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Optimization of Animal Detection in Thermal
Images Using YOLO Architecture

Łukasz Popek, Rafał Perz, Grzegorz Galiński, and Artur Abratański

Abstract—The article presents research on animal detection in
thermal images using the YOLOv5 architecture. The goal of the
study was to obtain a model with high performance in detecting
animals in this type of images, and to see how changes in hyperpa-
rameters affect learning curves and final results. This manifested
itself in testing different values of learning rate, momentum and
optimizer types in relation to the model’s learning performance.
Two methods of tuning hyperparameters were used in the study:
grid search and evolutionary algorithms. The model was trained
and tested on an in-house dataset containing images with deer
and wild boars. After the experiments, the trained architecture
achieved the highest score for Mean Average Precision (mAP)
of 83%. These results are promising and indicate that the
YOLO model can be used for automatic animal detection in
various applications, such as wildlife monitoring, environmental
protection or security systems.

Keywords—artificial neural networks; YOLOv5; transfer
learning; genetic algorithms; thermal imaging

I. INTRODUCTION

ANIMAL detection in thermal images is one of the signif-
icant challenges in the field of image analysis and object

recognition. Thermal images, which record thermal radiation
emitted by bodies, can provide valuable information on the
presence and location of animals in various scenarios, such
as wildlife monitoring, environmental protection and security
systems in sparse visibility. However, due to their specific
nature, animal detection in thermal images is more difficult
than in traditional video images. The purpose of this paper
is to apply the YOLO architecture to animal detection in
thermal images. Through the use of machine learning, deep
neural networks and object detection techniques, an attempt
is made to create an efficient and accurate system that can
automatically identify animals.

In recent years, many advanced object detection techniques
have been developed, that use machine learning and deep
neural networks. Moreover, the development of of thermal
imaging techniques has increased the availability of such
devices in the civilian market at affordable prices, making it
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Grzegorz Galiński is with Warsaw University of Technology, Fac-
ulty of Electronics and Information Technology, Poland (e-mail: grze-
gorz.galinski@pw.edu.pl).

possible to conduct research and create datasets. Currently, the
vast majority of work on the acquisition of images containing
animals is centered around the issue of object detection on
materials obtained during unmanned aircraft vehicle (UAV)
raids. The main goal of this approach is the macroscopic
determination of the population size of a specific species.
Good illustration of an article about testing the usefulness
of animal detection for forested areas is [1]. It should be
mentioned that this approach to the problem is different from
the assumed research. The distance between the lens and the
animal must be large enough to not frighten the object of study.
This makes it impossible to take accurate shots. The result is
change the problem from detecting specific animal species to
distinguishing, whether a brighter spot is an artifact or a living
object.

In this context, the closest to the stated problem are articles
on animal observation using photo traps. This allows a non-
invasive method of observing fauna, from a distance that
makes it convenient to take pictures. The paper [2] summarizes
the issue well from the technical side and the process aspect,
and also reduces the problem into two classes devision -
cervids and porcupines. However, the authors used only RGB
scale photos to teach the solution which means a completely
different morphology of the materials from the one adopted
in this paper. According to [3] ,it was proved, that despite
large number of wild animal species on images, still there
is possibility to achieve good numeric results. With dataset
containing 11 classes the mAP achieved for detection task
scenario was on level of 87%.

Quite similar problem was considered by the authors of
papers [4] and [5] on the prevention of terrorism and illegal
immigration using autonomous detection of objects in harsh
weather conditions with a special focus on people. The dataset
contained more than 20,000 thermal images extracted from the
videos, although presented in RGB scale. While the article [4]
was more exploratory for the problem studied, in [5] authors
tried to made a comparison of the performance, state-of-the-
art object detectors, such as Faster R-CNN, SSD, Cascade
R-CNN. The results obtained by the authors, confirmed the
effectiveness of the methods chosen.

On the other hand, meeting the needs of the autonomous
vehicle industry, the authors of the paper [6] tried to test the
SSDMobileNet architecture model for object detection among
the following classes: car, bicycle, human. The publication
is very valuable because of its tests on a publicly available
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dataset. Unfortunately, the sheer quantitative results obtained
by the authors - an mAP of 35% means that the model was not
well enough matched to the problem. In the article [7], instead
of taking pictures from the ground level, they were taken using
UAV-s. However, the authors make an effective attempt to
distinguish between species of Australian fauna - not only by
getting as close to the object as possible, but also by modifying
the YOLO architecture itself. As a result, the results obtained
are satisfactory although still the issue itself is not identical.
This research is a natural continuation of the work [8] contain-
ing a preliminary analysis and selection of the optimal method
for further development. Using a dataset consisting of deer
and hog classes, traditional image segmentation methods were
compared along with the implementation of popular transfer
learning-trained neural networks. The quantitative results for
the most thematically related scientific articles are collected
and summarized in Table I.

