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Abstract. Operational load monitoring (OLM) is an industrial process related to structural health monitoring, where fatigue of the structure is
tracked. Artificial intelligence methods, such as artificial neural networks (ANNs) or Gaussian processes, are utilized to improve efficiency of
such processes. This paper focuses on moving such processes towards green computing by deploying and executing the algorithm on low-power
consumption FPGA where high-throughput and truly parallel computations can be performed. In the following paper, the OLM process of typical
aerostructure (hat-stiffened composite panel) is performed using ANN. The ANN was trained using numerically generated data, of every possible
load case, to be working with sensor measurements as inputs. The trained ANN was deployed to Xilinx Artix-7 A100T FPGA of a real-time
microcontroller. By executing the ANN on FPGA (where every neuron of a given layer can be processed at the same time, without limiting the
number of parallel threads), computation time could be reduced by 70% as compared to standard CPU execution. Series of real-time experiments
were performed that have proven the efficiency and high accuracy of the developed FPGA-based algorithm. Adjusting the ANN algorithm to
FPGA requirements takes some effort, however it can lead to high performance increase. FPGA has the advantages of many more potential
parallel threads than a standard CPU and much lower consumption than a GPU. This is particularly important taking into account potential
embedded and remote applications, such as widely performed monitoring of airplane structures.

Keywords: operational load monitoring; real time computations; FPGA; aerostructures; neural networks; artificial intelligence; structural health
monitoring; green computing.

1. INTRODUCTION

Structural health monitoring (SHM) stands for the industrial
processes that allow early detection of anomalies in mechanical
structures in order to make early decisions of required main-
tenance that reduce cost. The features of SHM systems can in-
clude, depending on the needs: (a) damage detection, (b) damage
localization, (c) damage classification, and (d) determining the
remaining life of the structure [1]. The following paper focuses
on the last of the aforementioned features of SHM, which is
often referred to as operational load monitoring (OLM). It is
an industrial process that allows to make predictions about the
remaining operational time of a structure, before fatigue failure
will constitute a risk [2]. The most important application area
of this process is in the aerospace industry, where the goal is
operational life extension of aircraft components and ensuring
structural safety [3]. The classic approach was to replace struc-
ture elements in planned maintenance actions after a pre-defined
period of time. The benefits of performing OLM are extending
the in-service life of structures in case they wear out later than
expected, and increasing safety if the fatigue happened earlier
than expected. OLM is often, but not always, performed simul-
taneously with other SHM processes such as early stage damage
detection or localization [4–6]. In the aerospace industry both
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processes are handled by health and usage monitoring systems
(HUMS) [7,8]. Health state and life consumption of a structure
are continuously monitored using a set of permanently installed
sensors and data processing systems. Different sensor types can
be utilized in HUMS, including accelerometers and strain sen-
sors [9, 10]. For OLM purposes, either surface-mounted (e.g.
strain gauges) [11] or intrinsic (e.g. FBG – fiber Bragg grating
optical fiber) [12, 13] strain sensors are usually applied. FBG
sensors are considered better for avionic applications than strain
gauges as they emit more stable signal – less affected by electric
fields occurring at high altitudes caused for example by light-
nings. The other advantage is that they can be easily integrated
with modern aerospace composite materials such as fiber rein-
forced polymers that are lightweight but susceptible to barely
visible impact damage [14].

Other application areas for the monitoring processes are civil
structures (e.g. bridges, pipes) [15, 16], wind turbines [17] and
underground vehicles for the mining industry [18].

Machine learning (ML) revolutionized the applications of
SHM (including OLM) techniques by automating the processes
and limiting the effects of noises [19]. ML is used to build
intelligent models that map the input patterns from sensor mea-
surements to output desired targets, e.g. damage assessment or
current load value [20, 21].

