificent potential (Gaba et al. 2022). CNNs have
been used in the framework to manage the extracted
image data that was gathered during the feature ex-
traction stage (Ghazal 2022). The distinctive features
of the affected tomato fruit are accurately extracted by
the feature extraction layer of the proposed neural net-
works to achieve high recognition rates for tomato dis-
eases (Bouni et al. 2023; Thakur et al. 2023). The per-
formance of the proposed model was compared with
the existing state-of-art models such as ResNet-50,
AlexNet, and VGG19. Equation 1 illustrates a CNN
layer-by-layer pass operation:

→ w1 → x2 → ... → xn–1 → wn–1 → xn → wn → z, (1)

where: x1 – represents the input image, w1 – denotes
the parameter in the first layer, x2– denotes the output
of the first layer, and xn – denotes the output of the
final CNN layer. A loss layer is the final layer. The dif-
ference between the CNN prediction xn and the target
can be measured using a loss function, assuming that
y is the corresponding target value for the input x1. For
instance, Equation 2 represents a straightforward loss
function that could be:

A B

C D

Journal of Plant Protection Research 63 (4), 2023408

 z = 1/2║y – xn║2 , (2)

‌‌‌where: y – denote the ground truth value for the input,
and xn – denote the difference between the CNN pre-
diction. The chain rule and vector calculus are essen-
tial to the CNN learning process. If y

2-5

𝑧𝑧𝑧𝑧 = 1
2
‖𝑦𝑦𝑦𝑦 − 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛‖2, 2

If 𝑦𝑦𝑦𝑦 ∈ ℝB

�𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕� = 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

 3

The 𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡ℎ element of 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦, a vector of the same size as y, is 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

. Given that

� 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇� = �𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕�
𝑇𝑇𝑇𝑇
 and y is a function of x given that 𝑥𝑥𝑥𝑥 ∈ ℝ𝑊𝑊𝑊𝑊 is another vector

� 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

. 4

 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

.

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇 = 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇
 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇

. 5

 ℝB is a scalar
the partial derivative of a to y is a vector if a is a func-
tion of y, and it is defined in Equation 3 as:

2-5

𝑧𝑧𝑧𝑧 = 1
2
‖𝑦𝑦𝑦𝑦 − 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛‖2, 2

If 𝑦𝑦𝑦𝑦 ∈ ℝB

�𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕� = 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

 3

The 𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡ℎ element of 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦, a vector of the same size as y, is 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

. Given that

� 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇� = �𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕�
𝑇𝑇𝑇𝑇
 and y is a function of x given that 𝑥𝑥𝑥𝑥 ∈ ℝ𝑊𝑊𝑊𝑊 is another vector

� 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

. 4

 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

.

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇 = 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇
 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇

. 5

 , (3)

The element of

2-5

𝑧𝑧𝑧𝑧 = 1
2
‖𝑦𝑦𝑦𝑦 − 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛‖2, 2

If 𝑦𝑦𝑦𝑦 ∈ ℝB

�𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕� = 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

 3

The 𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡ℎ element of 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦, a vector of the same size as y, is 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

. Given that

� 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇� = �𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕�
𝑇𝑇𝑇𝑇
 and y is a function of x given that 𝑥𝑥𝑥𝑥 ∈ ℝ𝑊𝑊𝑊𝑊 is another vector

� 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

. 4

 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

.

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇 = 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇
 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇

. 5

, a vector of the same size as y,

is

2-5

𝑧𝑧𝑧𝑧 = 1
2
‖𝑦𝑦𝑦𝑦 − 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛‖2, 2

If 𝑦𝑦𝑦𝑦 ∈ ℝB

�𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕� = 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

 3

The 𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡ℎ element of 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦, a vector of the same size as y, is 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

. Given that

� 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇� = �𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕�
𝑇𝑇𝑇𝑇

 and y is a function of x given that 𝑥𝑥𝑥𝑥 ∈ ℝ𝑊𝑊𝑊𝑊 is another vector

� 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

. 4

 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

.

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇 = 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇
 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇

. 5

. Given that

2-5

𝑧𝑧𝑧𝑧 = 1
2
‖𝑦𝑦𝑦𝑦 − 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛‖2, 2

If 𝑦𝑦𝑦𝑦 ∈ ℝB

�𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕� = 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

 3

The 𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡ℎ element of 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦, a vector of the same size as y, is 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

. Given that

� 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇� = �𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕�
𝑇𝑇𝑇𝑇
 and y is a function of x given that 𝑥𝑥𝑥𝑥 ∈ ℝ𝑊𝑊𝑊𝑊 is another vector

� 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

. 4

 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

.

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇 = 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇
 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇

. 5

 and y is a function

of x given that x

2-5

𝑧𝑧𝑧𝑧 = 1
2
‖𝑦𝑦𝑦𝑦 − 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛‖2, 2

If 𝑦𝑦𝑦𝑦 ∈ ℝB

�𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕� = 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

 3

The 𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡ℎ element of 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦, a vector of the same size as y, is 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

. Given that

� 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇� = �𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕�
𝑇𝑇𝑇𝑇
 and y is a function of x given that 𝑥𝑥𝑥𝑥 ∈ ℝ𝑊𝑊𝑊𝑊 is another vector

� 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

. 4

 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

.

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇 = 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇
 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇

. 5

 ℝW is another vector. The partial
derivative of y concerning x is then expressed in Equa-
tion 4 as:

2-5

𝑧𝑧𝑧𝑧 = 1
2
‖𝑦𝑦𝑦𝑦 − 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛‖2, 2

If 𝑦𝑦𝑦𝑦 ∈ ℝB

�𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕� = 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

 3

The 𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡ℎ element of 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦, a vector of the same size as y, is 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

. Given that

� 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇� = �𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕�
𝑇𝑇𝑇𝑇

 and y is a function of x given that 𝑥𝑥𝑥𝑥 ∈ ℝ𝑊𝑊𝑊𝑊 is another vector

� 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

. 4

 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

.

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇 = 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇
 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇

. 5

 (4)

The H × D matrix that makes up this partial deri­
vative has an entry at the point where the ith row and

the ith column meet is

2-5

𝑧𝑧𝑧𝑧 = 1
2
‖𝑦𝑦𝑦𝑦 − 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛‖2, 2

If 𝑦𝑦𝑦𝑦 ∈ ℝB

�𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕� = 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

 3

The 𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡ℎ element of 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦, a vector of the same size as y, is 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

. Given that

� 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇� = �𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕�
𝑇𝑇𝑇𝑇
 and y is a function of x given that 𝑥𝑥𝑥𝑥 ∈ ℝ𝑊𝑊𝑊𝑊 is another vector

� 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

. 4

 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

.

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇 = 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇
 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇

. 5

. In a chain-like argument,

it is simple to see that a is a function of x: one function
maps x to y, and another function maps y to a. One can
compute using the chain rule in Equation 5:

2-5

𝑧𝑧𝑧𝑧 = 1
2
‖𝑦𝑦𝑦𝑦 − 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛‖2, 2

If 𝑦𝑦𝑦𝑦 ∈ ℝB

�𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕� = 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

 3

The 𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡ℎ element of 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦, a vector of the same size as y, is 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

. Given that

� 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇� = �𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕�
𝑇𝑇𝑇𝑇
 and y is a function of x given that 𝑥𝑥𝑥𝑥 ∈ ℝ𝑊𝑊𝑊𝑊 is another vector

� 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

. 4

 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

.

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇 = 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇
 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇

. 5

 (5)

Single shot detection algorithm (SSD)

In a single pass, the SSD model identifies objects with
incredible detection accuracy, which saves a significant
amount of time (Li et al. 2023, Vig et al. 2023). It yields
accurate predictions at diverse levels from feature maps
and achieves high detection accuracy by directly divid-
ing predictions by aspect ratio (Guravaiah et al. 2023).
Even on input images with low resolutions, these tech-
niques produce high accuracy and simple end-to-end
training. The SSD works by employing convolutional
networks to produce a large number of bounding box-
es of various fixed sizes and assess whether or not an
instance of an object class is present in each box. Af-
ter the convolutional networks have finished their job,
a non-maximum suppression step then produces the
final detections (Shi et al. 2022).

The head and the backbone make up the single shot
detection design. The backbone layer is utilized by the
feature map generator (Wei et al. 2023), a standard im-
age classification network that has been trained. The
final image classification layer produced by the model
is removed, leaving the extracted feature maps. The
SSD head is constructed by stacking convolutional lay-
ers and is placed on top of the backbone model (Liu
et al. 2023a). The SSD algorithm divides each input im-
age into grids of different sizes, and at each grid, detec-
tion for various classes and aspect ratios is performed.
A score is assigned to each of these grids to represent
how well an object works in that particular grid. The
final detection is then extracted using non-maximum

Fig. 3. Samples of annotated data in MATLAB image labeler. (A) Sample annotated healthy tomato in MATLAB image labeler.
(B) Sample Annotated Spotted Wilt infected tomato in MATLAB image labeler. (C) Sample annotated radial ring affected
Tomato in MATLAB image labeler. (D) A sample annotated black mold infected tomato in MATLAB image labeler.

