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Abstract 
The tomato crop is more susceptible to disease than any other vegetable, and it can be 
infected with over 200 diseases caused by different pathogens worldwide. Tomato plant 
diseases have become a challenge to food security globally. Currently, diagnosing and pre-
venting tomato plant diseases is a challenge due to the lack of essential methods or tools. 
The traditional techniques of detecting plant disease are arduous and error-prone. Utiliz-
ing precise or automatic detection methods in spotting early plant disease can improve 
the quality of food production and reduce adverse effects. Deep learning has significantly 
increased the recognition accuracy of image classification and object detection systems in 
recent years. In this study, a 15-layer convolutional neural network is proposed as the back-
bone for single shot detector (SSD) to improve the detection of healthy, and three classes 
of tomato fruit diseases. The proposed model performance is compared with ResNet-50, 
AlexNet, VGG 16, and VGG19 as the backbone for Single shot detector.  The findings of 
the experiment showed that the proposed CNN-SDD achieved 98.87% higher detection 
accuracy, which outperformed state-of-the-art models.

Keywords: convolutional neural network, deep learning, feature extraction, model back-
bone, plant disease detection, single shot detector algorithm

Vol. 63, No. 4: 405–417, 2023 

DOI: 10.24425/jppr.2023.146877

Received: May 17, 2023
Accepted: July 06, 2023
Online publication: October 02, 2023

*Corresponding address: 
benedictanyarko41@gmail.com

Responsible Editor:
Rafał Kukawka

ORIGINAL ARTICLE

Introduction 

Modern technologies can produce enough food to 
meet the requirements of over 7 billion people (He-
mathilake and Gunathilake 2022). Yet, several issues, 
such as decreasing pollinators, climate change, and 
plant disease continually pose a threat to food stability 
(Hofman-Bergholm 2023). In addition to endangering 
the safety of the world’s food supply, plant diseases can 
have tragic effects on smallholder farmers whose liveli-
hoods depend on robust crops. Several initiatives have 
been created to stop crop loss from diseases (Khan et 
al. 2023). The integrated pest management approach 
has largely substituted conventional techniques for ap-
plying insecticides in the past 10 years (Golan et al. 
2023). The environment, human health, and plant 

health are all harmed by the extensive use of these 
chemical techniques. Additionally, these techniques 
raise production costs. Plant disease management is 
effective when diseases are detected at an early stage.  

Lycopersicon esculentum (Mohan et al. 2023) (To-
mato) previously referred to as Solanum Lycopersi-
con L (Leite and Fialho 2018) belongs to the family 
Solanaceae (Knapp and Peralta 2016) and emanates 
from the Andes region of South America. Cur-
rent global research indicates that approximately 
182 million tons of tomato crops are cultivated from 
5 million hectares of land (Caruso 2022, Bhujel et al. 
2022). With 0.2 million hectares, it is the lead-
ing vegetable with the largest yield in southern 
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Europe. Turkey, Egypt, and Italy are the leading pro-
ducers. This is a blooming species, most frequently 
a sprawling and nightshade plant that is usually grown 
for its edible fruit (Liu et al. 2022). 

Phonological changes in the tomato plant can in-
clude aberrant growth, pigmentation, spots, deformi-
ties, wilting, desiccation, and necrosis on the leaves 
(Humbal and Pathak 2023, Kremneva et al. 2023; 
Nkongho et al. 2023; Sreedevi and Manike 2023). To-
mato disease control is best when all available methods 
are used (Albattah et al. 2022). Cultural operations are 
aimed at preventing disease or impeding its occur-
rence. Common tomato diseases include: black mold, 
rot, crown and root rot, spotted wilt virus, radial rings 
cankers, mildews, blights, and many more (Ates et al. 
2019, Gatahi 2020). Black mold fungus, Alternaria al-
ternate, is one of the most common fungi experienced. 
It breeds dead organic matter whenever moisture 
is present and can be found on fruit and fermenting 
leaves in tomato fields before the fruit ripens (Rashid 
and Shoala 2020). Alternaria fungi is also responsi-
ble for early blight, and stem canker, which are often 
confused with black mold (Sánchez et al. 2022). These 
two diseases are caused by A. solani and A. alternata 
f.s. It is an economically destructive disease on tomato 
plants (Nazari et al. 2022). Controlling the most prev-
alent type of Fusarium crown and root-rot disease is 
very challenging because it is a soil-borne disease that 
economically restricts the production of greenhouse 
tomatoes. Due to the spread of microconidia, espe-
cially in greenhouses, FORL causes recurrent infec-
tions throughout the growing season and can cause up 
to 90% crop losses in greenhouse tomato cultivation. 
(Özbay et al. 2002). Commercially viable, agent-resist-
ant indigenous varieties with adequate resistance to 
Fusarium crown and root-rot induced by FORL have 
not yet been developed (Ozbay and Newman 2004). 
A Gram-positive actinobacterium named Clavibac-
ter michiganensis causes bacterial canker of tomatoes, 
a disease affecting millions of people worldwide (Per-
itore-Galve et al. 2020).  Due to its rapid migration 
through the plant’s vascular system and its ability to 
induce systemic symptoms, bactericidal agents are in-
sufficient to manage this disease 

