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Abstract—The future Internet of Things (IoT) era is anticipated 

to support computation-intensive and time-critical applications 

using edge computing for mobile (MEC), which is regarded as 

promising technique. However, the transmitting uplink 

performance will be highly impacted by the hostile wireless 

channel, the low bandwidth, and the low transmission power of IoT 

devices. Using edge computing for mobile (MEC) to offload tasks 

becomes a crucial technology to reduce service latency for 

computation-intensive applications and reduce the computational 

workloads of mobile devices. Under the restrictions of computation 

latency and cloud computing capacity, our goal is to reduce the 

overall energy consumption of all users, including transmission 

energy and local computation energy. In this article, the Deep Q 

Network Algorithm (DQNA) to deal with the data rates with 

respect to the user base in different time slots of 5G NOMA 

network. The DQNA is optimized by considering more number of 

cell structures like 2, 4, 6 and 8. Therefore, the DQNA provides the 

optimal distribution of power among all 3 users in the 5G network, 

which gives the increased data rates. The existing various power 

distribution algorithms like frequent pattern (FP), weighted least 

squares mean error weighted least squares mean error (WLSME), 

and Random Power and Maximal Power allocation are used to 

justify the proposed DQNA technique. The proposed technique 

which gives 81.6% more the data rates when increased the cell 

structure to 8. Thus 25% more in comparison to other algorithms 

like FP, WLSME Random Power and Maximal Power allocation.  
 

Keywords—Mobile edge computing; Deep Q Network 

Algorithm; Latency Optimized; Computation Offloading; 5G 

I. INTRODUCTION 

HE traditional mobile cloud computing systems would send 

the data from mobile devices to the cloud server in the core 

network for additional processing. However, this scheme cannot 

fit the future Internet of Things (IoT) era due to the explosively 

increasing amount of data generated by massive number of IoT 

wireless devices and the time critical requirements of new 

applications such as industrial monitoring, disaster early 

warning and healthcare. Recently, a new computing paradigm 

called edge computing for mobile (ECM) has emerged and 

drawn a lot of attention from both academia and industry. It 

pushes the computing capability from the core network to the 
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network edge. New applications like augmented reality (AR), 

autonomous driving, and the Internet of things (IoT) have been 

made possible by fifth-generation (5G) cellular technologies.  

 9These applications need a lot of wireless devices (like 

sensors and actuators), in addition ultra-low-latency 

communication, computation, and control. The immediate time 

computation tasks that should be executed out in practice can be 

quite intensive, but wireless devices are typically small and only 

have limited communication, computation, and storage 

resources, so how to improve their computation abilities while 

decreasing computational latency is one crucial but challenging 

issue that must be addressed for making these 5G applications a 

reality. [1] Computation off-loading in edge computing for 

mobile (ECM) systems constitutes an efficient paradigm of 

supporting resource-intensive applications on mobile devices. 

The beneficial role of IRSs is investigated in MEC systems, 

where single-antenna devices may opt for off-loading a fraction 

of their analytical tasks to the edge computing node via a multi-

antenna access point with the aid of an IRS. [2] Explains 

investigated system performance issues (energy consumption 

and execution delays) when task offloading from mobile 

devices to support services for sustainable IoT. Energy-efficient 

task allocation in a mobile cloud system (EETAMCS) algorithm 

which also considers execution delays. The algorithm manages 

to select an appropriate VM for the execution of the task while 

meeting deadline constraints. [3] Multi-access edge computing 

(ECM) has been proposed as an approach capable of addressing 

latency and bandwidth issues in application offloading of 

computation to extend the capabilities beyond the 

computational and storage limitations of mobile devices. [4] 

Adopted a heterogeneous network architecture where two edge 

servers are located at AP and BS, respectively. We created an 

energy minimization problem that takes heterogeneous 

computation resources, latency needs, power consumption at 

end devices, and channel states into account in order to provide 

optimal energy efficiency for all users. [5] To be able to increase 

the energy efficiency of the offloading system, this paper 

established a problem that decreases both the power using the 

communication process and which of the computation task 

execution. 