Different types of artificial neural networks (ANNs) or sup-
port vector machines (SVR) are usually used for damage de-
tection and classification. ANN is a bio-inspired algorithm that
mimics the operation principles of an animal brain. It is a col-
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lection of units called artificial neurons, connected in a hierar-
chical order. Each artificial neuron is a mathematical model of
a brain cell, which receives input signals, processes them and
outputs signals to neurons connected to it. The output signal is
computed by a linear or non-linear activation function of the
weighted sum of the inputs [22]. In the learning process, the
weights are adjusted in order for the network to fit the reference
data as accurately as possible. Tabian et al. [23] implemented
a convolutional neural network (CNN) and passive sensing for
impact detection and location in composite structures, obtaining
95% accuracy. Damm et al. [24] used MEMS and a piezoelec-
tric transducer sensor integrated with a carbon fiber reinforced
composite structure and trained CNN. Jung and Chang [25]
described CNN for impact localization based on piezoelectric
ribbon sensor measurements. Khan et al. [26] implemented deep
learning (DL) neural networks for vibration-based classification
of delamination in composite laminates with the accuracy of
90%. Yu and Kim [27] used DL for damage detection in com-
posite structures with the accuracy of 95%. SVMs are classifiers
that map training data to points in space and try to maximize
the gap between the categories. When input data are introduced,
they map it to the same space and predict their category based on
which side of the gap the data fell. This methods were success-
fully utilized for impact localization from FBG measurements
by Datta et al. [28]. Mardanshahi et al. [29] compared effec-
tiveness of using SVM and two types of ANNs for the detec-
tion and classification of matrix clacking in a glass fiber/epoxy
composite.

For OLM processes ML techniques are also commonly ap-
plied. They often allow to reduce the number of required sensors.
In order to perform direct and accurate OLM, sensors should be
mounted in every critical point of the structure. Critical point
means a place where possible stress and strain concentrations
can occur during the service of the structure. As the loads of
a structure can be highly variable, including locations of the
acting forces, the number of critical points can be too high
to handle. For this reason it is a common approach to involve
ML prediction models. They allow to obtain required load esti-
mate (e.g. stress at certain location, location and value of acting
force, safety factor of the structure under current load) based
on limited input data (e.g. discrete strain measurements) [30].
Two most commonly used ML methods for OLM processes
are ANNs and Gaussian processes (GP) [4, 31]. Candon et
al. [32] used ANNs to predict transonic buffet (unavoidable
aerodynamic nonlinearity) in the process of track fatigue life
reduction using accelerometer measurements as inputs. Wada et
al. [33] employed ANNs to identify load distributions of a sim-
ple plate by using strain measurements from a relatively large
number (60) of strain gauges. Gaussian processes, on the other
hand, are ML methods that can be used for regression and are
based on the Bayesian framework, where the predictive output
is provided based on prior conditional probability. It is assumed
that the probability distribution for any input values over the
output follows the Gaussian distribution. GPs use the whole
training data to make predictions based on similarity between
points [34]. Holmes et al. [35] implemented GP to predict loads
of landing gear where the model was trained on experimentally

gathered data. Fuentes et al. [36] used GP for prediction of air-
craft structural loads from recorded flight parameters. Predicted
strains were compared with measured values and compliance
was achieved.

The novelty of the presented paper is moving OLM process
towards green computing by performing high-throughput, true
parallel processing of artificial neural networks in real time on
a low energy consumption FPGA-based microcontroller. Green
computing means a trend of using computing devices in energy-
efficient and eco-friendly ways. The awareness of the global
need to reduce energy consumption wherever it is possible is
constantly rising as fossil fuels supply most of the world’s en-
ergy [37, 38]. According to Google Trends, ‘green computing’
was searched 93% more in 2022 than in 2020 (when comparing
average week searches).

Due to the applications of OLM processes (for example in
aircrafts during flight, together with SHM as part of HUMS),
it seems natural to perform all the necessary computations on
an embedded system connected to the sensors. In this paper,
an FPGA-based embedded computing system is proposed to
perform ANN-based OLM in real-time. FPGA stands for field-
programmable gate array and it is an integrated circuit with
functionality programmable and re-programmable by the user.
It contains an array of programmable logic blocks with reconfig-
urable connections [39]. FPGA computing is definitely classified
as green computing [40–42] as the circuits are characterized by
low power consumption and high performance and reliability.
Other advantages include low cost, no need for the operation
system to execute the logic, and flexibility (upgradable logic).
FPGAs are commonly implemented in embedded applications,
they were even placed on Mars rovers [43, 44]. The specific
structure and working principles of FPGAs make them perfect
for parallel processing as simultaneous parallel circuits can be
running while executing the logic (their number being limited
only by the availability of hardware resources) with no CPU
time sharing. Modern CPUs have several or several dozen of
parallel threads, while in FPGAs the number of independent
circuits can reach even hundreds or thousands (like in GPUs
but with the power consumption lower by multiple orders of
magnitude). Running ANNs on FPGAs is an idea that has been
emerging in recent years [45, 46]. Project Brainwave by Mi-
crosoft is a deep learning platform for cloud computing with
FPGA acceleration, for computer vision and natural language
processing applications [47, 48].