TABLE I
RESULTS FROM SIMILAR STUDIES

Reference Model Classes mAP Recall

[4] YOLOv2 human 97% 75%

[5] YOLOv3/FasterRCNN 4 human, dog, other 98% 79%

[6] SSDMobileNet V1/V2 human, car, bike 35% 24%

[7] YOLOv3/D-YOLO wild boar, rabbit, kangaroo 97% 96%

[8] YOLOv3/FasterRCNN wild boar, cervidae 96% 70%

II. THEORY

A. Thermal imaging

Thermal imaging technology is based on the use of special
sensors called thermal imaging cameras, which are capable of
recording infrared radiation. This radiation is invisible to the
human eye, but can be detected by thermal imaging sensors.
Thermal imaging cameras consist of a matrix of pixels that
measure the intensity of sensed radiation emitted by objects.
Based on this data, thermal cameras generate a thermal image
in which different colors or shades represent different tempera-
tures. The principle of thermal imaging technology is based on
the detection of temperature differences between objects and
the environment. In the context of wildlife monitoring, two
main bands are crucial: mid wavelength infrared (MWIR) and
long wavelength infrared (LWIR). A long wave acquisition
camera was used during the study. They do not require an
additional source of light or heat, as thermal radiation sensors
in these ranges capture the thermal energy of the objects
being observed. The camera range of acquisition depends on
the quality of device. In this study images were obtained
from Pulsar Helion XP50, which enable observation with high
resolution up to 100m.

Thermal imaging technology, which performs very well in
conditions of limited visibility, completely loses this advantage
during the day. Considering work of [9], it can be mentioned
several limitations of thermal imaging technology. Sensors
provide much less detail than visible light cameras, because
instead of the information provided by color in the visible
spectrum, they only provide detected temperature ranges in

thermograms, usually with much lower resolution. The out-
comes of measurements can be notably influenced by various
weather conditions, including solar radiation, precipitation,
wind, and air humidity. Moreover the temperature on the outer
surface of the body is significantly impacted by the physical
characteristics of the animal’s coat, such as its thickness
and quality, it can cause sometimes major problems with
recognising right species of animal on the image.

Fig. 1. Example image from thermal camera

B. Autonomous detection using YOLOv5

In recent years, object detection systems have become an
indispensable tool in image analysis and visual processing.
However, most existing object detection solutions rely on per-
forming classification in multiple areas of the image, leading to
slower speeds. To solve this problem, the YOLO architecture
was developed, which is an acronym for ”You Only Look
Once.”

The YOLO architecture is one of the most popular and
efficient methods of real-time object detection. The basic idea
of this architecture is to simultaneously detect and classify ob-
jects in a single image processing operation. Unlike traditional
approaches, YOLO treats object detection as a regression
problem rather than a classification problem. It divides an
image into a grid of cells, and then for each cell it predicts
the object’s membership in different classes and calculates
regression of the object’s position and size. This method
is based on deep neural networks, which consist of several
convolutional layers and linking layers that extract object
features from the image. The basic element of the YOLO
architecture is the final layer, which generates predictions.
Within this layer, it uses a convolution technique of feature
maps to predict bounding boxes containing objects and the
probability of belonging to different classes for each envelope.
Confidence thresholds are then applied to filter out unreliable
predictions, leaving only the most certain objects. What sets
the YOLO architecture apart is its speed [10]. Because it
performs object detection in a single processing operation,
it achieves much higher speed than traditional approaches.
Moreover, by calculating regression the position and size of
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objects, YOLO is able to accurately determine the location of
objects in an image.

In subsequent years, improved versions of YOLO have been
developed, improving the speed of operation and detection
efficiency. This paper considers version 5 made available by
[11]. Unlike traditional YOLO, version 5 uses a more complex
architecture called EfficientDet, based on the EfficientNet
architecture. Using the more complex architecture in YOLOv5
increases accuracy and better generalization to a wider range
of object categories. Another difference between YOLO and
YOLOv5 is the training data used to train the object detection
model. YOLO was trained on the PASCAL VOC dataset,
which consists of 20 object categories. Moreover, YOLOv5
was trained on a larger and more diverse dataset called D5,
which contains a total of 600 object categories.

