
BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 71(6), 2023, Article number: e147338
DOI: 10.24425/bpasts.2023.147338

ARTIFICIAL AND COMPUTATIONAL INTELLIGENCE

Improved efficient capsule network
for Kuzushiji-MNIST benchmark dataset classification

Michał BUKOWSKI , Izabella ANTONIUK , and Jarosław KUREK ∗∗∗

Department of Artificial Intelligence, Institute of Information Technology, Warsaw University of Life Sciences, Nowoursynowska 159,
Warsaw, 02-776, Poland

Abstract. In this paper, we present an improved efficient capsule network (CN) model for the classification of the Kuzushiji-MNIST and
Kuzushiji-49 benchmark datasets. CNs are a promising approach in the field of deep learning, offering advantages such as robustness, better
generalization, and a simpler network structure compared to traditional convolutional neural networks (CNNs). Proposed model, based on the
Efficient CapsNet architecture, incorporates the self-attention routing mechanism, resulting in improved efficiency and reduced parameter count.
The experiments conducted on the Kuzushiji-MNIST and Kuzushiji-49 datasets demonstrate that the model achieves competitive performance,
ranking within the top ten solutions for both benchmarks. Despite using significantly fewer parameters compared to higher-rated competitors,
presented model achieves comparable accuracy, with overall differences of only 0.91% and 1.97% for the Kuzushiji-MNIST and Kuzushiji-
49 datasets, respectively. Furthermore, the training time required to achieve these results is substantially reduced, enabling training on non-
specialized workstations. The proposed novelties of capsule architecture, including the integration of the self-attention mechanism and the
efficient network structure, contribute to the improved efficiency and performance of presented model. These findings highlight the potential of
CNs as a more efficient and effective approach for character classification tasks, with broader applications in various domains.
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1. INTRODUCTION
In recent years, deep learning algorithms have emerged as a
prevalent method for addressing a diverse range of problems.
The context of convolutional neural networks (CNNs) and their
numerous applications in image-processing tasks is an espe-
cially interesting area of research [1–3]. Such tasks can include
object recognition within images as well as assessment of var-
ious image parameters, for which CNN-based approaches are
typically applied. However, to achieve high levels of accuracy,
substantial volumes of training data are required.

Recent research has predominantly concentrated on incre-
mental improvements in performance, e.g. enhancing accuracy
by 0.01% percentage points. Although the quality of the ob-
tained results has exhibited a gradual increase, this progress is
accompanied by a simultaneous escalation in network complex-
ity and the quantity of data needed to attain the desired accu-
racy. Unfortunately alternative approaches to the problem are
often overlooked.

One approach to addressing this issue involves applying a
distinct model, as exemplified by the introduction of convo-
lutional neural networks (CNNs). In order to provide signifi-
cant improvement to general quality of used solutions, some
novel approaches are necessary. In that aspect, capsule net-
works (CapsNets or CNs) represent a promising methodology,
offering an innovative perspective on object classification [4,5].
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The primary objective of the authors in developing capsule
networks was to enhance the capabilities of CNNs by design-
ing a more efficient solution. The architecture of CNs is char-
acterized by a shallower structure and fewer parameters, which
results in improved generalization, especially when encounter-
ing new viewpoints. Capsule layers within the network can cap-
ture complex relationships between object parts and effectively
represent the it as a whole. The learning process for these re-
lationships, known as routing, has been analyzed by several re-
searchers who have attempted to either improve [6–8] or elimi-
nate it [9]. Additionally, other studies have focused on examin-
ing the theoretical properties of routing [10, 11].

In their early implementation, capsule networks (CNs)
demonstrated state-of-the-art performance on the MNIST
dataset. Additionally, obtained results were superior for over-
lapping digits when compared to CNN-based solutions [11].
CNs at this point were not able to achieve comparable perfor-
mance on other datasets, such as CIFAR-10 with a 10.6% error
rate. It is important to note though, that these scores remained
within the range of initial CNN implementations prior to subse-
quent architectural improvements. CNs offer a series of advan-
tages, such as preservation of position and pose information,
reduced training data requirements, and robustness to transla-
tions, rotations, and other affine transformations. Considering
those factors, it is worthwhile to assess and explore the full po-
tential of these networks.

The CapsNet, is an advanced deep learning architecture in-
troduced in 2017 by Geoffrey Hinton and his research team.
This innovative neural network is designed to overcome the
limitations inherent in CNNs by applying the concept of cap-
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sules. Capsules are diminutive components engineered to en-
capsulate the properties of an object in a more robust and com-
prehensible manner compared to conventional convolutional
methods. In this manuscript, we will explore the fundamental
principles of capsule networks and elucidate the associated ad-
vantages. Main improvement is provided by architecture modi-
fication and used parameter sets. Capsule networks exhibit ex-
ceptional performance in diverse tasks with a reduced number
of parameters compared to state-of-the-art solutions.