A B

C D

Nyarko B.N.E. et al.: Tomato fruit disease detection based on improved single shot detection algorithm 409

suppression from the collection of overlapping detec-
tions (Liu et al. 2023b). The SSD model’s architecture is
presented in Figure 4.

Proposed backbone (CNN)

The most significant area of research in the field of deep
learning has always been the design of a high-quality,
high-efficiency expressive network architecture. The
majority of current network design approaches con-
centrate on how to combine features extracted from
various layers and how to create computing units that
can extract these features efficiently, increasing the ex-
pressiveness of the network. A key design section of
a one-stage detector model is the backbone, which de-
termines the quality of image feature extraction. It also
affects the seceding object detection, recognition, and
object classification. Figure 5 shows the proposed CNN
architecture and Figure 6 shows the structure of the pro-
posed backbone with a single shot detector algorithm.

The basic components of the proposed CNN used
as the backbone for SSD in detecting tomato fruit dis-
eases are described as follows

Input layer
It acts as an input element for the neural network. Each
input layer feature passes its assigned value to each
neuron in the first hidden layer in a top-to-bottom se-
quence. The hidden layer neuron then adds each value
to the weight vector that corresponds to it, sums the
multiplied values, applies its activation function to this
total, and passes the value calculated by the activation
function to the following layer. Input color channels
are used to encrypt images. Each color level in the
color channel at a specific location represents image
data. RGB, which means red, blue, and green, is the
most popular. The information contained in the image
is the intensity of each channel color across the width
and height of the input image. The blend of these three
colors forms a color pattern.

Convolutional layer
The convolutional layer examines each neural network
patch to derive more abstract properties. It performs
convolution on the input using kernels, which were fil-
ters in the past. Convolution appears to be dot products
between the filtering and the region they pass through

Fig. 4. Structure of single shot detector (SSD) architecture

Fig. 5. Proposed CNN architecture

Journal of Plant Protection Research 63 (4), 2023410

in reality. To reduce the variable value and extract the
key traits, a convolution layer was used. Rotation in-
terpretability, scale interpretability, and interpretation
interpretability were all included in the convolution
layer. Both the generalization concept and the over-fit-
ting issue were added to the fundamental framework.
The operation of the convolution layer in CNN can be
expressed in Equation 6 as follows:

6-8

𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙+1,𝑗𝑗𝑗𝑗𝑙𝑙𝑙𝑙+1,𝑑𝑑𝑑𝑑 = ∑ ∑ ∑ 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖,𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙,

𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙
𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙

𝐵𝐵𝐵𝐵
𝑖𝑖𝑖𝑖=0

𝐻𝐻𝐻𝐻
𝑖𝑖𝑖𝑖=0 X 𝑥𝑥𝑥𝑥

𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙+1,𝑗𝑗𝑗𝑗𝑙𝑙𝑙𝑙+1,𝑑𝑑𝑑𝑑
𝑙𝑙𝑙𝑙 , 6

0 ≤ d, < D = 𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙+1, for 𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙+1, 𝑗𝑗𝑗𝑗𝑙𝑙𝑙𝑙+1 satisfying 0 ≤ 𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙+1 < 𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙 − 𝐻𝐻𝐻𝐻 + 1, < 𝑗𝑗𝑗𝑗𝑙𝑙𝑙𝑙+1 < 𝐵𝐵𝐵𝐵𝑙𝑙𝑙𝑙 − 𝐵𝐵𝐵𝐵 + 1 =

 𝐵𝐵𝐵𝐵𝑙𝑙𝑙𝑙+1 in this equation, 𝑥𝑥𝑥𝑥
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖+1,𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙
𝑙𝑙𝑙𝑙 refers to the element of 𝑥𝑥𝑥𝑥𝑙𝑙𝑙𝑙 indexed 𝑥𝑥𝑥𝑥𝑙𝑙𝑙𝑙+1 + 𝑗𝑗𝑗𝑗𝑙𝑙𝑙𝑙+1 + 𝑗𝑗𝑗𝑗,𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙.

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖,𝑑𝑑𝑑𝑑 = max�0, 𝑥𝑥𝑥𝑥𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖.𝑖𝑖𝑖𝑖,𝑑𝑑𝑑𝑑�, 7

0 < i < 𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙+1, 0 < 𝐽𝐽𝐽𝐽 < 𝐵𝐵𝐵𝐵𝑙𝑙𝑙𝑙 = 𝐵𝐵𝐵𝐵𝑙𝑙𝑙𝑙+1,𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑 0 ≤ 𝑑𝑑𝑑𝑑 ≤ 𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙 ≤ 𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙+1.

𝑑𝑑𝑑𝑑𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗,𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗,𝑑𝑑𝑑𝑑
𝑙𝑙𝑙𝑙 = �𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖,𝑑𝑑𝑑𝑑

𝑙𝑙𝑙𝑙 > 0�, 8

where ‖. ‖ – the

(6)

0 ≤ d, < D = Dl+1 for il+1, jl+1 satisfying 0 ≤ il+1 < Hl – H +1,

< jl+1 < Bl – B + 1 = Bl+1 in this equation,

6-8

𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙+1,𝑗𝑗𝑗𝑗𝑙𝑙𝑙𝑙+1,𝑑𝑑𝑑𝑑 = ∑ ∑ ∑ 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖,𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙,

𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙
𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙

𝐵𝐵𝐵𝐵
𝑖𝑖𝑖𝑖=0

𝐻𝐻𝐻𝐻
𝑖𝑖𝑖𝑖=0 X 𝑥𝑥𝑥𝑥

𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙+1,𝑗𝑗𝑗𝑗𝑙𝑙𝑙𝑙+1,𝑑𝑑𝑑𝑑
𝑙𝑙𝑙𝑙 , 6

0 ≤ d, < D = 𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙+1, for 𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙+1, 𝑗𝑗𝑗𝑗𝑙𝑙𝑙𝑙+1 satisfying 0 ≤ 𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙+1 < 𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙 − 𝐻𝐻𝐻𝐻 + 1, < 𝑗𝑗𝑗𝑗𝑙𝑙𝑙𝑙+1 < 𝐵𝐵𝐵𝐵𝑙𝑙𝑙𝑙 − 𝐵𝐵𝐵𝐵 + 1 =

 𝐵𝐵𝐵𝐵𝑙𝑙𝑙𝑙+1 in this equation, 𝑥𝑥𝑥𝑥
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖+1,𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙
𝑙𝑙𝑙𝑙 refers to the element of 𝑥𝑥𝑥𝑥𝑙𝑙𝑙𝑙 indexed 𝑥𝑥𝑥𝑥𝑙𝑙𝑙𝑙+1 + 𝑗𝑗𝑗𝑗𝑙𝑙𝑙𝑙+1 + 𝑗𝑗𝑗𝑗,𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙.

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖,𝑑𝑑𝑑𝑑 = max�0, 𝑥𝑥𝑥𝑥𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖.𝑖𝑖𝑖𝑖,𝑑𝑑𝑑𝑑�, 7

0 < i < 𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙+1, 0 < 𝐽𝐽𝐽𝐽 < 𝐵𝐵𝐵𝐵𝑙𝑙𝑙𝑙 = 𝐵𝐵𝐵𝐵𝑙𝑙𝑙𝑙+1,𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑 0 ≤ 𝑑𝑑𝑑𝑑 ≤ 𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙 ≤ 𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙+1.

𝑑𝑑𝑑𝑑𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗,𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗,𝑑𝑑𝑑𝑑
𝑙𝑙𝑙𝑙 = �𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖,𝑑𝑑𝑑𝑑

𝑙𝑙𝑙𝑙 > 0�, 8

where ‖. ‖ – the

 refers

to the element of xl indexed xl+1 + jl+1 + j, dl.

ReLu layer
A multi-layer neural network’s ReLu layer is a nonlin-
ear activation function. In this layer, all weak values,
and the processed image are eliminated and switched
out for zeros. Only when the node’s input exceeds
a predetermined threshold this feature is activated.
The output will be zero if the input is less than zero.
However, the input becomes linearly related to the de-
pendent variable once it exceeds a certain threshold.
This implies that the deep neural network’s training
data set can be processed more quickly than other acti-
vation functions. This prevents the sum from reaching
zero. The ReLu layer can be considered as independent
filtering for each element in the input: The input size is
unchanged by a ReLu layer. ReLu layers maintain the
input’s original size, so/and y have the same size. This
is expressed in Equation 7 as:

 yi,j,d = max{0, xl
i, j,d}, (7)

 0 < i < Hl+1, 0 < j < Bl = Bl+1n and 0 ≤ d ≤ Dl ≤ Dl+1.