Image processing and computer vision is key for 
detecting plant diseases (Ouhami et al. 2021). It is 
a technique that gathers plant images using comput-
er vision tools and uses those images to determine 
whether or not pests and diseases are present (Vishnoi 
et al. 2021). Deep learning has recently been used in 
the evaluation and identification of plant diseases, fa-
cilitating early disease detection and diagnosis, there-
by quickening the development of novel plant disease 
technology (Thakur et al. 2023). Deep learning offers 

very innovative methods to aid in the identification of 
diseases because of their computing capacity. For im-
age-based research, CNN models are frequently used. 
They are effective at extracting high-level features from 
images (Ma et al. 2023). This study focused on detect-
ing tomato fruit disease by proposing a 15-layer CNN 
architecture as a base network for single shot detector 
(SSD) to extract high features from tomato fruit. The 
article is organized as follows: the related work of this 
research, followed by the materials and methods used 
for this study, the proposed backbone, and finally, the 
experimental setup, results and discussion. 

Materials and Methods 

The proposed model architecture, hardware, data-
set, and software resources used for this research are 
briefly discussed in this section. A single short shot 
detector with a proposed CNN base network was used 
in this study for tomato fruit disease detection. SSD 
was proposed to accurately locate the infected area of 
the tomato fruit. The experiments were carried out on 
a Lenovo laptop with an Intel Core i7 2.50 GHz proces-
sor and NVidia GeForce GTX 860M GPU.

Data collection and pre-processing 

Tomato fruit images were collected from the internet 
and screened carefully to correspond with the disease 
classes. This included black mold diseases, radial ring 
diseases, spotted wilt diseases, and healthy tomato 
fruits. A training set and a testing set were created 
from the dataset in the following proportions: 8 : 2. 
Figure 1 shows samples of the tomato fruit classes in 
the dataset. 

A total of 2500 images were obtained and a total of 
650 images were obtained for the radial ring class rep-
resenting 26% of the total data. Seven hundred images 
were obtained for the healthy class representing 28% 
of the total data, 600 images for the spotted wilt class 
representing 24% of the total data, and 550 images 
for the black mold class representing 22% of the total 
class. The data distribution is graphically presented in 
Figure 2. 

To make the tomato fruit detectable by SSD, the 
MATLAB Image labeler app was used to annotate the 
datasets.  The app offers a simple method for creating 
interactively a variety of shapes to classify as regions 
of interest (ROI). A rectangle shape was used to mark 
the disease spot’s size and shape on the tomato fruit. 
Figure 3 shows sample annotated data in the MATLAB 
image labeler. 



Nyarko B.N.E. et al.: Tomato fruit disease detection based on improved single shot detection algorithm 407

Fig. 1.  Sample tomato images: A – black mold disease; B – spotted wilt virus; C – radial ring disease; D – Healthy tomato fruit

Fig. 2.  Graphical presentation of dataset

Convolutional neural network 
CNNs (Haar et al. 2023), or convolutional neural net-
works, have a complicated network topology and are 
capable of performing convolution operations. There 
are two broad categories of CNN-based image detec-
tion systems. In the first category, samples consisting 
of several candidate frames are created and then classi-
fied using CNN models. Several domains have success-
fully used deep neural networks. For the best possible 
image detection, CNN was used (Nyarko et al. 2022). 

The input layer, convolution layer, pooling layer, full 
connection layer, and output layer make up the con-
volutional neural network design (Ji et al. 2022). One 
model repeatedly alternates between the convolution 
layer and the pooling layer, and when the neurons of 
the convolution layer are connected to the neurons of 
the pooling layer, full links are not necessary. In image 
identification, CNN is frequently used because of its 
magnificent potential (Gaba et al. 2022). CNNs have 
been used in the framework to manage the extracted 
image data that was gathered during the feature ex-
traction stage (Ghazal 2022). The distinctive features 
of the affected tomato fruit are accurately extracted by 
the feature extraction layer of the proposed neural net-
works to achieve high recognition rates for tomato dis-
eases (Bouni et al. 2023; Thakur et al. 2023). The per-
formance of the proposed model was compared with 
the existing state-of-art models such as ResNet-50, 
AlexNet, and VGG19. Equation 1 illustrates a CNN 
layer-by-layer pass operation:

→ w1 → x2 → ... → xn–1 → wn–1 → xn → wn → z,      (1)

where: x1 – represents the input image, w1 – denotes 
the parameter in the first layer, x2– denotes the output 
of the first layer, and xn – denotes the output of the 
final CNN layer. A loss layer is the final layer. The dif-
ference between the CNN prediction xn and the target 
can be measured using a loss function, assuming that 
y is the corresponding target value for the input x1. For 
instance, Equation 2 represents a straightforward loss 
function that could be:

A                                                                                                 B

C                                                                                                 D
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                          z = 1/2║y – xn║2 ,                                 (2)

‌‌‌where: y – denote the ground truth value for the input, 
and xn – denote the difference between the CNN pre-
diction. The chain rule and vector calculus are essen-
tial to the CNN learning process. If y 
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 ℝW is another vector. The partial 
derivative of y concerning x is then expressed in Equa-
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. In a chain-like argument, 

it is simple to see that a is a function of x: one function 
maps x to y, and another function maps y to a. One can 
compute using the chain rule in Equation 5:
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Single shot detection algorithm (SSD) 

In a single pass, the SSD model identifies objects with 
incredible detection accuracy, which saves a significant 
amount of time (Li et al. 2023, Vig et al. 2023). It yields 
accurate predictions at diverse levels from feature maps 
and achieves high detection accuracy by directly divid-
ing predictions by aspect ratio (Guravaiah et al. 2023). 
Even on input images with low resolutions, these tech-
niques produce high accuracy and simple end-to-end 
training. The SSD works by employing convolutional 
networks to produce a large number of bounding box-
es of various fixed sizes and assess whether or not an 
instance of an object class is present in each box. Af-
ter the convolutional networks have finished their job, 
a non-maximum suppression step then produces the 
final detections (Shi et al. 2022).