YOLOv5 uses a new method for generating Anchor Boxes,
called ”dynamic anchor boxes.” It involves using a clustering
algorithm to group real bounding envelopes into clusters, and
then using the centroids of the clusters as anchor boxes. This
allows the anchor boxes to match the size and shape of the
detected objects more precisely. YOLOv5 also introduces the
concept of Spatial Pyramid Pooling, (SPP), a type of pooling
layer used to reduce the spatial resolution of feature maps. SPP
is used to improve the performance of small object detection
because it allows the model to see objects at multiple scales.

C. Hyperparameters of neural networks

Hyperparameters in neural networks are important for their
optimal performance. During transfer learning, they allow for
obtaining better results and faster convergence. Following the
work of [12], the following were selected for optimization.

1) Learning rate: The learning rate is called often the most
important hyperparameter [13]. It is a scalar value typically set
between 0 and 1. It determines the proportion by which the
model’s parameters are adjusted in response to the gradient
of the loss function with respect to those parameters. A
higher learning rate allows for larger updates, potentially
leading to faster convergence, but it also increases the risk
of overshooting the optimal solution or oscillating around it.
Moreover the optimization algorithm may fail to converge
or exhibit unstable behavior, resulting in poor generalization
performance. Conversely, a lower learning rate ensures more
cautious updates, which can help to achieve convergence,
but at the cost of slower training progress. This requires a
significantly higher number of iterations to reach the desired
performance. The choice of an appropriate learning rate is
crucial for a successful training of machine learning models.
Proper tuning of the learning rate is often considered a critical
component of model optimization, as it can significantly
impact the overall performance and effectiveness of the trained
models.

2) Momentum: Momentum, as a key factor, introduces a
dynamic component to the optimization process, influencing
the behavior of parameter updates [14]. It is a hyperparameter
that affects the process of updating the model weights. It al-
lows gathering momentum during learning and helps speed up
convergence. It determines the influence of previous updates

on the current update step, allowing the optimization process to
traverse challenging optimization landscapes more efficiently.
By adding momentum to the update equation, the algorithm
gains inertia, enabling it to overcome small-scale fluctuations
and accelerate convergence. The proper selection and adjust-
ment of the momentum parameter is critical for achieving
optimal convergence and avoiding convergence stagnation or
overshooting. Momentum values, that are too high can cause
oscillations, and those that are too low can slow down the
learning process.

3) Optimizer: Is an algorithm used to update weights dur-
ing the learning process. Two optimazers were consider in this
work: Stochastic Gradient Descent (SGD) and ADAM. SGD
is a classic optimization algorithm that updates the parameters
using the gradient of the loss function computed on a mini-
batch of training samples [15]. It follows a fixed learning
rate throughout the training process and does not include
any adaptive learning rate mechanism. On the other hand
ADAM is an adaptive learning rate optimization algorithm that
combines the benefits of both AdaGrad and RMSProp [16]. It
uses adaptive learning rates for each parameter by estimating
first and second moments of the gradients. It incorporates
momentum to improve convergence speed and can handle
sparse gradients effectively.

In terms of learning rate, SGD uses a fixed value that
remains constant throughout the training process. This can
make it more challenging to find an optimal value for the
given problem, as manually tuning the learning rate may
be required. ADAM automatically adapts the learning rate
for each parameter based on the estimated first and second
moments of the gradients. It scales the learning rate based
on the magnitudes of the gradients, effectively reducing the
learning rate for parameters with large gradients and increasing
it for parameters with small gradients.

For determining Momentum value, ADAM incorporates it
by keeping track of the exponentially decaying average of
past gradients. This helps accelerate convergence by adding
a persistent direction to the parameter updates. However, the
momentum term can also introduce bias towards previous
updates, potentially impacting convergence in certain cases.
SGD can also include momentum by adding a fraction of
the previous gradient to the current update step. However,
it requires manual tuning of the momentum parameter, and
without careful adjustment, it may hinder convergence or cause
oscillations.

The exact choice between values and methods of updating
hyperparameters depends on the specific characteristics of the
problem at hand, the available computational resources.