ReLu layers do not carry any parameters, so this
layer does not require parameter learning. From Equa-
tion 7 we obtain Equation 8 as:

 (8)

6-8

𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙+1,𝑗𝑗𝑗𝑗𝑙𝑙𝑙𝑙+1,𝑑𝑑𝑑𝑑 = ∑ ∑ ∑ 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖,𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙,

𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙
𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙

𝐵𝐵𝐵𝐵
𝑖𝑖𝑖𝑖=0

𝐻𝐻𝐻𝐻
𝑖𝑖𝑖𝑖=0 X 𝑥𝑥𝑥𝑥

𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙+1,𝑗𝑗𝑗𝑗𝑙𝑙𝑙𝑙+1,𝑑𝑑𝑑𝑑
𝑙𝑙𝑙𝑙 , 6

0 ≤ d, < D = 𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙+1, for 𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙+1, 𝑗𝑗𝑗𝑗𝑙𝑙𝑙𝑙+1 satisfying 0 ≤ 𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙+1 < 𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙 − 𝐻𝐻𝐻𝐻 + 1, < 𝑗𝑗𝑗𝑗𝑙𝑙𝑙𝑙+1 < 𝐵𝐵𝐵𝐵𝑙𝑙𝑙𝑙 − 𝐵𝐵𝐵𝐵 + 1 =

 𝐵𝐵𝐵𝐵𝑙𝑙𝑙𝑙+1 in this equation, 𝑥𝑥𝑥𝑥
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖+1,𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙
𝑙𝑙𝑙𝑙 refers to the element of 𝑥𝑥𝑥𝑥𝑙𝑙𝑙𝑙 indexed 𝑥𝑥𝑥𝑥𝑙𝑙𝑙𝑙+1 + 𝑗𝑗𝑗𝑗𝑙𝑙𝑙𝑙+1 + 𝑗𝑗𝑗𝑗,𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙.

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖,𝑑𝑑𝑑𝑑 = max�0, 𝑥𝑥𝑥𝑥𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖.𝑖𝑖𝑖𝑖,𝑑𝑑𝑑𝑑�, 7

0 < i < 𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙+1, 0 < 𝐽𝐽𝐽𝐽 < 𝐵𝐵𝐵𝐵𝑙𝑙𝑙𝑙 = 𝐵𝐵𝐵𝐵𝑙𝑙𝑙𝑙+1,𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑 0 ≤ 𝑑𝑑𝑑𝑑 ≤ 𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙 ≤ 𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙+1.

𝑑𝑑𝑑𝑑𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗,𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗,𝑑𝑑𝑑𝑑
𝑙𝑙𝑙𝑙 = �𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖,𝑑𝑑𝑑𝑑

𝑙𝑙𝑙𝑙 > 0�, 8

where ‖. ‖ – the

where

6-8

𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙+1,𝑗𝑗𝑗𝑗𝑙𝑙𝑙𝑙+1,𝑑𝑑𝑑𝑑 = ∑ ∑ ∑ 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖,𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙,

𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙
𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙

𝐵𝐵𝐵𝐵
𝑖𝑖𝑖𝑖=0

𝐻𝐻𝐻𝐻
𝑖𝑖𝑖𝑖=0 X 𝑥𝑥𝑥𝑥

𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙+1,𝑗𝑗𝑗𝑗𝑙𝑙𝑙𝑙+1,𝑑𝑑𝑑𝑑
𝑙𝑙𝑙𝑙 , 6

0 ≤ d, < D = 𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙+1, for 𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙+1, 𝑗𝑗𝑗𝑗𝑙𝑙𝑙𝑙+1 satisfying 0 ≤ 𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙+1 < 𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙 − 𝐻𝐻𝐻𝐻 + 1, < 𝑗𝑗𝑗𝑗𝑙𝑙𝑙𝑙+1 < 𝐵𝐵𝐵𝐵𝑙𝑙𝑙𝑙 − 𝐵𝐵𝐵𝐵 + 1 =

 𝐵𝐵𝐵𝐵𝑙𝑙𝑙𝑙+1 in this equation, 𝑥𝑥𝑥𝑥
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖+1,𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙
𝑙𝑙𝑙𝑙 refers to the element of 𝑥𝑥𝑥𝑥𝑙𝑙𝑙𝑙 indexed 𝑥𝑥𝑥𝑥𝑙𝑙𝑙𝑙+1 + 𝑗𝑗𝑗𝑗𝑙𝑙𝑙𝑙+1 + 𝑗𝑗𝑗𝑗,𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙.

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖,𝑑𝑑𝑑𝑑 = max�0, 𝑥𝑥𝑥𝑥𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖.𝑖𝑖𝑖𝑖,𝑑𝑑𝑑𝑑�, 7

0 < i < 𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙+1, 0 < 𝐽𝐽𝐽𝐽 < 𝐵𝐵𝐵𝐵𝑙𝑙𝑙𝑙 = 𝐵𝐵𝐵𝐵𝑙𝑙𝑙𝑙+1,𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑 0 ≤ 𝑑𝑑𝑑𝑑 ≤ 𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙 ≤ 𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙+1.

𝑑𝑑𝑑𝑑𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗,𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗,𝑑𝑑𝑑𝑑
𝑙𝑙𝑙𝑙 = �𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖,𝑑𝑑𝑑𝑑

𝑙𝑙𝑙𝑙 > 0�, 8

where ‖. ‖ – the

 – the indicator function; it returns a value
of 1 if its argument is true and a value of 0 otherwise.
Equation 9 is obtained as:

9-11

�𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
2𝜕𝜕𝜕𝜕𝑙𝑙𝑙𝑙
�
𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖,𝑑𝑑𝑑𝑑

 = ��
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
2𝜕𝜕𝜕𝜕𝑙𝑙𝑙𝑙
�
𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖,𝑑𝑑𝑑𝑑

0
if 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖,𝑑𝑑𝑑𝑑

𝑙𝑙𝑙𝑙 > 0, 9

𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙+1 = 𝐻𝐻𝐻𝐻
𝑙𝑙𝑙𝑙

𝐻𝐻𝐻𝐻
,𝐵𝐵𝐵𝐵𝑙𝑙𝑙𝑙+1 = 𝐵𝐵𝐵𝐵

𝑙𝑙𝑙𝑙

𝐵𝐵𝐵𝐵
, 𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙+1 = 𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙 10

where: 𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙+1, and 𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙+1

max: 𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙+1,𝑗𝑗𝑗𝑗𝑙𝑙𝑙𝑙+1 ,𝑑𝑑𝑑𝑑

=
𝑚𝑚𝑚𝑚𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

0 < 𝑖𝑖𝑖𝑖 < 𝐻𝐻𝐻𝐻, 0 < 𝑗𝑗𝑗𝑗 < 𝐵𝐵𝐵𝐵 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙+1
𝑙𝑙𝑙𝑙 × 𝐻𝐻𝐻𝐻 + 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗𝑙𝑙𝑙𝑙+1 × 𝐵𝐵𝐵𝐵 + 𝑗𝑗𝑗𝑗,𝑑𝑑𝑑𝑑. 11

where: 0 ≤ 𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙+1 < 𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙+1, 0 ≤ 𝑗𝑗𝑗𝑗𝑙𝑙𝑙𝑙+1 < 𝐵𝐵𝐵𝐵𝑙𝑙𝑙𝑙+1 , and 0≤ 𝑑𝑑𝑑𝑑 < 𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙+1 –

 (9)

where: y – the alias for xl+1. ReLu’s objective is to make
the CNN more nonlinear. Since the semantic content
of an image (in this case, a tomato fruit) is a highly
nonlinear mapping of input pixel values.

Batch normalization layer
Normalization of the inputs to a layer is done in tiny
batches using a deep-learning training technique
known as batch normalization. Training is accelerated
by the batch normalization layer, which also lessens
the impact of initialization after the convolution oper-
ation. This layer is added before the input of each con-
volutional layer to ensure that each layer’s input has the
same distributions and to reduce inner covariate shifts
during training. Therefore, the process of learning is
regulated and a deep network can be trained with sig-
nificantly fewer training epochs.