FPGA data processing can be definitely considered as green
computing as there are many references where energy effi-
ciency between multicore CPUs, GPUS and FPGAs is com-
pared. Betkaoui et al. [49] compared a GPU-based system and
a heterogeneous system with a CPU and FPGA co-processor
and concluded that GPU has got better floating-point perfor-
mance but FPGA is better for parallel applications requiring
low memory bandwidth. Qasaimeh et al. [50] compared em-
bedded devices based on ARM CPU, GPU and FPGA for image
processing applications in embedded vision solutions. For more
complex vision pipelines FPGAs outperformed GPUs and CPUs
– reduction by 1.2× to 22.3× of energy/frame was achieved. In
papers [51,52] FPGAs provided the best energy efficiency in al-
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most all situations, as compared to GPUs and multicore CPUs,
being one or more order of magnitude higher in some cases. Tang
et al. [53] measured energy efficiency for convolutional neural
networks processing on different devices and obtained the fol-
lowing results: 0.119 GFLOPS/W for CPU, 0.522 GFLOPS/W
for GPU, and 4.723 GFLOPS/W for FPGA, proving it to be far
more superior.

The applicability of the presented research, where FPGAs
could be employed to improve OLM/SHM processes, covers
different areas – civil structures, vehicles and wind turbines, but
first of all it applies to aerospace structures. For this reason elec-
tromagnetic interference, which can occur at high altitudes (from
lightnings, solar flares, electrostatic discharges, radiated fields
of radars etc.) and cause malfunction of electronic devices, must
be taken into account in all aspects of avionic design and certifi-
cation [54]. FPGAs, if not properly protected, are susceptible to
SEUs (single-event upsets) which mean changes of state caused
by ionizing particle striking an electronic device and leading to
errors [55]. Yuan et al. [56] measured the influence of electro-
magnetic behavior on FPGAs. However, modern FPGA devices
with certified SEU immunity dedicated to aerospace applica-
tions are available in the market. Well-known FPGA companies
such as Microchip and Xilinx are producing devices dedicated
to avionic applications [57, 58].

Petko and Uhl [59] described smart sensor development for
avionic OLM purposes. The smart sensor is built on an FPGA
microchip where an ANN was deployed to identify loads of a
structure in real time based on measurements from piezoelectric
accelerometers. Accuracy of FPGA computations is validated
by comparing the results to offline PC calculations. The nov-
elty of the following paper is that not only the accuracy of
FPGA algorithm is measured but also its efficiency is evaluated
by comparing the computational time of ANN processing on
FPGA and a microprocessor of an industrial real-time micro-
controller.

In the following paper the OLM process for a composite
hat stiffened panel (a structure of typical aerospace applica-
tion) is described. A relatively small amount of strain gauges
was mounted to the structure. An artificial neural network was
trained to predict the current Tsai-Wu (failure criterion for com-
posites) value of the panel under a load based on strain mea-
surements. To train ANN, reference data were generated using
an accurate (experimentally validated) numerical model, based
on the finite element method [60]. Series of experiments were
performed where the real-time National Instruments cRIO-9054
microcontroller with Xilinx Artix-7 A100T FPGA was utilized.
The trained ANN was deployed to the FPGA algorithm allowing
for its high-throughput and true parallel execution in real time.
The efficiency and accuracy of executing the ANN using FPGA
was measured and compared to standard CPU execution.

Details about running algorithms based on ANNs in FPGAs
in a parallel mode are presented in Section 2. Section 3 focuses
on the OLM example, including structure and prediction model
description, details about converting and deploying the trained
ANN to the FPGA, results of benchmarking the high-throughput
FPGA version of the algorithm as compared to standard CPU
execution, and results of series of real-time OLM experiments.

2. EASE OF USE IN HIGH THROUGHPUT FPGA
PROCESSING OF ANNS

ANNs are bio-inspired algorithms that mimic the operation prin-
ciples of an animal brain. They are collections of connected units
called artificial neurons. A model of a single neuron 𝑖 was pre-
sented in Fig. 1. The neuron receives 𝑁 signals 𝑥 𝑗 from inputs,
processes them with a linear or (usually) nonlinear function of
the weighted sum of inputs, called activation function 𝜑, and
outputs the processed information 𝑦𝑖 . The activation function is
the mathematical model of a biological neuron:

𝑦𝑖 = 𝜑(𝑒) = 𝜑
©«

𝑁∑︁
𝑗=1

𝑤𝑖 𝑗𝑥 𝑗 +𝐵
ª®¬ , (1)

where 𝑒 is the neuron’s net value, 𝑤𝑖 𝑗 are weights for each input
𝑥 𝑗 , and 𝐵 is bias.