In the conducted experiments, the Efficient Capsule Net-
works methodology is applied, as delineated by Mazzia et al.
[12]. Presented model integrates the self-attention technique
as a routing mechanism [13]. The rationale for selecting this
model is threefold. Firstly, the self-attention mechanism has
demonstrated remarkable success in large-scale language mod-
els [14]. Secondly, the implementation necessitates fewer pa-
rameters than the original capsule network. Lastly, it exhibits
superior benchmark performance on the MNIST and small-
NORB datasets, offering a robust codebase for the present in-
vestigation (available at [15], as a source code to [12]). Al-
though the Efficient approach has received comparatively less
attention in the existing literature, it holds substantial potential
for a wide array of future applications.

In order to assess the efficacy of the proposed network, the
KMNIST dataset was applied as a benchmark [16]. The primary
motivation behind this selection was to demonstrate the suit-
ability of capsule networks for 2D datasets, which exhibit fewer
viewpoint parameters compared to 3D spaces due to the ab-
sence of perspective information. Furthermore, the Kuzushiji-
49, a constituent of the KMNIST dataset, encompasses 49 dis-
tinct classes, presenting a five-fold increase in complexity in
comparison with the MNIST dataset [17]. This serves to illus-
trate the adaptability of the proposed method to tackle more
intricate challenges.

In this paper, we present an improved efficient Capsule Net-
work model for the classification of the Kuzushiji-MNIST
benchmark dataset. The model is based on the Efficient Cap-
sNet architecture, which integrates the self-attention mecha-
nism as a routing mechanism. The self-attention mechanism has
demonstrated remarkable success in large-scale language mod-
els and offers a more efficient alternative to the dynamic routing
mechanism used in the original CapsNet.

The primary objective of this research is to evaluate the effi-
cacy of the proposed network on the Kuzushiji-MNIST dataset.
We compare the performance of our model to the top solutions
in the benchmark and assess its accuracy, training time, and
number of parameters. By demonstrating the suitability of cap-
sule networks for this dataset, we aim to highlight the unique
contributions of our study and the potential of CNs as a more
efficient approach to object classification.

2. CAPSULE NETWORK ADVANTAGES, DISADVANTAGES
AND APPLICATIONS

In 2017, Geoffrey Hinton and his colleagues introduced a novel
class of neural networks known as capsule networks [6]. The
primary components of these networks, termed capsules, aim

to encapsulate the attributes of an object, including its orien-
tation, dimensions, and spatial location. Compared to conven-
tional convolutional methods CapsNets offer a more robust and
comprehensible approach.

CapsNets are designed to capture the hierarchical relation-
ships between different features in an image. They are also de-
signed to be more robust to variations in the position, scale, and
orientation of objects in the input data, improving performance
in tasks where these factors are important. Another improve-
ment is dynamic routing (routing by agreement) used to guide
information between capsules in a more efficient and mean-
ingful way. This can lead to better performance and improved
generalization when object classification is considered. When
combined with reduced number of pooling layers than the tra-
ditional CNNs, more spatial information can be preserved. Fi-
nally, CNs preserve spatial relationships between features, re-
sulting in better handling of overlapping objects.

At the same time CNs are not without drawbacks. They re-
quire more complex routing algorithms to establish relation-
ships between different layers. CNs are also relatively new area
of research. Fewer pre-trained models, optimization techniques,
and best practices are readily available, than in the case of better
explored solutions. Due to their increased computational com-
plexity, CapsNets can be challenging to scale for larger input
sizes or deeper architectures. Furthermore, while CNs are de-
signed to be more robust to changes in viewpoint, pose, and
other affine transformations, it might not be the case for adver-
sarial examples or other kinds of noise. The dynamic routing
algorithm used in CapsNets can make it challenging to inter-
pret the learned features and understand the network decision-
making process. Also due to routing algorithm and the need
for careful hyperparameter tuning, they can be difficult to train.
CapsNets have shown promise in certain computer vision tasks,
but their applicability and performance across various domains
have not yet been thoroughly explored.

Application of CNs for image segmentation might require
some adjustment, either by appropriate data preprocessing, or
incorporating additional methods in the overall solution. At the
same time it can be clearly seen that this approach shows great
promise. CNs are able to achieve similar results to state-of-the-
art solutions, with fewer parameters and better generalization.
When it comes to CNs applications, there are few areas of re-
search, where such solutions are used.