MaxPooling layer
Two input arguments are required by a MaxPool layer,
height, and core width. The kernel moves across the
pixels in a straight line at the predetermined step size,

Fig. 6. Structure of proposed backbone with single shot detector (SSD)

Nyarko B.N.E. et al.: Tomato fruit disease detection based on improved single shot detection algorithm 411

beginning in the upper left corner of the feature map.
The kernel window’s highest-valued pixel serves as
the source of the value for the associated node in the
pooling layer. Max CNNs’ pooling layers are a crucial
component. They keep the number of network param-
eters to a minimum while summarizing the activation
maps, the result of pooling (y, or x in its place), (H × B
× D) will be the size of Hl+1 + Bl+1 + Dl+1 in order 3-ten-
sor as seen in Equation 10:

9-11

�𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
2𝜕𝜕𝜕𝜕𝑙𝑙𝑙𝑙
�
𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖,𝑑𝑑𝑑𝑑

 = ��
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
2𝜕𝜕𝜕𝜕𝑙𝑙𝑙𝑙
�
𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖,𝑑𝑑𝑑𝑑

0
if 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖,𝑑𝑑𝑑𝑑

𝑙𝑙𝑙𝑙 > 0, 9

𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙+1 = 𝐻𝐻𝐻𝐻
𝑙𝑙𝑙𝑙

𝐻𝐻𝐻𝐻
,𝐵𝐵𝐵𝐵𝑙𝑙𝑙𝑙+1 = 𝐵𝐵𝐵𝐵

𝑙𝑙𝑙𝑙

𝐵𝐵𝐵𝐵
, 𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙+1 = 𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙 10

where: 𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙+1, and 𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙+1

max: 𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙+1,𝑗𝑗𝑗𝑗𝑙𝑙𝑙𝑙+1 ,𝑑𝑑𝑑𝑑

=
𝑚𝑚𝑚𝑚𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

0 < 𝑖𝑖𝑖𝑖 < 𝐻𝐻𝐻𝐻, 0 < 𝑗𝑗𝑗𝑗 < 𝐵𝐵𝐵𝐵 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙+1
𝑙𝑙𝑙𝑙 × 𝐻𝐻𝐻𝐻 + 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗𝑙𝑙𝑙𝑙+1 × 𝐵𝐵𝐵𝐵 + 𝑗𝑗𝑗𝑗,𝑑𝑑𝑑𝑑. 11

where: 0 ≤ 𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙+1 < 𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙+1, 0 ≤ 𝑗𝑗𝑗𝑗𝑙𝑙𝑙𝑙+1 < 𝐵𝐵𝐵𝐵𝑙𝑙𝑙𝑙+1 , and 0≤ 𝑑𝑑𝑑𝑑 < 𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙+1 –

 (10)

where: Hl+1, and Dl+1 – the input to the pooling layer.
A max-pooling operator maps a subregion to its maxi-
mum value. Using exact mathematics in Equation 11
as:

max:

9-11

�𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
2𝜕𝜕𝜕𝜕𝑙𝑙𝑙𝑙
�
𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖,𝑑𝑑𝑑𝑑

 = �
�𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
2𝜕𝜕𝜕𝜕𝑙𝑙𝑙𝑙
�
𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖,𝑑𝑑𝑑𝑑

0
if 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖,𝑑𝑑𝑑𝑑

𝑙𝑙𝑙𝑙 > 0, 9

𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙+1 = 𝐻𝐻𝐻𝐻
𝑙𝑙𝑙𝑙

𝐻𝐻𝐻𝐻
,𝐵𝐵𝐵𝐵𝑙𝑙𝑙𝑙+1 = 𝐵𝐵𝐵𝐵

𝑙𝑙𝑙𝑙

𝐵𝐵𝐵𝐵
, 𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙+1 = 𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙 10

where: 𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙+1, and 𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙+1

max: 𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙+1,𝑗𝑗𝑗𝑗𝑙𝑙𝑙𝑙+1 ,𝑑𝑑𝑑𝑑

=
𝑚𝑚𝑚𝑚𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

0 < 𝑖𝑖𝑖𝑖 < 𝐻𝐻𝐻𝐻, 0 < 𝑗𝑗𝑗𝑗 < 𝐵𝐵𝐵𝐵 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙+1
𝑙𝑙𝑙𝑙 × 𝐻𝐻𝐻𝐻 + 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗𝑙𝑙𝑙𝑙+1 × 𝐵𝐵𝐵𝐵 + 𝑗𝑗𝑗𝑗,𝑑𝑑𝑑𝑑. 11

where: 0 ≤ 𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙+1 < 𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙+1, 0 ≤ 𝑗𝑗𝑗𝑗𝑙𝑙𝑙𝑙+1 < 𝐵𝐵𝐵𝐵𝑙𝑙𝑙𝑙+1 , and 0≤ 𝑑𝑑𝑑𝑑 < 𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙+1 –

 (11)

9-11

�𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
2𝜕𝜕𝜕𝜕𝑙𝑙𝑙𝑙
�
𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖,𝑑𝑑𝑑𝑑

 = ��
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
2𝜕𝜕𝜕𝜕𝑙𝑙𝑙𝑙
�
𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖,𝑑𝑑𝑑𝑑

0
if 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖,𝑑𝑑𝑑𝑑

𝑙𝑙𝑙𝑙 > 0, 9

𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙+1 = 𝐻𝐻𝐻𝐻
𝑙𝑙𝑙𝑙

𝐻𝐻𝐻𝐻
,𝐵𝐵𝐵𝐵𝑙𝑙𝑙𝑙+1 = 𝐵𝐵𝐵𝐵

𝑙𝑙𝑙𝑙

𝐵𝐵𝐵𝐵
, 𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙+1 = 𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙 10

where: 𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙+1, and 𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙+1

max: 𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙+1,𝑗𝑗𝑗𝑗𝑙𝑙𝑙𝑙+1 ,𝑑𝑑𝑑𝑑

=
𝑚𝑚𝑚𝑚𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

0 < 𝑖𝑖𝑖𝑖 < 𝐻𝐻𝐻𝐻, 0 < 𝑗𝑗𝑗𝑗 < 𝐵𝐵𝐵𝐵 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙+1
𝑙𝑙𝑙𝑙 × 𝐻𝐻𝐻𝐻 + 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗𝑙𝑙𝑙𝑙+1 × 𝐵𝐵𝐵𝐵 + 𝑗𝑗𝑗𝑗,𝑑𝑑𝑑𝑑. 11

where: 0 ≤ 𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙+1 < 𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙+1, 0 ≤ 𝑗𝑗𝑗𝑗𝑙𝑙𝑙𝑙+1 < 𝐵𝐵𝐵𝐵𝑙𝑙𝑙𝑙+1 , and 0≤ 𝑑𝑑𝑑𝑑 < 𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙+1 –

where: 0 ≤ il+1 < Hl+1, 0 ≤ jl+1 < Bl+1 and 0 ≤ d < Dl+1 –
depicts a pooling local operator with straight forward
computation.

Fully connected layer

The flat layer, a two-dimensional (2d) layer, provides
input to a completely connected layer. The affine
function receives data from the smoothing layer be-
fore passing it on to the nonlinear function. One FC
(fully connected) is the result of combining one affine
function with one nonlinear function. The suggested
architecture’s final probability for each label is pro-
vided in this layer. The FC layer transforms incom-
ing neurons using weighted linear transformations
and sends outputs to nonlinear neurons. Every neu-
ron in one layer is connected to every neuron in the
other layers, forming a succession of fully connected
layers that make up a fully connected neural network.
Fully connected networks have the major benefit of
being “structure-agnostic”, meaning that no specific
assumptions about the input are required. The de-
scriptions of mathematical models with completely
connected layers are provided in Equation 12. Con-
sidering a convolution or pooling layer/node with the
dimensions:

12-14

𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖
[𝑖𝑖𝑖𝑖] = ∑ 𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛(𝑖𝑖𝑖𝑖−𝑙𝑙𝑙𝑙)
(𝑙𝑙𝑙𝑙−1) 1𝐵𝐵𝐵𝐵𝑙𝑙𝑙𝑙

(𝑖𝑖𝑖𝑖−1) + 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
[𝑙𝑙𝑙𝑙] → 𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

[𝑖𝑖𝑖𝑖] = 𝜑𝜑𝜑𝜑[𝑖𝑖𝑖𝑖] �𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖
[𝑖𝑖𝑖𝑖]�. 12

𝐴𝐴𝐴𝐴 (𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) = ∑ ∑ ∑ 𝐵𝐵𝐵𝐵 (𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘) × 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2𝐵𝐵𝐵𝐵(𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘),
𝑛𝑛𝑛𝑛
𝑘𝑘𝑘𝑘=1

𝑖𝑖𝑖𝑖=𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

𝑖𝑖𝑖𝑖=𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 13

 𝐵𝐵𝐵𝐵(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) = � � � 𝑎𝑎𝑎𝑎 (𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗, 𝑘𝑘𝑘𝑘)
𝑚𝑚𝑚𝑚2�

𝑛𝑛𝑛𝑛

𝑘𝑘𝑘𝑘=1

𝑖𝑖𝑖𝑖=𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

𝑖𝑖𝑖𝑖=𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

,

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇,� 14

 (12)

12-14

𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖
[𝑖𝑖𝑖𝑖] = ∑ 𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛(𝑖𝑖𝑖𝑖−𝑙𝑙𝑙𝑙)
(𝑙𝑙𝑙𝑙−1) 1𝐵𝐵𝐵𝐵𝑙𝑙𝑙𝑙