The head and the backbone make up the single shot 
detection design. The backbone layer is utilized by the 
feature map generator (Wei et al. 2023), a standard im-
age classification network that has been trained. The 
final image classification layer produced by the model 
is removed, leaving the extracted feature maps. The 
SSD head is constructed by stacking convolutional lay-
ers and is placed on top of the backbone model (Liu 
et al. 2023a). The SSD algorithm divides each input im-
age into grids of different sizes, and at each grid, detec-
tion for various classes and aspect ratios is performed. 
A score is assigned to each of these grids to represent 
how well an object works in that particular grid. The 
final detection is then extracted using non-maximum 

Fig. 3.  Samples of annotated data in MATLAB image labeler. (A) Sample annotated healthy tomato in MATLAB image labeler. 
(B) Sample Annotated Spotted Wilt infected tomato in MATLAB image labeler. (C)  Sample annotated radial ring affected 
Tomato in MATLAB image labeler. (D) A sample annotated black mold infected tomato in MATLAB image labeler. 

A                                                                                                                    B

C                                                                                                                    D
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suppression from the collection of overlapping detec-
tions (Liu et al. 2023b). The SSD model’s architecture is 
presented in Figure 4. 

Proposed backbone (CNN)

The most significant area of research in the field of deep 
learning has always been the design of a high-quality, 
high-efficiency expressive network architecture. The 
majority of current network design approaches con-
centrate on how to combine features extracted from 
various layers and how to create computing units that 
can extract these features efficiently, increasing the ex-
pressiveness of the network. A key design section of 
a one-stage detector model is the backbone, which de-
termines the quality of image feature extraction. It also 
affects the seceding object detection, recognition, and 
object classification. Figure 5 shows the proposed CNN 
architecture and Figure 6 shows the structure of the pro-
posed backbone with a single shot detector algorithm. 

The basic components of the proposed CNN used 
as the backbone for SSD in detecting tomato fruit dis-
eases are described as follows 

Input layer 
It acts as an input element for the neural network. Each 
input layer feature passes its assigned value to each 
neuron in the first hidden layer in a top-to-bottom se-
quence. The hidden layer neuron then adds each value 
to the weight vector that corresponds to it, sums the 
multiplied values, applies its activation function to this 
total, and passes the value calculated by the activation 
function to the following layer. Input color channels 
are used to encrypt images. Each color level in the 
color channel at a specific location represents image 
data. RGB, which means red, blue, and green, is the 
most popular. The information contained in the image 
is the intensity of each channel color across the width 
and height of the input image. The blend of these three 
colors forms a color pattern.

Convolutional layer 
The convolutional layer examines each neural network 
patch to derive more abstract properties. It performs 
convolution on the input using kernels, which were fil-
ters in the past. Convolution appears to be dot products 
between the filtering and the region they pass through 

Fig. 4.  Structure of single shot detector (SSD) architecture

Fig. 5.  Proposed CNN architecture



Journal of Plant Protection Research 63 (4), 2023410

in reality. To reduce the variable value and extract the 
key traits, a convolution layer was used. Rotation in-
terpretability, scale interpretability, and interpretation 
interpretability were all included in the convolution 
layer. Both the generalization concept and the over-fit-
ting issue were added to the fundamental framework. 
The operation of the convolution layer in CNN can be 
expressed in Equation 6 as follows:
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(6)

0 ≤ d, < D = Dl+1 for il+1, jl+1 satisfying 0 ≤ il+1 < Hl – H +1,

< jl+1 < Bl – B + 1 = Bl+1 in this equation, 
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to the element of xl indexed xl+1 + jl+1 + j, dl.

ReLu layer 
A multi-layer neural network’s ReLu layer is a nonlin-
ear activation function. In this layer, all weak values, 
and the processed image are eliminated and switched 
out for zeros. Only when the node’s input exceeds 
a predetermined threshold this feature is activated. 
The output will be zero if the input is less than zero. 
However, the input becomes linearly related to the de-
pendent variable once it exceeds a certain threshold. 
This implies that the deep neural network’s training 
data set can be processed more quickly than other acti-
vation functions. This prevents the sum from reaching 
zero. The ReLu layer can be considered as independent 
filtering for each element in the input: The input size is 
unchanged by a ReLu layer. ReLu layers maintain the 
input’s original size, so/and y have the same size. This 
is expressed in Equation 7 as: 

                             yi,j,d = max{0, xl
i, j,d},                           (7)

   0 < i < Hl+1,  0 < j < Bl = Bl+1n  and  0 ≤ d ≤ Dl ≤ Dl+1.