D. Hyperparameter tuning and metrics used

Hyperparameter tuning is a key step in neural network
optimization, which aims to find a set of values that will
achieve the best model performance. During the work, two
strategies were used to select them: the grid method (grid
search) and genetic algorithms.

The grid method involves testing different combinations of
hyperparameters in a defined parameter space. First, a space



828 ŁUKASZ POPEK, ET AL.

of hyperparameters is defined with a selected range of values
to be tested. Then a grid of hyperparameter combinations is
created, where each combination represents one set. For each
set, a model is trained on the training data using an appropriate
optimizer, such as SGD or ADAM. The end result is the
monitoring of performance measures, such as mean Avarage
Precision or loss function, performed on the validation set.
Table II collects the defined parameter values for which the
experiments were performed.

TABLE II
CHECKED HYPERPARAMETERS VALUES

SGD 0.01 0.937

SGD 0.001 0.937

SGD 0.001 0.9

SGD 0.001 0.99

ADAM 0.001 0.999

ADAM 0.0001 0.9

ADAM 0.0001 0.99

ADAM 0.0001 0.999

Genetic algorithms are an effective method for tuning
hyperparameters in neural network optimization. Through a
combination of selection, crossover and mutation, we can
search the space of hyperparameters to find optimal combi-
nations and prevent the algorithm from stopping at a local
extreme. In the present work, the entire process was performed
using predefined functions for the model provided by [11].
The first step was to initialize the initial population and
pretrain it for 10 epochs. Next, the quality of the model was
evaluated based on the predefined adjacency function. All
hyperparameters of each generation were loaded, along with
its fitness. The top 5 generations evaluated on the basis of the
fitness function are listed. Its value was calculated based on a
weighted average of the metrics obtained. Mean Average Pre-
cision (mAP) is a widely adopted metric for evaluating object
detection algorithms. It measures the average precision across
multiple detection categories, taking into account precision-
recall curves for each category and provides a comprehensive
assessment of detection performance by considering both
precision (the ratio of correctly detected objects to all detected
objects). The fitness function consisted weighted valuesL 0.1
mAP precision for Intersection over Union (IoU) greater than
50%, 0.9 value of mAP for average coverage between 50%-
90%. The 5 generations thus defined are now sorted based
on a weighted random order, with the weight defined by the
reduced value of the adaptation function from the previous
step. The best adapted vector from the list is selected for
possible mutation. For each hyperparameter, there is an 80%
chance with a variance of 0.04 of mutation occurring to create
new offspring based on a combination of the best parents
from all previous generations. It is assumed for this model,
in order for genetic algorithms to succeed in their intended
optimization goal, that the minimum number of iterations is
300.

E. Dataset and hardware resources used

The private training set used in the work [8] was used to
teach the model. The dataset consists of 460 images, each
stored in a lossless format, ensuring preservation of visual in-
formation. The images have an average resolution of 512x512
pixels, offering sufficient detail for fine-grained analysis. A
comprehensive set of annotations accompanies each image,
providing ground truth labels for object presence, object cate-
gories, and relevant attributes. The annotations were carefully
annotated by domain experts to ensure accuracy and reliability.
It contains two classes of objects: cervids (Cervidae), included
species such as red deer (Cervus elaphus), european roe deer
(Capreolus capreolus) and fallow deer (Dama dama), and
swine, mainly included photos of European wild boar (Sus
scrofa). The collection was expanded compared to the previous
survey counting 280 of the ”deer” class and 180 photos of the
”wild boar” class. The dataset was split into three groups of
images: training set (70%), validation set (20%) and test set
(10%).

Preprocessing plays a vital role in preparing gray scale
images for subsequent analysis. It involves applying a series
of techniques to enhance image quality, reduce noise, and
highlight relevant features. Several steps was performed for
improving quality of images. To improve the visual quality
and distinguishability of image features it was utilized contrast
enhancement. It includes histogram stretching and adaptive
histogram equalization. On the other hand it was preformed
image normalization. This technique aims to standardize the
pixel intensity values across images, ensuring consistent and
comparable data.

Due to the high computational costs associated with training
neural networks, it was decided to use the Google Colab
application [17]. This platform allows free use of virtual
machines that have graphics processing units (GPUs), which
enable rapid training of the implemented solutions. The model
was trained using an Nvidia Tesla T4 graphics card with 16 GB
of memory. The YOLO5s model, which is slightly inferior in
terms of achieved final results and has a considerably smaller
architecture, was selected for testing purposes. However, it
offers the advantage of significantly lower computational cost
during training and shorter inference time.