(𝑖𝑖𝑖𝑖−1) + 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
[𝑙𝑙𝑙𝑙] → 𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

[𝑖𝑖𝑖𝑖] = 𝜑𝜑𝜑𝜑[𝑖𝑖𝑖𝑖] �𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖
[𝑖𝑖𝑖𝑖]�. 12

𝐴𝐴𝐴𝐴 (𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) = ∑ ∑ ∑ 𝐵𝐵𝐵𝐵 (𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘) × 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2𝐵𝐵𝐵𝐵(𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘),
𝑛𝑛𝑛𝑛
𝑘𝑘𝑘𝑘=1

𝑖𝑖𝑖𝑖=𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

𝑖𝑖𝑖𝑖=𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 13

 𝐵𝐵𝐵𝐵(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) = � � � 𝑎𝑎𝑎𝑎 (𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗, 𝑘𝑘𝑘𝑘)
𝑚𝑚𝑚𝑚2�

𝑛𝑛𝑛𝑛

𝑘𝑘𝑘𝑘=1

𝑖𝑖𝑖𝑖=𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

𝑖𝑖𝑖𝑖=𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

,

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇,� 14

The input

12-14

𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖
[𝑖𝑖𝑖𝑖] = ∑ 𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛(𝑖𝑖𝑖𝑖−𝑙𝑙𝑙𝑙)
(𝑙𝑙𝑙𝑙−1) 1𝐵𝐵𝐵𝐵𝑙𝑙𝑙𝑙

(𝑖𝑖𝑖𝑖−1) + 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
[𝑙𝑙𝑙𝑙] → 𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

[𝑖𝑖𝑖𝑖] = 𝜑𝜑𝜑𝜑[𝑖𝑖𝑖𝑖] �𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖
[𝑖𝑖𝑖𝑖]�. 12

𝐴𝐴𝐴𝐴 (𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) = ∑ ∑ ∑ 𝐵𝐵𝐵𝐵 (𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘) × 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2𝐵𝐵𝐵𝐵(𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘),
𝑛𝑛𝑛𝑛
𝑘𝑘𝑘𝑘=1

𝑖𝑖𝑖𝑖=𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

𝑖𝑖𝑖𝑖=𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 13

 𝐵𝐵𝐵𝐵(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) = � � � 𝑎𝑎𝑎𝑎 (𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗, 𝑘𝑘𝑘𝑘)
𝑚𝑚𝑚𝑚2�

𝑛𝑛𝑛𝑛

𝑘𝑘𝑘𝑘=1

𝑖𝑖𝑖𝑖=𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

𝑖𝑖𝑖𝑖=𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

,

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇,� 14

 is the output of the pooling opera-
tion with Hl+1 + Bl+1 +Dl+1.

Softmax layer
It is mainly used to represent certainty probabilities in
neural network outputs by scaling output between 0
and 1. It is possible to compute normalization by divid-
ing the output under the study’s exp value by the sum
of all possible outputs’ exp values. The softmax func-
tion transforms a vector of k real values into a vector of
k real values with a total of 1. Softmax converts input
values, which can be either positive or negative, zero
or higher than 1, into values between 0 and 1, mak-
ing them understandable as probabilities. Any small
or negative, input is transformed into a small chance
by Softmax, and any large input is transformed into
a large probability.

Output layer
The neural network’s output layer is the final layer that
produces the desired predictions. An output layer in
a neural network generates the desired outcome pre-
diction. Before determining the final output, it applies
its own set of weights and biases. For some issues, the
hidden layer activation function may be different from
the output layer activation function. For instance, in
classification issues, the final classes are derived using
softmax activations. A summary of the proposed CNN
Architecture is given in Figure 7.

Feature extraction

Different subsections of the feature extraction phase,
such as color extraction, texture extraction, and in-
fected area extraction were considered. An RGB im-
age, in terms of conventional color space, is a mixture
of the colors red, green, and blue. Therefore, it is ap-
propriate to determine the proportion of red, green,
and blue components in each image pixel. One of the
main components for detecting tomato disease is color
extraction. This technique takes a sample image of
a tomato and extracts a spectrum of colors from light-
est to darkest. Entropy calculation is used to perform
texture detection on segmented captured images. This
technique first converts the segmented image to gray-
scale. Following grayscale conversion, the system uses
a conventional entropy calculation method to extract
the local entropy of the image. The system determines
the minimum and maximum pixels present in the lo-
cal entropy matrix following its extraction. The texture
quality coefficient will be equal to the mean of the cal-
culated minimum and maximum pixel range from the
local entropy matrix. A rough idea of tomato texture
can be obtained from the texture quality coefficient
calculated from the local entropy matrix. The creat-
ed system is trained using an extensive set of texture
quality coefficients that were extracted from various
tomato sample images in the created dataset as:

Journal of Plant Protection Research 63 (4), 2023412

 13

 𝐴𝐴𝐴𝐴(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) = � � � 𝐵𝐵𝐵𝐵(𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗, 𝑘𝑘𝑘𝑘) × log 2𝐵𝐵𝐵𝐵(𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘),
𝑛𝑛𝑛𝑛

𝑘𝑘𝑘𝑘=1

𝑗𝑗𝑗𝑗=𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

𝑖𝑖𝑖𝑖=𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 𝐵𝐵𝐵𝐵(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) = � � � 𝑛𝑛𝑛𝑛 (𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗, 𝑘𝑘𝑘𝑘)
𝑚𝑚𝑚𝑚2�

𝑛𝑛𝑛𝑛

𝑘𝑘𝑘𝑘=1

𝑗𝑗𝑗𝑗=𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

𝑖𝑖𝑖𝑖=𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

,

(13)

where: B(x,y,z) – the calculated probability index ma-
trix, and m2 – the size of the segmented image.

Results, Discussion and Conclusions

The specifics of the experiments including param-
eter fitting and the outcomes of the experiments are
covered in this section. Each model’s performance is
clearly presented.

Quantitative Analysis

The primary indicators for evaluating a deep learning
model’s detection performance are precision, average
precision, accuracy, and recall. The training time and
image detection time were used to obtain the mean
average precision (mAP) of each model’s performance
in this study.

Precision

Precision is the ratio of the number of positively de-
tected samples that were correctly identified as positive
to the number of positively detected samples. Preci-
sion is defined in Equation 14 as:

12-14

𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖
[𝑖𝑖𝑖𝑖] = ∑ 𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛(𝑖𝑖𝑖𝑖−𝑙𝑙𝑙𝑙)
(𝑙𝑙𝑙𝑙−1) 1𝐵𝐵𝐵𝐵𝑙𝑙𝑙𝑙

(𝑖𝑖𝑖𝑖−1) + 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
[𝑙𝑙𝑙𝑙] → 𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

[𝑖𝑖𝑖𝑖] = 𝜑𝜑𝜑𝜑[𝑖𝑖𝑖𝑖] �𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖
[𝑖𝑖𝑖𝑖]�. 12

𝐴𝐴𝐴𝐴 (𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) = ∑ ∑ ∑ 𝐵𝐵𝐵𝐵 (𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘) × 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2𝐵𝐵𝐵𝐵(𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘),
𝑛𝑛𝑛𝑛
𝑘𝑘𝑘𝑘=1

𝑖𝑖𝑖𝑖=𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

𝑖𝑖𝑖𝑖=𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 13

 𝐵𝐵𝐵𝐵(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) = � � � 𝑎𝑎𝑎𝑎 (𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗, 𝑘𝑘𝑘𝑘)
𝑚𝑚𝑚𝑚2�

𝑛𝑛𝑛𝑛

𝑘𝑘𝑘𝑘=1

𝑖𝑖𝑖𝑖=𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

𝑖𝑖𝑖𝑖=𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

,

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇,� 14

 (14)

where: Tp – the number of positive samples that were
correctly classified, that is, the real positive samples
that the classifier also correctly classified as positive
samples, and Fp – the number of negative samples that
were incorrectly classified as positive, that is, the real
negative samples that the classifier incorrectly classi-
fied as positive samples.

Mean average precision (mAP)
To determine the mAP, the mean average precision
compares the detected box to the ground-truth bound-
ing box. When the ratings are high, the model’s detec-
tions are more accurate. Average precision is defined
for datasets with multiple classes as in Equation 15
as:

15-18

𝑚𝑚𝑚𝑚𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = ∑𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑁𝑁𝑁𝑁′� , 15

where: Σ – represents the sum of average precision and 𝑁𝑁𝑁𝑁′ – represents the total number of all

classes in the dataset.

𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑎𝑎𝑎𝑎
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑎𝑎𝑎𝑎 + 𝐹𝐹𝐹𝐹𝑎𝑎𝑎𝑎� , 16

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 − 𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖)2 𝑎𝑎𝑎𝑎� , 17

𝐼𝐼𝐼𝐼𝑂𝑂𝑂𝑂𝐼𝐼𝐼𝐼 = 𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝐼𝐼𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃.� 18

 (15)

where: ∑ – represents the sum of average precision and
N’– represents the total number of all classes in the
dataset.