Fig. 1. Model of artificial neuron

In ANNs the artificial neurons are organized in layers. The
first is the input layer where the number of neurons is equal to
the number of inputs. Signals from the input layer go through
one or more hidden layers (the number and size of hidden layers
depends on the task the network is performing) to the output
layer (the size of the output layer is dependent on the number
of outputs). Neural networks can be feedforward if the signals
move only to subsequent layers, or recurrent if there are feed-
back signals. In the training process the weights 𝑤𝑖 𝑗 of all the
neurons are adjusted to minimize the error of network predic-
tions [22, 30].

The above-described architecture of an ANN is presented in
Fig. 2. The idea of speeding up real-time ANN computations
consists in introducing parallelization. Neurons in a given layer

Fig. 2. Parallel processing of ANN computations
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are not connected to each other and therefore can process in-
formation at the same time when all the inputs are available.
For some problems, the hidden layers can have even several
dozen or several hundred of neurons – too much to process at
the same time by average modern CPUs. The number of threads
for graphic processors is significantly higher therefore GPUs are
commonly utilized for artificial intelligence processing. How-
ever GPUs are usually characterized by high power consumption
and are not suitable for embedded applications. These drawbacks
can be overcome by FPGAs. The power consumption of FPGAs
as compared to GPUs is lower by multiple orders of magnitude.
In FPGAs the number of parallel tasks that can be executed
is not limited by threads, just by hardware resources on which
independent circuits are defined.

In order to maximize the performance of FPGA computations
and reduce the utilization of hardware resources necessary to ex-
ecute the algorithm, it is important to use fixed point arithmetic
in neural network processing [61]. It is a method of representing
non-integer numbers in computer memory by storing them in a
fixed number of bits from which the fractional part of the num-
bers is assigned to a portion of bits of a fixed size. The number
of bits assigned to a variable is called word length and the num-
ber of bits assigned to its integer portion is called integer word
length. If the variable can take positive and negative values, an
extra bit is assigned to determine the sign of the number [62].
Although implementing fixed point arithmetic increases com-
plexity of the project and development time, it has the advantages
of integer arithmetic, allowing to perform operations faster by
many orders of magnitude than floating point arithmetic, while
maintaining some flexibility of the latter [63,64]. When upload-
ing an ANN algorithm to FPGA, word lengths and integer word
lengths should be carefully adjusted. They should be minimal
but still cover the whole range of values that the variables can
take and ensure the required accuracy of computations. That
way the utilized resources of FPGA are minimized.

3. EXAMPLE

OLM process of a composite aerostructure is considered as
an example of real-time parallel data processing by an artificial
neural network using FPGA. The aerostructure being considered
is a hat-stiffened panel, a typical geometry used for aircraft skin.
Dimensions and photographs of the panel are presented in Fig. 3
with marked positions of six strain gauges (SG1-SG6) mounted
to the top surface and rib of the structure.

The panel is a laminate made of 10 layers of carbon woven
with different angle orientation in epoxy resin. An accurate finite
element (FE) model of the structure was created using ANSYS
Workbench software with ACP (Ansys Composite Prep/Post)
module for advanced designing of composite structures. Suc-
cessful experimental validation of the numerical model was de-
scribed in [65] and [66]. In [65], bending stiffness in the linear-
elastic range of the panel was measured for different loading
points, using an universal testing machine, and compared with
the stiffness obtained from the FE model – the obtained differ-
ences were between 0.14% and 1.24%. In [66], the composite

(a)

(b)

(c)

Fig. 3. Tested aerostructure: (a) dimensions, (b) photograph with top
strain gauges positions, (c) photograph with bottom strain gauges po-

sitions

hat-stiffened panel was loaded at different points using a uni-
versal testing machine, and strain measurements from sensors
SG1-SG6 were registered together with force value from the
load cell of the testing machine. Then the obtained strain-force
plots were compared with the results obtained from numeri-
cal simulations using the FE model. Satisfying compliance was
achieved, mean square errors were calculated and are listed for
each sensor for each loading point.