Here we proposed an EECO scheme that better addresses the 

problem, which jointly optimizes the calculation offloading 

decisions and the radio resource allocation strategies a reduction 

in the system energy cost inside the delay constraints. [6] By 

taking into account user association, computing resource 

allocation, and power control together, the proposed NOMA-

based ECM network's a challenge to minimizing energy 
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consumption solved. [7] The hierarchical ECM network's 

computation offloading issue. In order to balance the workload 

across the entire network region, we propose topology 

independent offloading algorithms that generalize the 

assumption about the network layout. [8] Task segmentation 

and edge server cooperation are combined to significantly 

reduce the time and energy required for task processing. 

Introduced in recent years that provide abundant computing 

resource to mobile users in their close proximity, and mobile 

users can offload their tasks a single or multiple nearby ECM 

servers for processing. EEC thus has great potentials decrease 

the overall processing delay of computation-intensive tasks and 

to prolong the battery lifetime of mobile devices. It has attracted 

lots of attentions from both industries and academia. Mobile 

terminals, which include smart phones, tablet computers, 

laptops, and smart assistants, have become increasingly popular 

due to the rapid development of mobile Internet technology and 

the on-going advancement of mobile communication 

technology. 

Lowering the overall energy consumption of the 

offloading process, large tasks can be split up and assigned to 

servers nearby in this work. [9] The joint computation 

offloading and resources optimization in a multi access ECM 

system. Mobile-edge computing (ECM) has been however, the 

mobile terminal is limited by things like volume, weight, 

performance, power, etc. Its working capacity is still in a dire 

and tiresome state, and it cannot satisfy the growing demand of 

people. 

The following are the contributions made by this study: 

• The increased cell structure is developed with multiple 

users at different time slots. 

• The data rate of the 5G network is increased by 

introducing the DQNA technique and compared to the 

other techniques like FP, WLSME Random Power and 

Maximal Power allocation. 

• The train histogram result also developed for more 

number of users. 

The following describes the general organization of the paper: 

Information on edge computing for mobile in the 5G NOMA 

network is provided in Section 2. Section 3 clarifies the 

proposed DQNA-based allocation of power for 3 NOMA users 

at different time slots. The DQNA method's results and analysis 

are presented in Section 4. Section 5 of the foregoing work 

contains its conclusion. 

II.  RELATED WORKS 

 The existing system study the system performance of edge 

computing for mobile (ECM) wireless sensor networks (WSNs) 

using a multi antenna access point (AP) and two sensor clusters 

based on uplink non-orthogonal multiple access (NOMA). Due 

to limited computation and energy resources, the cluster heads 

(CHs) transfer their work to a multi antenna AP over Nakagami-

m fading [10]. We proposed a combination protocol for NOMA-

MECWSNs in which the AP selects either selection combining 

(SC) or maximal ratio combining (MRC) and each cluster 

selects a CH to participate in the communication process by 

employing the sensor node (SN) selection. [11] The existing 

system derive the closed-form exact the successful own words 

computation probability (SCP) to evaluate the system 

performance with both the latency and the energy use 

constraints of the considered WSN. A deep learning-based 

message-passing algorithm (MPA) for damped three 

dimensions (D3D). To learn the best D3D-MPA parameters, a 

feed-forward neural network is created, and a similar back 

propagation algorithm is created [12]. A joint radio 

communication, caching, and computing decision problem is 

developed to maximize the average tolerant delay while 

satisfying a specified transmission rate constraint to be able to 

optimize resource allocation at both mobile VR devices and fog 

access points (F-APs) [13, 14]. In a centralized computing 

network, traffic flows should be transmitted and processed, and 

they can be stopped by cutting off the resources needed for 

either communication or computation [15, 16]. Using the 

caching and cooperative communication abilities of the 

terrestrial Base Stations (BSs) and unmanned aerial vehicles 

(UAVs), a distributed heterogeneous computing platform 

(HCP) is created. We propose a 2-stage federated learning 

algorithm among UEs, UAVs/BSs, and HCP to jointly predict 

the content caching placement by taking traffic distribution, UE 

mobility, and localized content popularity into account. This 

will protect the privacy of the UEs' content [17, 18]. The 

offloading ratio and gearbox time are jointly optimized using an 

accelerated gradient algorithm that can find the ideal value 

quickly and accelerate convergence over conventional 

approaches [19]. To address the power allocation issues of the 

NOMA network, the multi-objective sum rate-based butterfly 

optimization algorithm (M-SRBOA) is suggested [20, 21].  