ReLu layers do not carry any parameters, so this 
layer does not require parameter learning. From Equa-
tion 7 we obtain Equation 8 as:
                                                                                   
                                                                                          (8)
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of 1 if its argument is true and a value of 0 otherwise. 
Equation 9 is obtained as: 
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𝑙𝑙𝑙𝑙  > 0,                                        9 

 

 

 

 

𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙+1 =  𝐻𝐻𝐻𝐻
𝑙𝑙𝑙𝑙

𝐻𝐻𝐻𝐻
,𝐵𝐵𝐵𝐵𝑙𝑙𝑙𝑙+1  =  𝐵𝐵𝐵𝐵

𝑙𝑙𝑙𝑙

𝐵𝐵𝐵𝐵
,   𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙+1 =  𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙               10  

where: 𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙+1, and 𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙+1  

max:        𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙+1,𝑗𝑗𝑗𝑗𝑙𝑙𝑙𝑙+1 ,𝑑𝑑𝑑𝑑 

=  
𝑚𝑚𝑚𝑚𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 

0 < 𝑖𝑖𝑖𝑖 < 𝐻𝐻𝐻𝐻, 0 < 𝑗𝑗𝑗𝑗 < 𝐵𝐵𝐵𝐵  𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙+1 
𝑙𝑙𝑙𝑙  × 𝐻𝐻𝐻𝐻 + 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗𝑙𝑙𝑙𝑙+1 × 𝐵𝐵𝐵𝐵 + 𝑗𝑗𝑗𝑗,𝑑𝑑𝑑𝑑.                  11  

where: 0 ≤ 𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙+1 < 𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙+1, 0 ≤  𝑗𝑗𝑗𝑗𝑙𝑙𝑙𝑙+1 < 𝐵𝐵𝐵𝐵𝑙𝑙𝑙𝑙+1  , and 0≤ 𝑑𝑑𝑑𝑑 < 𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙+1 –  

 

 

  

         (9)

where: y – the alias for xl+1. ReLu’s objective is to make 
the CNN more nonlinear. Since the semantic content 
of an image (in this case, a tomato fruit) is a highly 
nonlinear mapping of input pixel values.

Batch normalization layer 
Normalization of the inputs to a layer is done in tiny 
batches using a deep-learning training technique 
known as batch normalization. Training is accelerated 
by the batch normalization layer, which also lessens 
the impact of initialization after the convolution oper-
ation. This layer is added before the input of each con-
volutional layer to ensure that each layer’s input has the 
same distributions and to reduce inner covariate shifts 
during training. Therefore, the process of learning is 
regulated and a deep network can be trained with sig-
nificantly fewer training epochs.

MaxPooling layer 
Two input arguments are required by a MaxPool layer, 
height, and core width. The kernel moves across the 
pixels in a straight line at the predetermined step size, 

Fig. 6.  Structure of proposed backbone with single shot detector (SSD)
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beginning in the upper left corner of the feature map. 
The kernel window’s highest-valued pixel serves as 
the source of the value for the associated node in the 
pooling layer. Max CNNs’ pooling layers are a crucial 
component. They keep the number of network param-
eters to a minimum while summarizing the activation 
maps, the result of pooling (y, or x in its place), (H × B 
× D) will be the size of Hl+1 + Bl+1 + Dl+1 in order 3-ten-
sor as seen in Equation 10:

 

 

9-11 
 

 

 

 

�𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
2𝜕𝜕𝜕𝜕𝑙𝑙𝑙𝑙
�
𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖,𝑑𝑑𝑑𝑑

 = ��
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
2𝜕𝜕𝜕𝜕𝑙𝑙𝑙𝑙
�
𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖,𝑑𝑑𝑑𝑑 

  

0
if 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖,𝑑𝑑𝑑𝑑

𝑙𝑙𝑙𝑙  > 0,                                        9 

 

 

 

 

𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙+1 =  𝐻𝐻𝐻𝐻
𝑙𝑙𝑙𝑙

𝐻𝐻𝐻𝐻
,𝐵𝐵𝐵𝐵𝑙𝑙𝑙𝑙+1  =  𝐵𝐵𝐵𝐵

𝑙𝑙𝑙𝑙

𝐵𝐵𝐵𝐵
,   𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙+1 =  𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙               10  

where: 𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙+1, and 𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙+1  

max:        𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙+1,𝑗𝑗𝑗𝑗𝑙𝑙𝑙𝑙+1 ,𝑑𝑑𝑑𝑑 

=  
𝑚𝑚𝑚𝑚𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 

0 < 𝑖𝑖𝑖𝑖 < 𝐻𝐻𝐻𝐻, 0 < 𝑗𝑗𝑗𝑗 < 𝐵𝐵𝐵𝐵  𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙+1 
𝑙𝑙𝑙𝑙  × 𝐻𝐻𝐻𝐻 + 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗𝑙𝑙𝑙𝑙+1 × 𝐵𝐵𝐵𝐵 + 𝑗𝑗𝑗𝑗,𝑑𝑑𝑑𝑑.                  11  

where: 0 ≤ 𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙+1 < 𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙+1, 0 ≤  𝑗𝑗𝑗𝑗𝑙𝑙𝑙𝑙+1 < 𝐵𝐵𝐵𝐵𝑙𝑙𝑙𝑙+1  , and 0≤ 𝑑𝑑𝑑𝑑 < 𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙+1 –  

 

 

  

   (10)

where: Hl+1, and Dl+1 – the input to the pooling layer.  
A max-pooling operator maps a subregion to its maxi-
mum value. Using exact mathematics in Equation 11 
as:

max: 
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�𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
2𝜕𝜕𝜕𝜕𝑙𝑙𝑙𝑙
�
𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖,𝑑𝑑𝑑𝑑