III. EXPERIMENT

In the case of the evolutionary algorithm, the adaptation
function was tested after 10 iterations performance. Then
based on values from fit functions, crossover and mutation
operations were performed. The results of the best fitted vector
was stored in memory. The process of training the evolutionary
set itself was performed on 300 cycles involving crossover and
mutation. As a result, the obtained set was used in transfer
learning with parameters assumed for grid search approach.
The final results from evolution process was graphs depicted
in Figure 2.

For the Grid Search approach each set of predefined hyper-
parameters was tested by training the network model for 100
epochs. It was predefined value, checking performance of each
set of parameters on the same number of iteration. The values
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Fig. 2. Population of obtained results for learning rate and momentum -
showing fitness (y axis) vs hyperparameter values (x axis). Yellow color
indicates higher concentrations.

of the summary error and a metric describing the accuracy
of the solution - the mAP - were measured on the test set,
as shown in the graphs in Figure 3. The number of iterations
was adopted experimentally on the basis of observed training
runs. The use of the genetic algorithm’s space search alone
yielded results close to the original (actually default) values
of the hyperparameters used for training. The mAP value did
not get significantly better values.

Fig. 3. Changes in the value of the mAP metric over the learning curve for
different values of the post-primary hyperparameters.

Another aspect, was compared was the training of the net-
work from the perspective of minimizing the value of the loss
function, which is depicted in Figure 4. The Ultralytics library
allows these values to be broken down into the following types
of errors: bounding box regression loss function, classification
loss function, and confidence loss function. The authors of
[18] treat the total loss in an aggregate way, which is also
used in this paper. Discussing the nature of the training series
in detail, it should be noted that the reality did not differ from
initial expectations. First, as the initial value of the learning
rate decreased, the convergence achieved was slower, and the
oscillations during the process itself were smaller. Moreover,
it happened, the solution remained in a local optimum from
which it was impossible to get out. It should be noted that
the learning waveforms on the basis of the analyzed data
series, do not exhibit significant quantitative differences except

for a single case, which does not translate at all into better
qualitative values measured by detection efficiency.

Fig. 4. Change in the value of the summed loss function over the learning.

The mAP precision values obtained by the solution were
lower than those obtained on the YOLOv3 architecture by an
order of magnitude of about 10% relative to, for example, the
[5] and [8] papers. To check whether the under performance
is due to the architecture, the YOLOv5l architecture was
also trained, which, according to the authors, obtained on the
benchmark dataset results about 10% better. The experiment
prefaced in the figure 5 showed that in this case the architec-
ture has no particular effect on the results - the sheer value
obtained for the smaller architecture is also a barrier to the
possibility for the larger one.

Fig. 5. Summary of the results obtained during training for more epochs. It
can be observed the flattening, appearing around epoch 80, regardless of the
model adopted.

The experimental results demonstrate the YOLOv5 model’s
effectiveness in detecting and localizing wild animals in var-
ious natural environments. The visualizations reveal accurate
bounding box placements around the animal instances, with
high confidence scores indicating reliable detections. The
results depicted in figure 6. The main errors that occurred
during the inspection of the final visualizations were: false
detection of objects heated by the sun (stones, trunks), failure
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to completely cover the silhouette of the animal by the
bounding-box due to inhomogenity of animal coats brightness.

Fig. 6. Example of visualisation on test split of dataset.

IV. DISCUSSION

The research investigated the impact of hyperparameter vari-
ations on learning curves and final results. Notably, the study
explored different values of the learning rate, momentum, and
optimizer types to assess their influence on the model’s learn-
ing performance. Hyperparameter tuning was carried out using
two distinct methods: grid search and evolutionary algorithms.
The model’s training and evaluation were conducted on an in-
house dataset comprising thermal images featuring deer and
pig subjects. The trained architecture achieved an impressive
Mean Average Precision (mAP) score of 83%, indicating its
efficacy in automatic animal detection. The investigation into
the impact of hyperparameters on the learning performance
of the YOLOv5 architecture revealed significant findings. By
systematically testing various combinations of hyperparameter
values, we gained insights into their effects on the model’s
accuracy and detection capabilities. Notably, the learning rate,
momentum, and optimizer types played pivotal roles in influ-
encing the model’s performance. The selection of appropriate
hyperparameters significantly contributed to the achieved high
mAP score. The use of both grid search and evolutionary
algorithms allowed for comprehensive exploration of the hy-
perparameter space and facilitated the identification of optimal
configurations.