III. SYSTEM DESIGN 

Fig.1 explains about the main working of proposed system 

by assuming that in the BS complete knowledge of all user input 

data sizes, local computation power, and channel information. 

The BS calculates the gearbox power, the offloaded data, and 

the percentage of offloading time using this data. A suggested 

iterative technique that obtains closed-form expressions at each 

step to optimize time allocation or data offloading is based on 

the optimal conditions.  

The following list includes the key actions in the system design 

architecture: 

 

Module 1: Load Dataset the core functionality of the IoT 

(Internet of Things) data collecting, the detected information is 

sent from sensor nodes to the hub, with a timely style, allowing 

for the smart response to be done in an emergency. To improve 

system reliability and fault tolerance, multi-modal sensor data 

fusion seeks to acquire clear and precise data. 

Module 2: The key performance indicators that control IoT are 

low latency and energy efficiency. Converge cast, a low-latency 

data gathering technique based on effective time division 

multiple access (TDMA), allows m packets to aggregate into a 

single packet from the output of each sensor node. 

Module 3: Episode Development Phase to be able to optimize 

resource distribution among users, base stations (BSs), and sub-

channels in keeping with the received power levels of users; we 

offer a multi-constrained clustering solution. To increase 

generality, appropriate bandwidth selection for the entire system 

at various traffic densities is also taken into account. We get a 

list of states and the related best actions after the exploration 

phase. 

Module 4: Using a parametric function that must be created, the 

general rule of power allocation must then be learned from this 
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data set. The function will be employed as a predictor after 

training to forecast the ideal course of action given an input 

state. Understanding the qualities of the training data is crucial 

to assist the predictor's design. 

Module 5: The list of good actions in the training data, in 

particular, carries some randomness since it was created using 

the random acting procedure. The reality that there numerous 

distinct action vectors producing the identical reward for each 

state gives training data its randomization. As a result, two very 

identical states can be connected to very distinct action vectors, 

which lead to consistency issues and hinder learning. Phase of 

Evaluation Based on the forward and back propagation scheme, 

our networks is trained. The back propagation stage uses the 

derivative chain rule to assess the gradient of the error function 

based on weight set after the error has been calculated in the 

forward propagation stage. The weights can be updated in each 

training epoch by alternately performing forward and back 

propagation. 

Module 6: Two types of loss are used to train our networks. 

Additionally, the optimization algorithm is utilized to reduce 

loss. The mean absolute error (MAE) between the target output 

vectors and the network outputs is the first type of loss function. 

Two terms compose the second type. The first phrase simply 

speaks of the discrepancy between desired outputs and network 

outputs. The average values calculated from the network outputs 

and target outputs are the second term. Network routing 

scenario, the agent can be rewarded for selecting paths with 

lower latency or for making decisions that prioritize low-latency 

communication. 

A. NOMA SYSTEM MODEL 

The combined signal, which is a superposition of the desired 

signals from various users with various allotted power 

coefficients, is transmitted by the BS to all mobile users from 

the transmitter side of the downlink NOMA network, as shown 

in Figure 2. Each user's receiver is assumed to undergo the SIC 

process in turn until the user's signal is recovered. Based on the 

channel conditions, users' power coefficients are distributed 

inversely proportionally.  Each user decodes its own signal after 

treating users with lower power coefficients as noise. It is 

feasible to encode the transmitted signal in the following BS 

format: 

𝑧 = ∑ √𝑎𝑖𝑃𝑏𝑥𝑖   
𝐿
𝑖=1                     (1) 

The signal 𝑥𝑖  is the message with unit energy, 𝑎𝑖 is power 

allocation coefficient and 𝑃𝑏  is the power which transmits from 

the base station. Input channel coefficient ℎ𝑙 with 𝑙𝑡ℎ users. The 

received signal 𝑤𝑙  signal can be portrayed as 

𝑤𝑙 = ℎ𝑙𝑠 + 𝑛𝑙 = ℎ𝑙 ∑ √𝑎𝑖𝑃𝑏𝑥𝑖
𝐿
𝑖=1 + 𝑛𝑙       (2) 