 = �
�𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
2𝜕𝜕𝜕𝜕𝑙𝑙𝑙𝑙
�
𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖,𝑑𝑑𝑑𝑑 

  

0
if 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖,𝑑𝑑𝑑𝑑

𝑙𝑙𝑙𝑙  > 0,                                        9 

 

 

 

 

𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙+1 =  𝐻𝐻𝐻𝐻
𝑙𝑙𝑙𝑙

𝐻𝐻𝐻𝐻
,𝐵𝐵𝐵𝐵𝑙𝑙𝑙𝑙+1  =  𝐵𝐵𝐵𝐵

𝑙𝑙𝑙𝑙

𝐵𝐵𝐵𝐵
,   𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙+1 =  𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙               10  

where: 𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙+1, and 𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙+1  

max:        𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙+1,𝑗𝑗𝑗𝑗𝑙𝑙𝑙𝑙+1 ,𝑑𝑑𝑑𝑑 

=  
𝑚𝑚𝑚𝑚𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 

0 < 𝑖𝑖𝑖𝑖 < 𝐻𝐻𝐻𝐻, 0 < 𝑗𝑗𝑗𝑗 < 𝐵𝐵𝐵𝐵  𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙+1 
𝑙𝑙𝑙𝑙  × 𝐻𝐻𝐻𝐻 + 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗𝑙𝑙𝑙𝑙+1 × 𝐵𝐵𝐵𝐵 + 𝑗𝑗𝑗𝑗,𝑑𝑑𝑑𝑑.                  11  

where: 0 ≤ 𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙+1 < 𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙+1, 0 ≤  𝑗𝑗𝑗𝑗𝑙𝑙𝑙𝑙+1 < 𝐵𝐵𝐵𝐵𝑙𝑙𝑙𝑙+1  , and 0≤ 𝑑𝑑𝑑𝑑 < 𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙+1 –  

 

 

  

    (11)
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𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖,𝑑𝑑𝑑𝑑
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𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
2𝜕𝜕𝜕𝜕𝑙𝑙𝑙𝑙
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𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖,𝑑𝑑𝑑𝑑 

  

0
if 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖,𝑑𝑑𝑑𝑑

𝑙𝑙𝑙𝑙  > 0,                                        9 

 

 

 

 

𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙+1 =  𝐻𝐻𝐻𝐻
𝑙𝑙𝑙𝑙

𝐻𝐻𝐻𝐻
,𝐵𝐵𝐵𝐵𝑙𝑙𝑙𝑙+1  =  𝐵𝐵𝐵𝐵

𝑙𝑙𝑙𝑙

𝐵𝐵𝐵𝐵
,   𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙+1 =  𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙               10  

where: 𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙+1, and 𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙+1  

max:        𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙+1,𝑗𝑗𝑗𝑗𝑙𝑙𝑙𝑙+1 ,𝑑𝑑𝑑𝑑 

=  
𝑚𝑚𝑚𝑚𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 

0 < 𝑖𝑖𝑖𝑖 < 𝐻𝐻𝐻𝐻, 0 < 𝑗𝑗𝑗𝑗 < 𝐵𝐵𝐵𝐵  𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙+1 
𝑙𝑙𝑙𝑙  × 𝐻𝐻𝐻𝐻 + 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗𝑙𝑙𝑙𝑙+1 × 𝐵𝐵𝐵𝐵 + 𝑗𝑗𝑗𝑗,𝑑𝑑𝑑𝑑.                  11  

where: 0 ≤ 𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙+1 < 𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙+1, 0 ≤  𝑗𝑗𝑗𝑗𝑙𝑙𝑙𝑙+1 < 𝐵𝐵𝐵𝐵𝑙𝑙𝑙𝑙+1  , and 0≤ 𝑑𝑑𝑑𝑑 < 𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙+1 –  

 

 

  

where: 0 ≤ il+1 < Hl+1, 0 ≤ jl+1 < Bl+1 and 0 ≤ d < Dl+1 – 
depicts a pooling local operator with straight forward 
computation. 

Fully connected layer 

The flat layer, a two-dimensional (2d) layer, provides 
input to a completely connected layer. The affine 
function receives data from the smoothing layer be-
fore passing it on to the nonlinear function. One FC 
(fully connected) is the result of combining one affine 
function with one nonlinear function. The suggested 
architecture’s final probability for each label is pro-
vided in this layer. The FC layer transforms incom-
ing neurons using weighted linear transformations 
and sends outputs to nonlinear neurons. Every neu-
ron in one layer is connected to every neuron in the 
other layers, forming a succession of fully connected 
layers that make up a fully connected neural network. 
Fully connected networks have the major benefit of 
being “structure-agnostic”, meaning that no specific 
assumptions about the input are required. The de-
scriptions of mathematical models with completely 
connected layers are provided in Equation 12. Con-
sidering a convolution or pooling layer/node with the  
dimensions:
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𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖
[𝑖𝑖𝑖𝑖] =  ∑ 𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛(𝑖𝑖𝑖𝑖−𝑙𝑙𝑙𝑙)
(𝑙𝑙𝑙𝑙−1) 1𝐵𝐵𝐵𝐵𝑙𝑙𝑙𝑙