The FE model is presented in Fig. 4. It consists of 50 831
Quad elements of quadratic order and of 50 492 nodes. Left
edge of the panel is supported in X and Y direction and right
edge – in Y direction only. It is assumed that the panel can
be loaded at any point on the top surface. In order to generate
enough reference data to train the neural network, 403 small
round surfaces were insulated on the top surface, where forces
of values 1, 2, 3, . . . , 40 N were applied subsequently at each
location. In the locations of the strain gauges, rectangle-shaped
surfaces were insulated of the size corresponding to the active
part of the sensors, in order to simulate the measurements as
average strain values.
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Fig. 4. Finite element model of the structure

3.1. Artificial neural networks

ANN has got six inputs which are strain measurements from
strain gauges SG1 – SG6 in [µm/m] and one output that is
the Tsai-Wu failure criterion [67] of the whole structure un-
der current load, as illustrated in Fig. 5. It applies to anisotropic
composite materials with different strengths in tension and com-
pression. Failure is predicted when the criterion value exceeds 1:

𝐹𝑗 𝜎𝑗 +𝐹𝑗𝑘 𝜎𝑗𝜎𝑘 ≤ 1, (2)

where 𝑗 , 𝑘 = 1,2, . . . ,6, 𝜎𝑗 are stresses in Voight notation, 𝐹𝑖 are
parameters determined from stress limits and 𝐹𝑗𝑘 are coupling
coefficients. All the coupling coefficients were assumed as −1
and the stress limits are presented in Table 1.

Fig. 5. Inputs and output of ANN

Table 1
Stress limits of the laminate

Load direction Stress limit, MPa

Tensile 1 200

Tensile 2 200

Tensile 3 12.5

Compression 1 –125

Compression 2 –125

Compression 3 –42.5

Shear 12 30

Shear 23 16

Shear 13 16

The relation between the output and the inputs to ANN is
highly nonlinear. To illustrate that, a constant force value of
−10 N in the Y direction was assumed and relations between
the force location and the Tsai-Wu criterion value and strain
measurements are presented in Figs. 6 and 7, respectively.

Fig. 6. Tsai-Wu criterion value for different application locations
of constant force

(a)

(b)

(c)
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(d)

(e)

(f)

Fig. 7. Simulated strain gauge measurements for different application
locations of constant force: (a) strain gauge SG1, (b) strain gauge SG2,
(c) strain gauge SG3, (d) strain gauge SG4, (e) strain gauge SG5, (f)

strain gauge SG6

As the network is trained on computationally generated data,
to be ultimately working on measured data from strain gauges,
white Gaussian noise was added to the reference data from FE
simulations. As for data generation, 403 force locations and 40
force values were used, and 16 120 input-output reference pairs
were obtained. Random 70% of the data was used for training,
15% for validation and 15% for test. The Levenberg-Marquardt
algorithm was used for training.

ANN with one hidden layer, with nine neurons in the hidden
layer was found. The activation function of the hidden neurons
is sigmoid, equation (3). Training performance of the network

is presented in Fig. 8. The best validation performance (MSE)
1.65 ·10−4 was achieved at epoch 198.

𝜑(𝑒) = 2
1+ exp(−2𝑒) −1. (3)

Fig. 8. Training performance of ANN

3.2. FPGA implementation and benchmarking

The algorithm, based on the trained ANN, described in detail
in Appendix A, was implemented to the real-time National In-
struments cRIO-9054 microcontroller. The microcontroller is
equipped with 2-core CPU Intel Atom E3805 and Xilinx Artix-
7 A100T FPGA. Extension modules are connected to the cRIO
system, and include NI-9235 (8-channel 120 Ω quarter-bridge
strain gauge input module) and NI-9201 (8-channel, 12-bit,
±10 V voltage input module). The microcontroller was pro-
grammed using National Instruments LabVIEW 20.0.1 soft-
ware. The thermal design power of the CPU is 3 W and of the
FPGA is 0.142 W.

The ANN prediction model was implemented as a function
that reads signals from strain gauges and returns predictions of
the Tsai-Wu criterion value. For benchmarking purposes, two
versions of this function were created. In the first version, all
ANN computations were performed using the CPU microcon-
troller and floating point arithmetic. In the second version, ANN
was implemented to the FPGA and fixed-point arithmetic was
utilized. In order to adjust the size of fixed-point variables in
the ANN function, MATLAB toolbox Fixed-Point Designer™
was utilized. This tool allows to optimize fixed-point algorithms
before implementing the logic to embedded targets. It also al-
lows to debug quantization effects like overflows and precision
loss. The algorithm was optimized taking into account achiev-
ing desired accuracy and minimizing FPGA hardware resources
utilization. The maximum value ranges of each variable were
defined based on computationally generated reference data. The
sizes of all fixed-point variables are listed in Table 2. The sizes
concern every element of a given vector / matrix. Moreover,
operation (A.6) (the sigmoid activation function of the hidden
neurons) was substituted by a lookup table. After careful nu-
merical studies, it has turned out that the input values ℎ2𝑖 to the
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Table 2
Optimized parameters of fixed-point variables