Where, nl is Additive White Gaussian Noise with  
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Fig.1. System Design Architecture 
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zero mean the noise variance 
𝑁0

2
 . With the aid of equation (2) 

the SINR can be indicated as below 
 

𝑆𝐼𝑁𝑅𝑗→𝑙 =
𝑏𝑗𝛾|ℎ𝑙|2

𝛾|ℎ𝑙|2 ∑ 𝑏𝑖+1𝐿
𝑖=𝑗+1

                 (3) 

The implementation of SIC procedures for the 𝑙𝑡ℎ user signal to 

locate the desired information of the user j≤ 𝑖. The  𝑙𝑡ℎ user can 

be represented as 

𝑆𝐼𝑁𝑅𝑙 =
𝑏𝑙𝛾|ℎ𝑙|2

𝛾|ℎ𝑙|2 ∑ 𝑏𝑖+1𝐿
𝑖=𝑙+1

                (4) 

The SINR of the Lth can be represented as 

𝑆𝐼𝑁𝑅𝐿 = 𝑎𝐿 𝛾|ℎ𝑙|
2                 (5) 

The NOMA downlink from base station to the end user can be 

indicated as 

𝑅𝑙
𝑁𝑂𝑀𝐴 = 𝑙𝑜𝑔2(1 + 𝑆𝐼𝑁𝑅𝑙) 

𝑅𝑙
𝑁𝑂𝑀𝐴 = 𝑙𝑜𝑔2 [1 +

𝑏𝑙𝛾|ℎ𝑙|2

𝛾|ℎ𝑙|2 ∑ 𝑏𝑖+1𝐿
𝑖=𝑙+1

]          (6) 

The data rate of the NOMA system can be indicated as  

𝑅𝑙
𝑁𝑂𝑀𝐴 = ∑ 𝑙𝑜𝑔2(1 + 𝑆𝐼𝑁𝑅𝑙)

𝐿

𝑙=1

 

= ∑ 𝑙𝑜𝑔2 [1 +
𝑏𝑙𝛾|ℎ𝑙|2

𝛾|ℎ𝑙|2 ∑ 𝑏𝑖+1𝐿
𝑖=𝑙+1

]𝐿−1
𝑙=1 + 𝑙𝑜𝑔2[1 + 𝑏𝐿𝛾|ℎ𝐿|2] 

 = ∑ 𝑙𝑜𝑔2 [1 +
𝑏𝑙

∑ 𝑏𝑖+1
𝛾⁄ |ℎ𝑙|2𝐿

𝑖=𝑙+1

]𝐿−1
𝑙=1 + 𝑙𝑜𝑔2[1 + 𝑏𝐿𝛾|ℎ𝐿|2]        (7) 

For a high SNR value γ→∞, the NOMA downlink can be 

represented as  

𝑅𝑙
𝑁𝑂𝑀𝐴 = ∑ 𝑙𝑜𝑔2(1 +

𝑏𝑙

∑ 𝑏𝑖
𝐿
𝑖=𝑙+1

)𝐿−1
𝑙=1 +𝑙𝑜𝑔2[𝛾|ℎ𝐿|2] 

𝑅𝑙
𝑁𝑂𝑀𝐴 =  𝑙𝑜𝑔2[𝛾|ℎ𝐿|2]                       (8) 

B. ALLOCATION OF POWER USING DQN ALGORITHM 

In a 5G downlink scenario, the goal is to distribute transmit 

power to numerous users in a way that maximizes the overall 

performance within the system. In this case, the DQN algorithm 

can be employed to control power allocation. 

Train a strategy to try and maximize the discounted, cumulative 

reward. 

Rto = ∑ γt−t0rt ∞
t=t0                    (9) 

The return is another name for𝑅𝑡𝑜. The reduction γ ideally, there 

should be a constant that converges the sum and is between 0 

and 1. If we had a function, which is the central tenet of Q-

learning. 

  𝑄∗: 𝑠𝑡𝑎𝑡𝑒 × 𝐴𝑐𝑡𝑖𝑜𝑛 → 𝑅            (10) 

We could easily develop a plan that maximizes our gains using 

the function mentioned above, which could estimate our return 

assuming that act in a specific state: 

  𝜋∗(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑄∗(𝑠, 𝑎))         (11) 
The result is, we lack access to Q∗ information because we don't 

fully understand the world. Nevertheless, due to the universal 

nature of neural networks function approximations, we can 

easily make one and train it to look like Q∗. 