(𝑖𝑖𝑖𝑖−1) + 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
[𝑙𝑙𝑙𝑙]  →  𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

[𝑖𝑖𝑖𝑖] =  𝜑𝜑𝜑𝜑[𝑖𝑖𝑖𝑖] �𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖
[𝑖𝑖𝑖𝑖]�.                               12 

 

 

𝐴𝐴𝐴𝐴 (𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) =  ∑   ∑   ∑ 𝐵𝐵𝐵𝐵 (𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘)  × 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2𝐵𝐵𝐵𝐵(𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘),     
𝑛𝑛𝑛𝑛
𝑘𝑘𝑘𝑘=1

𝑖𝑖𝑖𝑖=𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

𝑖𝑖𝑖𝑖=𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1                               13                         

                  𝐵𝐵𝐵𝐵(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) =  �   �   �     𝑎𝑎𝑎𝑎 (𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗, 𝑘𝑘𝑘𝑘) 
𝑚𝑚𝑚𝑚2�

𝑛𝑛𝑛𝑛

𝑘𝑘𝑘𝑘=1

𝑖𝑖𝑖𝑖=𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

𝑖𝑖𝑖𝑖=𝑛𝑛𝑛𝑛 

𝑖𝑖𝑖𝑖=1 

, 

 

 

 

                                                

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇,�                                               14  

  

  

  

 (12)   
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𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖
[𝑖𝑖𝑖𝑖] =  ∑ 𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
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(𝑖𝑖𝑖𝑖−1) + 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
[𝑙𝑙𝑙𝑙]  →  𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

[𝑖𝑖𝑖𝑖] =  𝜑𝜑𝜑𝜑[𝑖𝑖𝑖𝑖] �𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖
[𝑖𝑖𝑖𝑖]�.                               12 

 

 

𝐴𝐴𝐴𝐴 (𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) =  ∑   ∑   ∑ 𝐵𝐵𝐵𝐵 (𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘)  × 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2𝐵𝐵𝐵𝐵(𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘),     
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 is the output of the pooling opera-
tion with Hl+1 + Bl+1 +Dl+1. 

Softmax layer 
It is mainly used to represent certainty probabilities in 
neural network outputs by scaling output between 0 
and 1. It is possible to compute normalization by divid-
ing the output under the study’s exp value by the sum 
of all possible outputs’ exp values. The softmax func-
tion transforms a vector of k real values into a vector of 
k real values with a total of 1. Softmax converts input 
values, which can be either positive or negative, zero 
or higher than 1, into values between 0 and 1, mak-
ing them understandable as probabilities. Any small 
or negative, input is transformed into a small chance 
by Softmax, and any large input is transformed into 
a large probability.

Output layer
The neural network’s output layer is the final layer that 
produces the desired predictions. An output layer in 
a neural network generates the desired outcome pre-
diction. Before determining the final output, it applies 
its own set of weights and biases. For some issues, the 
hidden layer activation function may be different from 
the output layer activation function. For instance, in 
classification issues, the final classes are derived using 
softmax activations. A summary of the proposed CNN 
Architecture is given in  Figure 7.

Feature extraction 

Different subsections of the feature extraction phase, 
such as color extraction, texture extraction, and in-
fected area extraction were considered. An RGB im-
age, in terms of conventional color space, is a mixture 
of the colors red, green, and blue. Therefore, it is ap-
propriate to determine the proportion of red, green, 
and blue components in each image pixel. One of the 
main components for detecting tomato disease is color 
extraction. This technique takes a sample image of 
a tomato and extracts a spectrum of colors from light-
est to darkest. Entropy calculation is used to perform 
texture detection on segmented captured images. This 
technique first converts the segmented image to gray-
scale. Following grayscale conversion, the system uses 
a conventional entropy calculation method to extract 
the local entropy of the image. The system determines 
the minimum and maximum pixels present in the lo-
cal entropy matrix following its extraction. The texture 
quality coefficient will be equal to the mean of the cal-
culated minimum and maximum pixel range from the 
local entropy matrix. A rough idea of tomato texture 
can be obtained from the texture quality coefficient 
calculated from the local entropy matrix. The creat-
ed system is trained using an extensive set of texture 
quality coefficients that were extracted from various 
tomato sample images in the created dataset as: 
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(13)

where: B(x,y,z) – the calculated probability index ma-
trix, and m2 – the size of the segmented image.

 

Results, Discussion and Conclusions 

The specifics of the experiments including param-
eter fitting and the outcomes of the experiments are 
covered in this section. Each model’s performance is 
clearly presented.

 

Quantitative Analysis 

The primary indicators for evaluating a deep learning 
model’s detection performance are precision, average 
precision, accuracy, and recall.  The training time and 
image detection time were used to obtain the mean 
average precision (mAP) of each model’s performance 
in this study. 

Precision 

Precision is the ratio of the number of positively de-
tected samples that were correctly identified as positive 
to the number of positively detected samples. Preci-
sion is defined in Equation 14 as:  
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 (14)

where: Tp – the number of positive samples that were 
correctly classified, that is, the real positive samples 
that the classifier also correctly classified as positive 
samples, and Fp – the number of negative samples that 
were incorrectly classified as positive, that is, the real 
negative samples that the classifier incorrectly classi-
fied as positive samples. 