Variable Word length
(bits)

Integer
word length

(bits)

Signed
(additional bit)

x 16 11 Yes
offset1 16 11 Yes

i1 16 10 No
gain1 16 –5 No

i2 16 2 No
ymin1 1 1 Yes

i3 16 2 Yes
IW1 16 6 Yes
h1 16 6 Yes
b1 16 4 Yes
h2 16 5 Yes
h3 16 1 Yes

LW2 16 4 Yes
o1 16 5 Yes
b2 16 3 No
o2 16 1 Yes

ymin2 1 1 Yes
o3 16 1 Yes

gain2 16 2 No
o4 16 –1 Yes

offset2 16 –7 No
y 16 –1 No

activation function are always within a small range between−1.5
and 2 (Fig. 9). To speed up the computations and maintain high
accuracy, a lookup table with 1024 uniformly distributed values,
without interpolation, was implemented. Processing of all the
hidden neurons during execution of the function is achieved in
true parallel mode as in FPGA they constitute separate circuits.
The ANN function utilized 42% of the available arithmetic-logic
DSP48 blocks of the FPGA hardware resources.

Fig. 9. Sigmoid activation function replaced by lookup table

For benchmarking, both versions of the algorithm (ANN com-
puted in CPU and FPGA) were tested using 10 000 samples of
previously taken example measurements (from strain gauges
SG1-SG6). The inputs were stored in the memory of the micro-
controller as a measurement file. The goal was to perform all
the ANN computations as quickly as possible for all the data
samples in a loop, without any constant time step and waiting
functions. Time of computations was measured as an average
from 10 runs. First version of the ANN function (CPU compu-
tations, floating point arithmetic) took an average of 1 983 ms to
complete the computations with standard deviation of 47.7 ms.
In the second version of the ANN function (FPGA computations,
fixed point arithmetic), subsequent data samples were read from
the measurement file by the CPU, converted to a fixed point
number, and sent to the FPGA with a binary flag turned on that
new data has arrived. The FPGA algorithm processed the in-
put data to output by ANN and sent interruption signal to CPU
when the result was ready to be read. It took 594 ms to complete
all the calculations as an average from 10 runs with 16.1 ms as
standard deviation. By performing true parallel computations
using FPGA, about 70% of computational time reduction was
achieved.

3.3. Real-time experimental testing of FPGA-based
algorithm

Series of experiments were performed where the FPGA com-
putations were performed in real time and ANN was predicting
the Tsai-Wu criterion for the tested structure under load. To load
the structure at different points, a universal MTS Insight 10 test-
ing machine, equipped with 10 kN load cell, was utilized. The
composite panel was mounted in the testing machine using a
specially manufactured steel frame of high stiffness. The real-
time microcontroller cRIO-9054 was connected to the testing
machine by ±10 V analog signal (load information) and to the
six strain gauges of the structure. The microcontroller had two
roles: 1) it acted as a DAQ system for the force and strain sig-
nals, 2) it processed the measured strain information by ANN to
predict the Tsai-Wu criterion value in real-time using an FPGA-
based parallel algorithm. Multicore approach was applied to
the CPU where the first core was executing deterministic tasks
(reading signals and getting Tsai-Wu value predictions from
FPGA every constant time step) and the second core was exe-
cuting non-deterministic tasks (sending measured and predicted
values to the PC to be displayed to the user). The time step for
deterministic tasks was 5 ms (Fig. 10).

Fig. 10. Experimental setup
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During experiments, the tested aerostructure was loaded at
four random points P1–P4, not corresponding to any of the 403
sample loading locations (Fig. 4) that were used to generate the
reference data to train ANN. The loading locations P1–P4 are
presented in Fig. 11. The testing machine was loading the struc-
ture at constant speed of 10 mm/min in the range from 0 to 40 N.

Fig. 11. Loading points P1–P4 locations

The predictions of the Tsai-Wu value by the FPGA-based
parallel algorithm with fixed point arithmetic, made in real time
during the experiments, were compared against exact values and
predictions of ANN using numerically generated strain values
as input data, and presented in Fig. 12. Numerically simulated
values of the Tsai-Wu criterion using the finite element model
and known (measured during experiments) values of applied

loads are here considered as exact values. As one can see in
Fig. 12, all three plots are compatible in each of the four cases.