First set of algorithms focuses on different aspects of image
segmentation. Approaches belonging to this section are often
parts of other, more complex systems, but they can also be a
solution in itself. In [18] authors use locally-constrained rout-
ing and transformation matrix sharing, in the image segmenta-
tion of computer tomography scans of pathological lungs, mus-
cle and adipose (fat) tissue from magnetic resonance imaging
scans (MRI) of human subjects’ thighs. CN-based processing
was able to outperform other methods on all datasets, with less
than 5% of the parameters used by U-Net: state-of-the-art solu-
tion in biomedical image segmentation. Similarly, in [19] CNs
were used for object segmentation in medical data for the patho-
logical lungs from low dose of CT scans, reducing number of
parameters by 95.4%, while still maintaining better segmen-
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tation accuracy. Different approaches focus on magnetic reso-
nance images of the left ventricle [20], brain tumour automatic
segmentation [21] or categorizing cervical lesion imagery [22].
In all cases, CN-based solutions achieve high accuracy, with
significantly lower number of parameters.

Second, fairly common set of applications for the capsule
networks are ones connected to text analysis elements. CNs are
able to handle different contexts and can be well adapted to var-
ious problems in this area. Such tasks can include cyberbully-
ing detection [23], text sentiment classification [24] or general
text classification [25]. Different set of solutions focuses on im-
proving certain aspects of this process. In [26] in order to re-
duce number of parameters used for creating word embedding,
compositional weighted coding method is proposed. Authors
of [27] consider question-answering systems, providing Deep
Refinement pipeline. CN and attention mechanism are used,
while the pipeline is applied to primarily classify the text into
two categories: sincere and insincere. Proposed question clas-
sification method outperforms the previously used ones, with
the F1 score equal to 0.978. Authors of [28] consider the in-
creased performance of capsule-based solutions, classifying hi-
erarchical multi-label text with a simple CN. In [29] authors
explore the possibility of sharing knowledge between related
tasks in order to increase the amount of training data. They use
capsule-based learning architecture for multi-task purpose. Fi-
nal claim denotes it as unified, simple and effective, with rout-
ing algorithm able to cluster the features for each task in the
network.

Solutions focusing on image recognition problems are the
most interesting from the point of view of research presented
in this paper. There are quite a few approaches in this field,
showing that CNs handle such problems relatively well. In [30]
the problem of sign language recognition is considered. Traf-
fic sign detection using capsule network is the main topic pre-
sented in [31]. Authors use dynamic routing and route by agree-
ment algorithms to instantiate object parameters, such as pose
and orientation. As shown in [32], CNs can even be applied to
military grade object detection. Authors introduce architecture
based on CapsNet, with the presented variant denoted as multi-
level CapsNet framework and report that the obtained precision
for the object recognition task was superior to many other algo-
rithms. One especially important factor for CNs in such com-
plex problems is routing algorithm used. In [8] authors pro-
pose a general-purpose “routing by agreement” method, and
the proposed method was able to improve the overall perfor-
mance of the CNs. Another interesting application, presented
in [33], uses capsule networks in the Q-Learning based game
algorithms, while in [34] CNs are used in a complex, realistic
scenarios of the real world navigation.

Authors of [35] consider similar problem to the one pre-
sented in this paper – handwritten character recognition. They
use data augmentation to generate realistically modified ex-
amples, reflecting actual variations that tend to happen in hu-
man writing. Initial number of used samples was equal to
200 per class. Final solution was able to surpass results for
the EMNIST-letter dataset, and achieve the results present in
EMNIST-balanced, EMNIST-digits, and MNIST datasets. In

[12] – solution used in experiments presented in this paper –
authors investigate the overall CN efficiency. Proposed algo-
rithm was able to achieve state-of-the-art results on three dif-
ferent datasets, with only 160K parameters – 2% of parameters
used by CapsNet.

Despite the prevalent applications of capsule methodologies
to image data, a number of studies have concentrated on the
video domain. In a manner analogous to the generalization of
2D image-based convolutions to 3D convolutions for process-
ing video frame sequences [36], the traditional 2D convolu-
tional capsule routing was extended to 3D convolutional routing
as described in [37]. This 3D convolutional routing approach
enables the routing of capsules that are not only spatially prox-
imate but also temporally related, thereby facilitating the gen-
eration of higher-layer capsule outputs. In [37] authors intro-
duced a novel video capsule network, denoted as VideoCapsu-
leNet, which facilitates end-to-end action detection. Study pre-
sented in [38] introduces a novel approach called CapsuleVOS,
designed for video object segmentation tasks. This method re-
quires an input video sequence with frames containing initial
object segmentation. The primary objective of CapsuleVOS is
to accurately propagate the object segmentation across the en-
tire video sequence.