Mean average precision (mAP)
To determine the mAP, the mean average precision 
compares the detected box to the ground-truth bound-
ing box. When the ratings are high, the model’s detec-
tions are more accurate.  Average precision is defined 
for datasets with multiple classes as in Equation 15 
as:
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 (15)

where: ∑ – represents the sum of average precision and  
N’– represents the total number of all classes in the 
dataset. 

Accuracy
Accuracy, or the percentage of correctly detected im-
ages in all instances, is a term used to describe the rate 
at which images are successfully detected. Addition-
ally, the proportion of samples correctly identified 
for a given test database to the total number of data 
successfully classified by the predictor is proportional 
to the total amount of data. Accuracy is described in 
Equation 16:

Fig. 7.  Summary of the proposed backbone structure
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where: Tp – the number of positive samples that were 
correctly classified, Fp – the number of negative sam-
ples that were incorrect, Tn – negative classes that were 
correctly predicted as negative, and Fn – positive class-
es that were falsely predicted as negative.

 
Root mean square error (RMSE)
   The average distance between the values in the data-
set and those predicted by the model. A given model 
can “fit” a dataset more accurately when the RMSE is 
low. The root means square error or RMSE is calcu-
lated using the following formula:
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where: Σ – represents the sum of average precision and 𝑁𝑁𝑁𝑁′ – represents the total number of all 

classes in the dataset.  
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where: Σ – the sum of RMSE, Pi is the predicted value 
for the ith – observation in the dataset, Oi – the ob-
served value for the observation in the dataset, and is 
the sample size. 

Intersection over union (IOU) 
A metric quantifies how well the predicted and actual 
boxes match. By dividing the area of the intersection 
between the two boxes by the area of their union, the 
IoU is determined using the following equation. The 
accuracy of the prediction increases with IoU.
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A novel convolutional neural network method was 
proposed in this study for tomato disease detection. 
The proposed model serves as a backbone for the sin-
gle shot object detector algorithm. The main aim of this 
research was to improve the accuracy of the existing 
deep learning models in plant disease detection. The 
total epochs for training and testing were 100 epochs 
at 1000 iterations. Seventy percent of the total datasets 
was utilized for training, and 30% was used for data 
testing. Table 1 shows the results of the proposed CNN 
with SDD in detecting tomato fruit disease. 

The outcome of the experimental results showed 
that the proposed CNN backbone with single shot 
detector algorithm achieved excellent results of 0.991 
precision, 0.994 mean average precision, 0.988 accu-
racy, and a root mean square error of 1.21 The per-
formance evaluation of the proposed CNN backbone 
with SSD Algorithm is presented in Table 1.  

The accuracy, precision, mean average precision 
(mAP), intersection over union (IOU), and root mean 
square error (RMSE), at 1000th for the proposed 
model were recorded. The performance of the pro-
posed model was compared with existing models like 
ResNet-50, AlexNet, VGG16, and VGG19. The model’s 
performance is shown in Table 2. 

The classes in the dataset included black mold 
diseases, radial ring diseases, spotted wilt diseases, 
spotted wilt viruses, and healthy tomato fruits. The 
performance of the proposed model in each class 
was evaluated and the outcome is seen in Table 3. 
The results of the performance evaluation show that 
the proposed model obtained higher accuracy, pre-
cision, and mean average precision on healthy to-
mato fruit than black mold, spotted wilt, and radial  
ring. 

Figure 8 shows sample test results from the experi-
ments. The results show the class name/ the disease of 
the tomato fruit and the percentage of the detection re-
sults. Figure 9 shows the train accuracy and loss graphs 
of the models used in this study. 

To identify the model that was the most effective at 
detecting tomato fruit diseases accuracy, mean average 
precision, precision, recall, and root mean square error 
score values were used as evaluation metrics to assess 

Table 1. Performance evaluation of the proposed backbone-SSD

Metrics Results

Precision 0.991

Mean average precision (mAP) 0.994

Accuracy 0.988

Recall 0.991

Root mean square error 1.21

Table 2. Models performance evaluation on test data

Models Accuracy Precision mAP Recall RMSE

SSD-ResNet-50 0.985 0.990 0.995 0.991 1.27

SSD-AlexNet 0.963 0.953 0.952 0.981 1.28

SSD-VGG-16 0.963 0.951 0.953 0.97 1.28

SSD-VGG-19 0.966 0.954 0.962 0.98 1.28

SSD-Proposed CNN 0.988 0.991 0.994 0.991 1.21

mAP – mean average precision
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Table 3. Proposed model performance in each class

Class Accuracy Precision mAP

Healthy 0.985 0.985 0.982

Black mold 0.975 0.974 0.971

Spotted wilt 0.953 0.951 0.950

Radial ring 0.967 0.966 0.961
mAP – mean average precision

the performance of the pre-trained models. A graph 
showing the validation accuracy for the pre-trained 
models was created using the validation accuracy cal-
culated in Figure 9. 

Discussions  

This section presents a thorough analysis of recent 
research on plant disease detection via deep learn-
ing methods. Ignoring the early indicators of plant 
disease in the agricultural sector can result in losses 
in food harvests and ultimately lead to the collapse of 
the global food industry. In a few selected diseases and 
crops, the recent trend of using different machine-
learning algorithms for plant disease detection has 
yielded encouraging results.