We will use the observation that every Q function for some 

policy obeys the Bellman equation to formulate our training 

update rule: 

 𝑄𝜋(𝑠, 𝑎) = 𝑟 + 𝛾𝑄𝜋(𝑠|, 𝜋(𝑠|))         (12) 

Known as the temporal difference error, the difference between 

the two sides of the equality 

 

 

 

 δ = Q(s, a)-(r+δmaxQ(s|, a)             (13) 

 

We'll use the Huber loss to cut down on this error. The Huber 

loss is more resistant to outliers when the estimates of Q are 

highly noisy because it behaves like the mean squared error 

when the error is small and like the mean absolute error when 

the error is large. Over a number of transitions, we calculate this, 

𝐵 drawn from replay memory as samples. 

 

 𝐿 =
1

|𝐵|
∑ 𝐿(𝛿)            (𝑠,𝑎,𝑠|,𝑟)∈𝐵      (14) 

  𝐿(𝛿) = {

1

2
 𝛿2 , 𝑓𝑜𝑟 |𝛿| ≤ 1

|𝛿| −
1

2
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

              (15) 

Table 1 describes the algorithm of the DQN algorithm initially 

constructs a setting that reflects the 5G NOMA system. To store 

the agent's experiences as tuples (state, action, reward, next 

state), create a replay buffer. Create a deep neural network (Q-

network) from scratch that uses the system state as an input and 

outputs Q-values for various power allocation actions. The 

target network should be made as a duplicate of the Q-network. 

This adaptation describes how to use a 5G NOMA system's 

power allocation DQN algorithm. In a NOMA setting, it takes 

into account the particular goals and restrictions related to 

power distribution among users. 

IV. RESULTS AND ANALYSIS 

 In this section, the DQNA's outcomes and analysis are 

presented. By successfully executing server code, establishing a 

server using python code, and creating a new server, this DQNA 

technique is implemented and simulated. Computer software 

that uses an i5 processor and 8 GB of RAM. This's primary goal 

is to DQNA is to increase the data rates for more umber of 

NOMA users at differ time slots. 

A. PERFORMANCE EVALUATION 

 

This study's creation of base station coverage and the 

number of users, as well as power allocation in cells at different 

locations. Here the performance is considered in terms of data 

rates to the 3 NOMA users when we are increases the cell size 

structure. Figure 3 explains the base station coverage and 

allocation of power the quantity of users in cells at different 

locations which gives higher throughput. Figure 4 gives the 

graphical explanation about bit rate of proposed system when 

the cells structured increases. Figure 5 gives the train histogram 

of the all the NOMA users. Figure 6 represents data rate of all 

the NOMA users at different time slots. Further table 2, 3, 5, and 

5 explains the iterated Q values for the association of Fog cloud. 

As a way to sure in table 1, for the 1st user the iterated Q value 

for fog cloud association is obtained as 0.005 which indicates 

optimize resource allocation, reduce latency, improve energy 

efficiency, ensure the privacy less latency and increased 

computational speed and so on. 
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TABLE I 
DQN ALGORITHM 

  

 

 
Fig.3. Base station establishment 

 

 

Fig.4. Data rates when trained with other power allocation techniques 
 

 

 
 

Fig.5. Trained Histogram report 

 

 
 

Fig.6. Data rate v/s different power allocation schemes 
 

TABLE II  

ITERATED Q VALUES FOR BASE STATION AT (5, 5) 
 

Location 

of Users 

Iterated Q values for association of Fog 

cloud 

(1,1) 5.656 0.839 1.083 0.157 0.111 

(1,3) 4.721 0.491 2.000 0.290 0.111 

(3,2) 3.602 0.503 3.000 0.965 0.111 

 
TABLE 3 

ITERATED Q VALUES FOR BASE STATION AT (-5, -5) 

 

Location 

of Users 

Iterated Q values for association of Fog 

cloud 

(-4,-1) 4.123 0.795 1.000 0.036 0.106 

(-2,-4) 3.160 0.699 1.000 0.109 0.106 

(-1,-2) 5.000 0.951 4.000 0.065 0.106 

 
  