The predictions made during real-time experiments were
compared to ANN predictions using the more precise float-
ing point version of the algorithm, executed on CPU, and using
the acquired measurement data from the experiments. Figure 13
presents this comparison. The differences between both predic-
tions seem to be relatively small. To quantify the accuracy of
the predictions, mean squared errors were calculated for every
loading point and listed in Table 3. The predictions using the
fast parallel FPGA version of the algorithm are slightly less ac-
curate, and for points P1–P3 the MSE is one order of magnitude
higher than for the floating point version. However, accuracy of
the former version is still high, resulting in MSE of 10−4 each
time. The MSE between fixed point and floating point represen-
tation of ANN is substantially lower, usually of 10−6. The MSEs
are slightly greater for point P4, as the stiffness in that point is
higher than for the other three, resulting in smaller values of
strain measurements, and, therefore, making the measured data
relatively noisier. The resulting predictions for P4 are also of
greater noise, as observed in Fig. 12 and 13. The predictions are
at an acceptable level however, while this inconvenience could
be decreased by applying data filtering to the measured data.

(a) (b)

(c) (d)

Fig. 12. Tsai-Wu value predictions obtained by ANN during real-time experiments compared against ANN predictions from numerically
generated inputs and exact values: (a) loading point P1, (b) loading point P2, (c) loading point P3, (d) loading point P4
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(a) (b)

(c) (d)

Fig. 13. Comparison between Tsai-Wu value predictions from FPGA version of the ANN algorithm (with fixed point arithmetic) and CPU
version (with floating point arithmetic): (a) loading point P1, (b) loading point P2, (c) loading point P3, (d) loading point P4

Table 3
Comparison of mean squared errors (MSE) of Tsai-Wu value predic-
tions for CPU (floating point) and FPGA (fixed point) versions of the

ANN algorithm

Loading
point

Mean squared error (MSE) of Tsai-Wu value predictions

floating point
algorithm
– exact

fixed point
algorithm
– exact

floating point
algorithm –
fixed point
algorithm

P1 7.6934 ·10−5 1.0421 ·10−4 6.1452 ·10−6

P2 6.1998 ·10−5 5.9273 ·10−4 3.9859 ·10−6

P3 7.5060 ·10−5 1.0347 ·10−4 9.9347 ·10−6

P4 7.8658 ·10−4 6.9858 ·10−4 1.0212 ·10−5

4. CONCLUSIONS

Green computing, understood as using energy-efficient comput-
ing devices, for different applications, is becoming more impor-
tant than ever. The main focus of the presented research was
to move OLM processes towards green computing by utilizing
FPGAs in embedded applications. Such applications are natural
for sensor-based monitoring processes, as all the necessary op-
erations can be performed in the computing system connected

to the sensors. FPGAs are characterized by exceptionally low
power consumption and high efficiency at the expense of lower
flexibility, as compared to microprocessors. Moreover, FPGAs
allow for true parallel processing of data, as there is no need
for the operating system to execute the logic, and the number of
parallel circuits is only limited to the hardware resources. ANN
calculations can be done in a highly parallel mode as all neurons
of a given layer can be processed at the same time. Therefore,
deploying ANNs to FPGA has the advantages of potentially
more parallel threads than in a standard CPU and much lower
consumption than for a GPU.

The presented example has proven the abovementioned as-
sumptions. Adjusting the ANN algorithm to FPGA requirements
took relatively much effort as all the arithmetic was converted
to a fixed point and a lookup table was created in place of the
sigmoid activation function. However, benchmarking revealed
that this allowed to reduce the time of computations by 70%
as compared to standard CPU execution. It is expected that
for ANNs with a greater number of hidden neurons and/or a
greater number of hidden layers the relative computational time
reduction would be even more substantial. The FPGA utilized
would not allow to deploy a significantly greater network, as the
described one consumed 42% of the available arithmetic-logic
DSP48 blocks.
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Optimizing the FPGA algorithm is extremely important as
the hardware resources are limited and within those resources
the required accuracy of computations must be maintained. For
OLM processes, having an exact, experimentally verified, fi-
nite element model is helpful as it allows to automatically run
simulations for every possible load case, without the necessity
of performing tedious series of experiments. The possibility to
simulate the reference data allowed not only to generate a train-
ing dataset for ANN, but also to determine the maximal ranges
of all algorithm variables for fixed point conversion. Adding
white Gaussian noise to the simulated reference input-output
data helps to train ANN to become more resistant to noisy mea-
surements and adds a necessary reserve to the variable ranges.