Accuracy
Accuracy, or the percentage of correctly detected im-
ages in all instances, is a term used to describe the rate
at which images are successfully detected. Addition-
ally, the proportion of samples correctly identified
for a given test database to the total number of data
successfully classified by the predictor is proportional
to the total amount of data. Accuracy is described in
Equation 16:

Fig. 7. Summary of the proposed backbone structure

Nyarko B.N.E. et al.: Tomato fruit disease detection based on improved single shot detection algorithm 413

15-18

𝑚𝑚𝑚𝑚𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = ∑𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑁𝑁𝑁𝑁′� , 15

where: Σ – represents the sum of average precision and 𝑁𝑁𝑁𝑁′ – represents the total number of all

classes in the dataset.

𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑎𝑎𝑎𝑎
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑎𝑎𝑎𝑎 + 𝐹𝐹𝐹𝐹𝑎𝑎𝑎𝑎� , 16

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 − 𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖)2 𝑎𝑎𝑎𝑎� , 17

𝐼𝐼𝐼𝐼𝑂𝑂𝑂𝑂𝐼𝐼𝐼𝐼 = 𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝐼𝐼𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃.� 18

 (16)

where: Tp – the number of positive samples that were
correctly classified, Fp – the number of negative sam-
ples that were incorrect, Tn – negative classes that were
correctly predicted as negative, and Fn – positive class-
es that were falsely predicted as negative.

Root mean square error (RMSE)
 The average distance between the values in the data-
set and those predicted by the model. A given model
can “fit” a dataset more accurately when the RMSE is
low. The root means square error or RMSE is calcu-
lated using the following formula:

15-18

𝑚𝑚𝑚𝑚𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = ∑𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑁𝑁𝑁𝑁′� , 15

where: Σ – represents the sum of average precision and 𝑁𝑁𝑁𝑁′ – represents the total number of all

classes in the dataset.

𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑎𝑎𝑎𝑎
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑎𝑎𝑎𝑎 + 𝐹𝐹𝐹𝐹𝑎𝑎𝑎𝑎� , 16

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 − 𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖)2 𝑎𝑎𝑎𝑎� , 17

𝐼𝐼𝐼𝐼𝑂𝑂𝑂𝑂𝐼𝐼𝐼𝐼 = 𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝐼𝐼𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃.� 18

 (17)

where: Σ – the sum of RMSE, Pi is the predicted value
for the ith – observation in the dataset, Oi – the ob-
served value for the observation in the dataset, and is
the sample size.

Intersection over union (IOU)
A metric quantifies how well the predicted and actual
boxes match. By dividing the area of the intersection
between the two boxes by the area of their union, the
IoU is determined using the following equation. The
accuracy of the prediction increases with IoU.

15-18

𝑚𝑚𝑚𝑚𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = ∑𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑁𝑁𝑁𝑁′� , 15

where: Σ – represents the sum of average precision and 𝑁𝑁𝑁𝑁′ – represents the total number of all

classes in the dataset.

𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑎𝑎𝑎𝑎
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑎𝑎𝑎𝑎 + 𝐹𝐹𝐹𝐹𝑎𝑎𝑎𝑎� , 16

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 − 𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖)2 𝑎𝑎𝑎𝑎� , 17

𝐼𝐼𝐼𝐼𝑂𝑂𝑂𝑂𝐼𝐼𝐼𝐼 = 𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝐼𝐼𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃.� 18

 (18)

A novel convolutional neural network method was
proposed in this study for tomato disease detection.
The proposed model serves as a backbone for the sin-
gle shot object detector algorithm. The main aim of this
research was to improve the accuracy of the existing
deep learning models in plant disease detection. The
total epochs for training and testing were 100 epochs
at 1000 iterations. Seventy percent of the total datasets
was utilized for training, and 30% was used for data
testing. Table 1 shows the results of the proposed CNN
with SDD in detecting tomato fruit disease.

The outcome of the experimental results showed
that the proposed CNN backbone with single shot
detector algorithm achieved excellent results of 0.991
precision, 0.994 mean average precision, 0.988 accu-
racy, and a root mean square error of 1.21 The per-
formance evaluation of the proposed CNN backbone
with SSD Algorithm is presented in Table 1.

The accuracy, precision, mean average precision
(mAP), intersection over union (IOU), and root mean
square error (RMSE), at 1000th for the proposed
model were recorded. The performance of the pro-
posed model was compared with existing models like
ResNet-50, AlexNet, VGG16, and VGG19. The model’s
performance is shown in Table 2.

The classes in the dataset included black mold
diseases, radial ring diseases, spotted wilt diseases,
spotted wilt viruses, and healthy tomato fruits. The
performance of the proposed model in each class
was evaluated and the outcome is seen in Table 3.
The results of the performance evaluation show that
the proposed model obtained higher accuracy, pre-
cision, and mean average precision on healthy to-
mato fruit than black mold, spotted wilt, and radial
ring.

Figure 8 shows sample test results from the experi-
ments. The results show the class name/ the disease of
the tomato fruit and the percentage of the detection re-
sults. Figure 9 shows the train accuracy and loss graphs
of the models used in this study.

To identify the model that was the most effective at
detecting tomato fruit diseases accuracy, mean average
precision, precision, recall, and root mean square error
score values were used as evaluation metrics to assess

Table 1. Performance evaluation of the proposed backbone-SSD

Metrics Results

Precision 0.991

Mean average precision (mAP) 0.994

Accuracy 0.988

Recall 0.991

Root mean square error 1.21

Table 2. Models performance evaluation on test data

Models Accuracy Precision mAP Recall RMSE

SSD-ResNet-50 0.985 0.990 0.995 0.991 1.27

SSD-AlexNet 0.963 0.953 0.952 0.981 1.28

SSD-VGG-16 0.963 0.951 0.953 0.97 1.28

SSD-VGG-19 0.966 0.954 0.962 0.98 1.28

SSD-Proposed CNN 0.988 0.991 0.994 0.991 1.21

mAP – mean average precision

Journal of Plant Protection Research 63 (4), 2023414

Table 3. Proposed model performance in each class

Class Accuracy Precision mAP

Healthy 0.985 0.985 0.982

Black mold 0.975 0.974 0.971

Spotted wilt 0.953 0.951 0.950

Radial ring 0.967 0.966 0.961
mAP – mean average precision

the performance of the pre-trained models. A graph
showing the validation accuracy for the pre-trained
models was created using the validation accuracy cal-
culated in Figure 9.

Discussions

This section presents a thorough analysis of recent
research on plant disease detection via deep learn-
ing methods. Ignoring the early indicators of plant
disease in the agricultural sector can result in losses
in food harvests and ultimately lead to the collapse of
the global food industry. In a few selected diseases and
crops, the recent trend of using different machine-
learning algorithms for plant disease detection has
yielded encouraging results.

A crop conditional model was developed which uti-
lized a unique CNN design in conjunction with crop
metadata to recognize 17 diverse diseases in five crops.
These crops included rapeseed, barley, rice, wheat, and
corn. From the obtained robust features of a large-size
multi-crop dataset, the model quickly learned similar
disease symptoms in different crops, which decreased
the complexity of the classification function (Picon
et al. 2019)

Durmuş et al. (2017) proposed a DL method for
tomato leaf disease detection. They aimed at using
a robot to run real-time plant leaf detection manually
or autonomously in the field or greenhouse. Train-
ing and validation were done by adopting AlexNet
and Squeeze models on the plant image dataset. The
examined tomato leaf diseases in their research cause
a physical change. RGB cameras can observe these al-
terations in the leaves. The output of their novel ap-
proach showed that the AlexNet model performed
slightly better than the SqueezeNet model. They
concluded that the SqueezeNet model is 80 times
smaller than the AlexNet Model, and the cause of
the differences was attributed to the Caffe format
(Durmuş et al. 2017).

(Iqbal et al. 2021) proposed a gray level co-oc-
currence matrix (GLCM) algorithm to calculate
13 distinctive statistical features of tomato leaves. To
categorize data, the support vector machine (SVM)

Fig. 8. Sample test results. (A) Sample detected Spotted wilt virus at 0.92%. (B) Sample detected black mold virus at 0.58 and
0.64 respectively. (C) Sample detected radial ring virus at 0.87%. (D) Sample detected Healthy tomato fruit at 0.92%.

Nyarko B.N.E. et al.: Tomato fruit disease detection based on improved single shot detection algorithm 415

Fig. 9. Training-accuracy graphs for the models – A; Training-loss graphs for the models – B

A B

was utilized. The features obtained from the GLCM
algorithm were implemented as a mobile application.
The processed leaf was compared with the features
stored to recognize the tomato leaf disease. The ex-
perimental findings of their method provide 100% ac-
curacy for healthy leaves, 95% for early blight, 90% for
Septoria leaf, and 85% for late blight (Iqbal et al. 2021).