1. Set the capacity of the replay memory D to N 

2. Using weights that are random, initialize an 

action-value function Q 

3. Make the target action-value function 

initialized Q~ 

4. In relation to the incident θ‒=θ 

5. For episode=1 

6. A sequence starting point s1 = {x1} and sequence 

beforehand analyzing Ф1 = Ф(s1) 

7. For t=1 

8. Probabilistically, select an arbitrary behavior 𝑎𝑡 

9. Select at = argmax Q(Ф(st)) 

10. St+1 =  st, at, xt+1 and 

        pre-processed Фt+1 = Ф(st + 1) 

        (Фt, at,rt,Фt+1) in D 

        (Фj, aj, rj,Фj+1) 

yj = {
rj,                                                    j + 1

rj + γmax Q~(Фj+1, a: θ), otherwise
 

(yj − Q(Фj, aj, θ ))2 
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TABLE IV 
ITERATED Q VALUES FOR BASE STATION AT (5, -5) 

 

Location 

of Users 

Iterated Q values for association of Fog 

cloud 

(-4, -1) 4.123 0.795 1.000 0.036 0.106 

(-2, -4) 3.160 0.699 1.000 0.109 0.106 

(-1, -2) 5.000 0.951 4.000 0.065 0.106 

 

TABLE V 
ITERATED Q VALUES FOR BASE STATION AT (-5, 5) 

 

Location 

of Users 

Iterated Q values for association of Fog 

cloud 

(1,1) 5.656 0.839 1.083 0.157 0.111 

(1,3) 4.721 0.491 2.000 0.290 0.111 

(3,2) 3.602 0.503 3.000 0.965 0.111 

 

 

TABLE VI 
COMPARATIVE ANALYSIS OF THE DQN ALGORITHM 

 

Algorithm K=1 K=2 K=4 K=6 

DQN 3.19 bps 2.22 bps 1.54 bps 1.22 bps 

FP 2.97 bps 1.97 bps 1.33 bps 1.05 bps 

WMMSE 2.91 bps 2.01 bps 1.18 bps 1.10 bps 

Random Power 2.00 bps 1.01bps 0.51 bps 0.35 bps 

Maximal Power 1.99 bps 1.02 bps 0.51 bps 0.35 bps 

 

 
B. COMPARATIVE ANALYSIS 

 

This section displays a comparison of the DQNA's data rate 

analysis when cell size structure changes. The DQN algorithm 

is compared to alternative power distribution techniques like FP, 

WMMSE, Random Power and Maximal Power are employed to 

assess how effective the DQNA technique. Table 6 provides the 

analysis of differences with all the different power allocation 

techniques. As a way to be sure for cell structure K=6 the DQN 

algorithm provides 1.22 bps which is higher the data rate when 

compare to FP, WMMSE, Random Power and Maximal Power. 

Due to DQN's potential for achieving fairness, faster 

convergence speed, and capacity to learn and adapt to changing 

channel conditions, it is a promising algorithm. The DQNA 

employed to distribute an optimal amount of power to the 

NOMA users, which increased the data rate, by using an 

appropriate objective function. The development of the NOMA 

network in this instance includes numerous users. 

V.   CONCLUSIONS 

This study develops the DQNA method for distributing 

power among all NOMA network users. The performance of 

data rates is improved by using this DQNA-based power 

allocation for all NOMA users. With respect to performance and 

efficiency, DQN algorithm outperforms FP, WMMSE, and 

random power algorithms, and is a promising method for power 

allocation in wireless communication systems due to its 

flexibility in adapting to changing conditions, maximizing 

power allocation policies, and managing uncertainties. For each 

scenario, the energy consumption minimization problem is 

divided into more compact unit’s issues, and low-complexity 

global optimal answers are given for the sub problems with the 

noted qualities. The proposed DQN algorithm provides 81.6% 

data rates which is 25% more compared to other techniques like 

FP, WMMSE, Random Power and Maximal Power. When the 

cell value K increases to 8 the data bit rate value is 1.22 bps 

which is higher than all other allocation techniques. Future 

power allocation over the NOMA network operations can be 

accomplished with the novel optimization algorithm. 
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