As for the presented example, the obtained results of OLM can
be considered successful. The trained ANN worked correctly
in real time, with experimentally acquired measurements from
strain gauges, although it was trained only on simulated data.
Implementing data filtering to the measurements could reduce
the obtained noise of the predictions. However, the noise is
already at a relatively low level.

The presented results of high throughput, true parallel and en-
ergy efficient FPGA computations of ANN algorithms show the
possibilities of expanding such an approach to other SHM appli-
cations (not only OLM), as well as other embedded applications
of ANNs.

The developed methods and obtained results constitute a start-
ing point for future research on introducing green computing
to embedded applications. In the presented example the whole
ANN, after conversion to FPGA requirements, was programmed
in LabVIEW by manually adding every operation. The next step
is to create a programming tool that will allow to automate this
process. Also, measuring and comparing energy consumption
of FPGA and CPU devices running AI-based OLM algorithms
is considered a task for the future.

APPENDIX A: ARTIFICIAL NEURAL NETWORK
ALGORITHM

The considered ANN has got one hidden layer with neurons of
the sigmoid activation function. The number of inputs 𝑛_in = 6,
the number of outputs 𝑛_out = 1 and the number of hidden
neurons 𝑁 = 9. In the following description, equations contain
mostly single operations, for better understanding of conversion
to fixed point representation in FPGA implementation.

In the input layer, the input values (vector 𝑥 of size 𝑛_in×1) are
normalized, using three sets of coefficients: offset1, gain1 and
ymin1, of sizes 𝑛_in×1. Subtraction (A.1), Hadamard product
(A.2), and addition (A.3) are performed.

i1 = x−offset1 , (A.1)

i2 = (i1⊙ gain1) , (A.2)

i3 = i2+ymin1. (A.3)

In the hidden layer, two constant matrices are used, IW1 (of
size 𝑁 × 𝑛_in) and b1 (of size (𝑁 × 1)) to determine the input
to the activation function. Matrix operations (A.4) and (A.5)

are performed. For every 𝑖-th element h2𝑖 of matrix h2, the
sigmoid activation function (A.6) is executed, where vector h3
is obtained as a result, of size (𝑁 ×1).

h1 = IW1 · i3, (A.4)

h2 = h1+b1, (A.5)

h3𝑖 =
2

1+ exp(−2 · ℎ2𝑖)
−1. (A.6)

In the output layer, two constant matrices are used, LW2
(of size 𝑛_out×N) and b2 (of size (𝑛_out× 1)) to determine
the input to the linear activation function. For this purpose,
operations (A.7) and (A.8) are performed. The activation func-
tion of the output layer and scaling is performed by operations
(A.9)–(A.11), whereas in (A.10) Hadamard division is executed.
Vectors b2, ymin2, gain2 and offset2 are all of size 𝑛_out×1.
Output vector y from ANN is obtained.

o1 = LW2 ·h3, (A.7)

o2 = o1+b2, (A.8)

o3 = o2−ymin2, (A.9)

o4 = o3⊘ gain2, (A.10)

y = o4+offset2. (A.11)

Values of the constant matrices in the discussed example are
as follows:

offset1 =



−620.3352
−789.2278
−475.8088
−13.6552
−111.6687
−2.8206


,

gain1 =



0.00320785737291781
0.00253863543428045
0.00414908874413595
0.00731514312766509
0.0178318864891182
0.0113452043988117


,

ymin1 =



−1
−1
−1
−1
−1
−1


,
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IW1 =



−28.887775 6.1646665 16.857494
5.387242 −0.714431 −1.456031
1.860774 −0.329440 0.311148
−3.715395 4.398884 0.854155
−1.197236 −0.499655 −0.609615
−3.666818 4.239059 0.399583
−0.051716 −0.557181 0.128190
5.717952 −1.031718 −1.658909
1.805440 0.077197 1.592871

−5.565801 0.217765 7.243180
1.615390 1.654311 −0.647806
−0.324647 0.866814 0.454322
−2.053143 0.009653 2.674085
−1.456445 −1.194856 −0.322091
−2.244133 −0.175049 2.435752
−2.145632 −1.307685 0.539131
1.601653 1.585608 −0.920229
2.959694 0.391987 1.104751



,

b1 =



7.160749
−4.246967
−3.474163
−0.996786
0.751525
−0.800328
1.927986
−4.427155
0.719475



, LW2 =



0.070656
−6.073142
3.761795
−4.797865
1.160196
5.580726
−4.209480
6.362346
1.510866



T

,

b2 =
[
7.490504

]
, ymin2 =

[
−1

]
,

gain2 =
[
3.780953

]
, b2 =

[
0.004871

]
.
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