For effective plant disease identification, pre-
trained models based on convolutional neural net-
works (CNN) were used. The focus was on fine-tun-
ing the hyperparameters of well-known pre-trained
models like DenseNet-121, ResNet-50, VGG-16, and
Inception V4, in particular. The experiments used the
well-known Plant Village dataset, which contains
54,305 images of various plant disease species organ-
ized into 38 classes. Through classification accuracy,
sensitivity, specificity, and F1 score, the model’s perfor-
mance was assessed. Additionally, a comparison with
comparable cutting-edge studies was done. The tests
showed that DenseNet-121 outperformed cutting-
edge models by 99.81% in terms of classification ac-
curacy (Andrew et al. 2022).

To identify plant species in images, most of the
studies reviewed adopted pre-trained CNN models
by fine-tuning, conducting computational statistics of
the tomato leaf features, and using a robot in detect-
ing tomato plant disease in the greenhouse. The per-
formance of their methods was compared with other
state-of-the-art models. Their findings showed that
deep convolutional neural networks perform well in
the identification of plant diseases. However, more
work is required to improve the previous studies, such
as proposing crop disease models that can extract

higher features of the affected area of the crop to en-
able accurate disease detection. A 15-layer convolu-
tional neural network was proposed as the backbone
of a single short shot detector model to address these
challenges. This method can identify the affected re-
gion and the shapes of the infected areas.

This research focused on improving the single shot
detecting algorithm by proposing a CNN backbone for
tomato fruit disease detection. The main aim of this
research was to identify the common disease that af-
fects the tomato fruit, gather a tomato fruit dataset,
and enhance the deep learning framework for detect-
ing plant disease. The proposed method forecasts and
creates a new prototype that will offer improved plant
disease detection performance with less computation-
al resources in a short time. The results obtained from
the proposed method performed better than SSD with
ResNet-50, AlexNet, VGG16, and VGG19 backbones
in tomato fruit disease detection. In a subsequent
study, we will concentrate on how to enhance the to-
mato disease dataset to befit general target detection
algorithms.

The detection and management of crop and plant
infestations have been significantly improved by deep
learning technologies. Complex disease and pest iden-
tification has become possible due to advanced de-
velopments of object detectors. Large and real-time
datasets are supported, automatic feature extraction
functionality is also available, and the overall execu-
tion time is decreased. Therefore, deep learning tech-
niques can be taken into account for upcoming re-
search in the agriculture sector, such as roots, land,
weeds, leaves, and fruits for disease identification.

Journal of Plant Protection Research 63 (4), 2023416

However, the majority of this research is lab-based and
heavily depends on gathered images of plant diseases
and pests. To increase the robustness and generaliza-
tion of the deep learning models, future research will
focus on collecting images from various plant growth
stages, seasons, and geographic locations.

 Early detection of plant diseases and pests is es-
sential for halting and controlling their growth., Ac-
curate identification and prediction require the incor-
poration of meteorological and plant health data, such
as temperature and humidity. Deep learning model
training and network learning can benefit from unsu-
pervised learning as well as combining prior knowl-
edge of brain-like computers with human visual cog-
nition. Collaboration between experts in agriculture
and plant protection in future research is necessary to
realize the full potential of this technology. Their skills
and knowledge must be combined with deep learning
algorithms and models, and the resulting information
will be incorporated into farming machinery.

References

Albattah W., Javed A., Nawaz M., Masood M., Albahli S. 2022.
Artificial Intelligence-based drone system for multiclass
plant disease detection using an improved efficient con-
volutional neural network. Frontiers in Plant Science 13:
1003152. DOI: https://doi.org/10.3389/fpls.2022.808380.

Andrew J., Eunice J., Popescu D. E., Chowdary M.K., He-
manth J. 2022. Deep learning-based leaf disease detection
in crops using images for agricultural applications. Agron-
omy 12 (10): 2395. DOI: https://doi.org/10.3390/agrono-
my12102395

Ates C., Fidan H., Karacaoglu M., Dasgan H. 2019. The iden-
tification of the resistance levels of Fusarium oxysporum
f. sp. radicis-lycopersici and tomato yellow leaf curl viruses
in different tomato genotypes with traditional and molecu-
lar methods. Applied Ecology and Environmental Research
17 (2): 2203–2218. DOI: http://dx.doi.org/10.15666/aeer 	

Bhujel A., Kim N.-E., Arulmozhi E., Basak J., Kim H.-T. 2022.
A lightweight attention-based convolutional neural net-
works for tomato leaf disease classification. Mdpi- Agri-
culture 12 (2): 228. DOI: https://doi.org/10.3390/agricul-
ture12020228	

Bouni M., Hssina B., Douzi K., Douzi S. 2023. Impact of pre-
trained deep neural networks for tomato leaf disease predic-
tion. Journal of Electrical and Computer Engineering 2023
(1): 1–11. DOI: https://doi.org/10.1155/2023/5051005	

Caruso A.G.S.B., Parrella G, Rizzo R., Davino S., Panno S.
2022. Tomato brown rugose fruit virus: a pathogen that is
changing the tomato production worldwide. Annals of
Applied Biology 181 (3): 258–274. DOI: https://doi.org/
10.1111/aab.12788

Durmuş H., Güneş E. O., Kırcı M. 2017. Disease detection on
the leaves of the tomato plants by using deep learning. p.
1–5. In: Proceedings of “6th International Conference on
Agro-Geoinformatics”. 7–10 August 2017, Fairfax, VA,
USA.	DOI: https://doi.org/10.1109/Agro-Geoinformatics.
2017.8047016.	

Gaba S., Budhiraja I., Kumar V., Garg S., Kaddoum G., Hassan
M. M. 2022. A federated calibration scheme for convolu-
tional neural networks: models, applications and challeng-
es. Computer Communications 192: 144–162. DOI: https://
doi.org/10.1016/j.comcom.2022.05.035	

Gatahi D. 2020. Challenges and opportunities in tomato pro-
duction chain and sustainable standards introduction.
International Journal of Horticulture Science and Tech-
nology 7 (3): 235–262. DOI: https://doi.org/10.22059/
ijhst.2020.300818.361	

Ghazal T. 2022. Convolutional neural network based intelli-
gent handwritten document recognition. Computers, Ma-
terials & Continua 70 (3): 4563–4581. DOI: https://doi.
org/10.32604/cmc.2022.021102	

Golan K., Kot I., Kmieć K., Górska-Drabik E. 2023. Approaches
to integrated pest management in Orchards: Comstockaspis
perniciosa (comstock) case study. Mdpi- Agriculture 13 (1):
131. DOI: https://doi.org/10.3390/agriculture13010131	

Guravaiah K., Bhavadeesh Y.S., Shwejan P., Vardhan A.H., La-
vanya S. 2023. Third eye: object recognition and speech
generation for visually impaired. Procedia Computer
Science 218: 1144–1155. DOI: https://doi.org/10.1016/j.procs.
2023.01.093	

Haar L. V., Elvira T., Ochoa O. 2023. An analysis of explainabil-
ity methods for convolutional neural networks. Engineer-
ing Applications of Artificial Intelligence 117: 105606. DOI:
https://doi.org/10.1016/j.engappai.2022.105606	

Hemathilake D., Gunathilake D. 2022. Agricultural productivity
and food supply to meet increased demands. Future Foods
2022: 539–553. DOI: https://doi.org/10.1016/B978-0-323-
91001-9.00016-5

Hofman-Bergholm M. 2023. A transition towards a food and
agricultural system that includes both food security and
planetary health. Mdpi-Foods 12 (1): 12. DOI: https://doi.
org/10.3390/foods12010012	

Humbal A., Pathak B. 2023. Application of nanotechnology in
plant growth and diseases management: tool for sustainable
agriculture. p. 145–168. In: “Agricultural and Environmen-
tal Nanotechnology” (F-L. Fabian, J.K. Patra, eds.). Springer,
Singapore, 674 pp. DOI: https://doi.org/10.1007/978-981-
19-5454-2_6	

Iqbal N., Mumtaz R., Shafi U., Zaidi S. M. H. 2021. Gray level
co-occurrence matrix (GLCM) texture based crop clas-
sification using low altitude remote sensing platforms.
PeerJ Computer Science 7 (8): e536. DOI: https://doi.
org/10.7717/peerj-cs.536	

Ji Y., Liu S., Hao Y. 2023. Realization of convolutional neural
network based on FPGA. p. 761–765. In: Proceedings of
“Third International Conference on Computer Vision and
Data Mining (ICCVDM 2022). Hulun Buir, China. DOI:
https://doi.org/10.1117/12.2660023	