A crop conditional model was developed which uti-
lized a unique CNN design in conjunction with crop 
metadata to recognize 17 diverse diseases in five crops. 
These crops included rapeseed, barley, rice, wheat, and 
corn. From the obtained robust features of a large-size 
multi-crop dataset, the model quickly learned similar 
disease symptoms in different crops, which decreased 
the complexity of the classification function (Picon 
et al. 2019)

Durmuş et al. (2017) proposed a DL method for 
tomato leaf disease detection. They aimed at using 
a robot to run real-time plant leaf detection manually 
or autonomously in the field or greenhouse. Train-
ing and validation were done by adopting AlexNet 
and Squeeze models on the plant image dataset. The 
examined tomato leaf diseases in their research cause 
a physical change. RGB cameras can observe these al-
terations in the leaves. The output of their novel ap-
proach showed that the AlexNet model performed 
slightly better than the SqueezeNet model. They 
concluded that the SqueezeNet model is 80 times 
smaller than the AlexNet Model, and the cause of 
the differences was attributed to the Caffe format 
(Durmuş et al. 2017). 

(Iqbal et al. 2021) proposed a gray level co-oc-
currence matrix (GLCM) algorithm to calculate 
13 distinctive statistical features of tomato leaves. To 
categorize data, the support vector machine (SVM) 

Fig. 8.  Sample test results. (A) Sample detected Spotted wilt virus at 0.92%. (B) Sample detected black mold virus at 0.58 and 
0.64 respectively. (C) Sample detected radial ring virus at 0.87%. (D) Sample detected Healthy tomato fruit at 0.92%. 
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Fig. 9. Training-accuracy graphs for the models – A; Training-loss graphs for the models – B

A                                                                                                          B

was utilized. The features obtained from the GLCM 
algorithm were implemented as a mobile application. 
The processed leaf was compared with the features 
stored to recognize the tomato leaf disease. The ex-
perimental findings of their method provide 100% ac-
curacy for healthy leaves, 95% for early blight,  90% for 
Septoria leaf, and 85% for late blight (Iqbal et al. 2021). 

For effective plant disease identification, pre-
trained models based on convolutional neural net-
works (CNN) were used. The focus was on fine-tun-
ing the hyperparameters of well-known pre-trained 
models like DenseNet-121, ResNet-50, VGG-16, and 
Inception V4, in particular. The experiments used the 
well-known Plant Village dataset, which contains 
54,305 images of various plant disease species organ-
ized into 38 classes. Through classification accuracy, 
sensitivity, specificity, and F1 score, the model’s perfor-
mance was assessed. Additionally, a comparison with 
comparable cutting-edge studies was done. The tests 
showed that DenseNet-121 outperformed cutting-
edge models by 99.81% in terms of classification ac-
curacy (Andrew et al. 2022).

To identify plant species in images, most of the 
studies reviewed adopted pre-trained CNN models 
by fine-tuning, conducting computational statistics of 
the tomato leaf features, and using a robot in detect-
ing tomato plant disease in the greenhouse. The per-
formance of their methods was compared with other 
state-of-the-art models. Their findings showed that 
deep convolutional neural networks perform well in 
the identification of plant diseases.  However, more 
work is required to improve the previous studies, such 
as proposing crop disease models that can extract 

higher features of the affected area of the crop to en-
able accurate disease detection. A 15-layer convolu-
tional neural network was proposed as the backbone 
of a single short shot detector model to address these 
challenges. This method can identify the affected re-
gion and the shapes of the infected areas.

This research focused on improving the single shot 
detecting algorithm by proposing a CNN backbone for 
tomato fruit disease detection. The main aim of this 
research was to identify the common disease that af-
fects the tomato fruit, gather a tomato fruit dataset, 
and enhance the deep learning framework for detect-
ing plant disease. The proposed method forecasts and 
creates a new prototype that will offer improved plant 
disease detection performance with less computation-
al resources in a short time. The results obtained from 
the proposed method performed better than SSD with 
ResNet-50, AlexNet, VGG16, and VGG19 backbones 
in tomato fruit disease detection.  In a subsequent 
study, we will concentrate on how to enhance the to-
mato disease dataset to befit general target detection 
algorithms.

The detection and management of crop and plant 
infestations have been significantly improved by deep 
learning technologies. Complex disease and pest iden-
tification has become possible due to advanced de-
velopments of object detectors. Large and real-time 
datasets are supported, automatic feature extraction 
functionality is also available, and the overall execu-
tion time is decreased. Therefore, deep learning tech-
niques can be taken into account for upcoming re-
search in the agriculture sector, such as roots, land, 
weeds, leaves, and fruits for disease identification. 
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However, the majority of this research is lab-based and 
heavily depends on gathered images of plant diseases 
and pests. To increase the robustness and generaliza-
tion of the deep learning models, future research will 
focus on collecting images from various plant growth 
stages, seasons, and geographic locations.

 Early detection of plant diseases and pests is es-
sential for halting and controlling their growth., Ac-
curate identification and prediction require the incor-
poration of meteorological and plant health data, such 
as temperature and humidity. Deep learning model 
training and network learning can benefit from unsu-
pervised learning as well as combining prior knowl-
edge of brain-like computers with human visual cog-
nition. Collaboration between experts in agriculture 
and plant protection in future research is necessary to 
realize the full potential of this technology. Their skills 
and knowledge must be combined with deep learning 
algorithms and models, and the resulting information 
will be incorporated into farming machinery.
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