However results gained after training are below expectation,
comparing to gathered in table I. The values checked using
grid search did not significantly improve the results obtained
by the trained models. For the model trained on the default
values, performance was better or the same while convergence
was achieved with virtually the same number of epochs. This
means that the tuning of hyperparameters did not yield results
raising the disambiguation of the performative curve. For
the genetic model, the generated populations also oscillated
around the default values. This may mean, in the space of
optimization of hyperparameters, at the very beginning the
values were well chosen, and the search of the space was too
short to move away from the local optimum. On the other
hand, this is contradicted by the fact that after using a larger
architecture, the results measured by mAP did not improve.
This may mean that for a given dataset we have reached the

limits of the model’s fitting ability. Only after expanding the
dataset will it be possible to obtain better results. As it was
already mentioned the primary issues encountered during the
inspection of the ultimate visual representations included the
erroneous identification of objects heated by sunlight (such as
stones and tree trunks) and the inability to fully encompass the
animal’s silhouette within the bounding box due to variations
in brightness.

The results of this research contribute to the field of animal
detection in thermal images by showcasing the efficacy of
the YOLOv5 architecture. The high mAP score achieved
demonstrates the model’s potential in accurately detecting
animals, highlighting its viability in real-world applications
such as wildlife monitoring, environmental protection, and
security systems. The success of the YOLO model in this
context can be attributed to its object detection capabilities and
efficient processing, which are critical for handling thermal
image data.

V. CONCLUSION

This article, was focused on animal detection in thermal
images using the YOLOv5 architecture. The primary objec-
tive was to develop a high-performance model capable of
accurately detecting animals in this specific image modality.
Additionally, it was aimed to investigate the influence of
different hyperparameters on the learning curves and final
results of the model.

To achieve our goals, it was conducted experiments that
involved testing various combinations of hyperparameters,
including learning rate, momentum, and optimizer types. Two
different approaches, namely grid search and evolutionary
algorithms, were employed for hyperparameter tuning.

The results of our experiments are partially promising. The
trained YOLOv5 architecture achieved a decent Mean Average
Precision (mAP) score of 83%. This indicates the model’s
robustness and effectiveness in accurately detecting animals in
thermal images. These findings offer valuable insights into the
application of the YOLO model for automatic animal detection
in diverse fields, such as wildlife monitoring, environmental
protection, and security systems. However despite number of
attempts, it was impossible to achieve better results, even with
more complex and larger architure.

Our research highlights the significance of hyperparameter
selection in optimizing the performance of the YOLOv5 archi-
tecture for animal detection. Through systematic exploration
of different hyperparameter values, enabled to identify the con-
figurations that yielded the best results. The use of both grid
search and evolutionary algorithms provided comprehensive
insights into the interplay between hyperparameters and learn-
ing performance. Also the comparison of both approaches gave
significant insight about optimizing parameters for machine
learning models.

Future research in this domain could focus on expanding
the dataset to include a broader range of animal species and
environmental conditions. Additionally, exploring other state-
of-the-art object detection architectures and comparing their
performance with YOLOv5 would be beneficial. Despite the
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promising results, it is essential to acknowledge the limitations
and potential areas for future research. Firstly, the in-house
dataset used for training and evaluation contained images
with deer and pig subjects, which may limit the generaliz-
ability of the model to other animal species. Expanding the
dataset to include a broader range of animal classes would
enhance the model’s versatility and applicability in real-world
scenarios. Additionally, further investigations into fine-tuning
hyperparameters specific to thermal images could potentially
improve the model’s performance and generalization capabil-
ities. Comparisons with other state-of-the-art object detection
architectures would also be valuable to assess their relative
performance in animal detection tasks. Moreover, further in-
vestigations into fine-tuning the hyperparameters specifically
for thermal images may contribute to even higher detection
accuracy and generalization capabilities. Also it is considered
to create more efficient fitness function, which provides better
understanding of tuning hyper parameters using evolution
algorithms.

In conclusion, our study demonstrates the successful ap-
plication of the YOLOv5 architecture for automatic animal
detection in thermal images. The achieved high mAP score
and the observed impact of hyperparameter tuning techniques
affirm the model’s potential for various practical applications,
including wildlife monitoring, environmental protection, and
security systems. This research contributes to the advancement
of animal detection technologies and lays a foundation for
future studies in this field.
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