Khan H. R., Gillani Z., Jamal M.H., Athar A., Chaudhry M.T.,
Chao H., He Y., Chen M. 2023. Early identification of crop
type for smallholder farming systems using deep learning
on time-series sentinel-2 imagery. Mdpi-Sensors 23 (4):
1779. DOI: https://doi.org/10.3390/s23041779	

Knapp S., Peralta I.E. 2016. The tomato (Solanum lycopersicum
L., Solanaceae) and its botanical relatives. p. 7–21. In “The
Tomato Genome” (M. Causse, J. Giovannoni, M. Bouzayen,
Z. Mohamed, eds.). Springer Berlin, Heidelberg, 259 pp.
DOI: https://doi.org/10.1007/978-3-662-53389-5_2

Kremneva O., Danilov R., Gasiyan K., Ponomarev A. 2023.
Spore-trapping device: an efficient tool to manage fungal
diseases in winter wheat crops. Plants 12 (2): 391. DOI:
https://doi.org/10.3390/plants12020391	

Leite G.L.D., Fialho A. 2018. Sustainable management of ar-
thropod pests of tomato. p. 305–311. In: “Sustainable
Management of Arthropod Pests of Tomato” (W. Wakil,
G.E. Brust, T.M. Perring, eds.). Academic Press. DOI: htt-
ps://doi.org/10.1016/B978-0-12-802441-6.00014-0	

Li W., Zhang H., Wang G., Xiong G., Zhao M., Li G., Li R. 2023.
Deep learning based online metallic surface defect detection
method for wire and arc additive manufacturing. Robotics
and Computer-Integrated Manufacturing 80: 102470. DOI:
https://doi.org/10.1016/j.rcim.2022.102470	

Liu W., Liu K., Chen D., Zhang Z., Li B., El-Mogy M. M., Tian S.,
Chen T. 2022. Solanum lycopersicum, a model plant for the

Nyarko B.N.E. et al.: Tomato fruit disease detection based on improved single shot detection algorithm 417

studies in developmental biology, stress biology and food
science. Foods 11 (16): 2402. DOI: https://doi.org/10.3390/
foods11162402

Liu B., Luo L., Wang J., Lu Q., Wei H., Zhang Y., Zhu W. 2023a.
An improved lightweight network based on deep learning
for grape recognition in unstructured environments. Infor-
mation Processing in Agriculture 2023. DOI: https://doi.
org/10.1016/j.inpa.2023.02.003 (in press)	

Liu H., Wang D., Xu K., Zhou P., Zhou D. 2023b. Lightweight
convolutional neural network for counting densely piled
steel bars. Automation in Construction 146: 104692. DOI:
https://doi.org/10.1016/j.autcon.2022.104692	

Ma X., Man Q., Yang X., Dong P., Yang Z., Wu J., Liu C. 2023.
Urban feature extraction within a complex urban area with
an improved 3D-CNN using airborne hyperspectral data.
Remote Sensing 15 (4): 992. DOI: https://doi.org/10.3390/
rs15040992	

Mohan A., Krishnan R., Arshinder K., Vandore J., Ramanathan
U. 2023. Management of postharvest losses and wastages in
the Indian tomato supply chain – a temperature-controlled
storage perspective. Mdpi-Sustainability 15 (2): 1331. DOI:
https://doi.org/10.3390/su15021331	

Nazari K., Ebadi M. J., Berahmand K. 2022. Diagnosis of alter-
naria disease and leafminer pest on tomato leaves using im-
age processing techniques. Journal of the Science of Food
and Agriculture 102 (15): 6907–6920. DOI: https://doi.
org/10.1002/jsfa.12052		

Nkongho R.N., Ndam L.M., Akoneh N.N., Tongwa Q.M., Nji-
lar R.M., Agbor D.T., Sama V., Ojongakpa O.T., Ngone A.M.
2023. Vegetative propagation of F1 tomato hybrid (Solanum
lycopersicum L.) using different rooting media and stem-
nodal cuttings. Journal of Agriculture and Food Research 11:
100470. DOI: https://doi.org/10.1016/j.jafr.2022.100470	

Nyarko B.N.E., Bin W., Zhou J., Agordzo G.K., Odoom J.,
Koukoyi E. 2022. Comparative analysis of AlexNet,
Resnet-50, and Inception-V3 models on masked face rec-
ognition. p. 337–343. In: Proceedings of “2022 IEEE World
AI IoT Congress (AIIoT)”. 6–9 June 2022. DOI: https://doi.
org/10.1109/AIIoT54504.2022.9817327	

Ouhami M., Hafiane A., Es-Saady Y., El Hajji M., Canals R.
2021. Computer vision, IoT and data fusion for crop disease
detection using machine learning: a survey and ongoing
research. Remote Sensing 13 (13): 2486. DOI: https://doi.
org/10.3390/rs13132486

Ozbay N., Newman S.E. 2004. Fusarium crown and root rot of
tomato and control methods. Plant Pathology Journal 3 (1):
9–18. DOI: https://doi.org/10.3923/ppj.2004.9.18	

Özbay N., Newman S., Brown W. 2004. Evaluation of Tricho-
derma harzianum strains to control crown and root rot
of greenhouse fresh market tomatoes. Acta Horticultu-
rae 635: 635. DOI: https://doi.org/10.17660/ActaHor-
tic.2004.635.10	

Peritore-Galve C., Tancos M., Smart C. 2020. Bacterial canker
of tomato: revisiting a global and economically damaging

seedborne pathogen. Plant Disease 105 (6): 1581–1595.
DOI: https://doi.org/10.1094/PDIS-08-20-1732-FE	

Picon A., Seitz M., Alvarez-Gila A., Mohnke P., Ortiz-Barre-
do A., Echazarra J. 2019. Crop conditional convolutional
neural networks for massive multi-crop plant disease clas-
sification over cell phone acquired images taken on real
field conditions. Computers and Electronics in Agricul-
ture 167: 105093. DOI: https://doi.org/10.1016/j.com-
pag.2019.105093	

Rashid I., Shoala T. 2020. Nanoactivities of natural nanoma-
terials rosmarinic acid, glycyrrhizic acid and glycyrrhizic
acid ammonium salt against tomato phytopathogenic fungi
Alternaria alternata and Penicillium digitatum. Journal of
Plant Protection Research 60 (2): 1–11. DOI: https://doi.
org/10.24425/jppr.2020.133309	

Sánchez P., Vélez-del-Burgo A., Suñén E., Martínez J., Postigo I.
2022. Fungal allergen and mold allergy diagnosis: Role
and relevance of Alternaria alternata Alt a 1 protein family.
Journal of Fungi 8 (3): 277. DOI: https://doi.org/10.3390/
jof8030277	

Shi M., He P., Shi Y. 2022. Detecting extratropical cyclones of
the northern hemisphere with single shot detector. Mdpi-
Remote Sensing 14 (2): 254. DOI: https://doi.org/10.3390/
rs14020254	

Sreedevi A., Manike C. 2023. Development of weighted ensem-
ble transfer learning for tomato leaf disease classification
solving low resolution problems. The Imaging Science Jour-
nal 71 (2): 1–27. DOI: https://doi.org/10.1080/13682199.20
23.2178605	

Thakur P.S., Sheorey T., Ojha A. 2023. VGG-ICNN: A Light-
weight CNN model for crop disease identification. Multi-
media Tools and Applications 82 (1): 497–520. DOI: htt-
ps://doi.org/10.1007/s11042-022-13144-z	

Thakur R., Mohanty S., Sethy P.K., Patro N., Sethy P., Acha-
ry A.A. 2023. Detection of tomato leaf ailment using con-
volutional neural network technique. p. 193–202. In: Pro-
ceedings of “Third Mobile and Radio Communications and
5G Networks. 10–12 June, 2022. Krukshatra, India. DOI:
https://doi.org/10.1007/978-981-19-7982-8_17	

Vig S., Arora A., Arya G. 2023. Automated license plate detec-
tion and recognition using deep learning. p. 419–431 In:
Proceedings of “Advancements in Interdisciplinary Re-
search: First International Conference, AIR 2022”. 6–7 May
2022, Prayagraj, India. DOI: https://doi.org/10.1007/978-3-
031-23724-9_39	

Vishnoi V.K., Kumar K., Kumar B. 2021. Plant disease detection
using computational intelligence and image processing.
Journal of Plant Diseases and Protection 128: 19–53. DOI:
https://doi.org/10.1007/s11119-019-09703-4	

Wei D., Wei X., Tang Q., Jia L., Yin X., Ji Y. 2023. RTLSeg:
A novel multi-component inspection network for railway
track line based on instance segmentation. Engineering
Applications of Artificial Intelligence 119: 105822. DOI:
https://doi.org/10.3390/s23041779	