Overall, capsule networks tend to work well for image-based
problems, offering high accuracy with relatively low number of
parameters and better efficiency. CNs in general are an interest-
ing and very promising solution, with vast possibilities. Those
advantages were the main reason, why CN-based solution was
chosen as a focus of research presented in this paper. For an
extensive review of various CapsNet applications, the reader is
referred to the comparative study by Vijayakumar et al. [39].

3. DATASET
Dataset selection was one of key problems considered for the
chosen research area. The CNs have diverse possibilities, but in
order to show them, the images used need to be appropriate to
the network capabilities.

In that aspect, the Kmnist dataset was considered [16]. The
full dataset contains total of three subsets, each with increasing
level of complexity. The images are represented as 2D grayscale
ones, with examples in each set retaining common size. The
first subset, Kuzushiji-MNIST, is a straight-up replacement of
original MNIST dataset [40]. This dataset replicates the number
of examples for train and test datasets (respectively 60 000 and
10 000), the number of classes (10 total) and image dimensions
(grey-scale, 28× 28 pixels each). Second subset, Kuzushiji-49
keeps the format but contains 270 912 samples belonging to to-
tal of 49 classes. It was designed to engage the machine learning
in the field of Japanese literature, and contains instances of Hi-
ragana characters. Final subset, Kuzushiji-Kanji, contains total
of 3832 Kanji characters, represented by 140,426 images, with
size equal to 64×64 pixels.

While it is a good initial benchmark, first dataset was deemed
not complex enough to show full CN capabilities. On the other
hand, the third dataset is highly unbalanced – some classes are
represented by only single image – and due to high risk of

Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 6, p. e147338, 2023 3



M. Bukowski, I. Antoniuk, and J. Kurek

this imbalance influencing the model performance, it is also not
the best fit. For the testing purposes, the Kuzushiji-MNIST and
Kuzushiji-49 sets were chosen, as they introduces both higher
level of complexity and balance required to properly evaluate
the CN capabilities. Example images from the Kuzushiji-49
dataset are presented in Fig. 1.

Fig. 1. Sample images representing different Hiragana characters
from the Kuzushiji-49 dataset

4. MODELLING AND SETUP
The capsule networks are a new solution, with great promise
due to their different approach to the object classification. Last
iteration of capsule networks, called CapsNet uses the dynamic
routing approach [6], with reconstruction network as regular-
izer and explainability mechanism.

The model network is a simple structure of single convolu-
tional layer of 256 filters, layer of primary capsules which are
connected to digits capsules. It encapsulates multiple scalars
to form a vector, where length is the activation of the capsule
(scaled to stay in 0–1 range). The vector dimensions are instan-
tiating parameters of an object the capsule is capturing. To in-

terpret those parameters, the generator regularization networks
can be used, so each dimension can be perturbed and see what
effect on reconstruction it will have. The general structure of
CapsNet model is shown in Fig. 2

While the CapsNet model is interesting in the general ap-
proach, it is also a base model, which was already improved.
In order to accurately assess the possibilities that CN provide,
the Efficient CapsNet model was chosen as a base for research
presented in this paper.

4.1. Efficient CapsNet
The Efficient CapsNet version of the CN model was chosen for
benchmarking in this paper due to a few important reasons.

First of all, this solution was already tested on the MNIST
dataset, achieving better results than the initial model, and
therefore proving its superior capabilities. Additionally, Effi-
cient CapsNet was also tested on different datasets, including
one used for character recognition in the case of letters: EM-
NIST [35, 41]. In both cases, the model achieved good results.

The Efficient CapsNet introduces some important changes
in comparison to the original solution [12]. It exchanges the
dynamic routing in the first approach, with the self-attention
mechanism. Since it is a non-iterative method, this provides
significant improvement to the model efficiency in terms of re-
quired operations. The study examines the efficiency of capsule
networks. It is demonstrated, that an extreme architecture with
only 161 000 parameters can still achieve state-of-the-art results
on three distinct datasets, using just 6 800 000 (2%) of the origi-
nal CapsNet parameters. The authors of model chosen as a base
for research presented in this paper, also provide a very good
python implementation of their solution, using tensorflow [15].
This fact is extremely important, since obtained results can be
easily reproduced. The overall architecture of the Efficient Cap-
sNet model is presented in Fig. 3.

To further improve the performance, we introduce a novel
non-iterative, highly parallelizable routing algorithm. It can ef-
fectively handle a smaller number of capsules, replacing the
dynamic routing mechanism. Comprehensive experiments with
alternative capsule implementations have confirmed the effi-
cacy of our approach and the capacity of capsule networks to
efficiently incorporate visual representations more conducive
to generalization. Our solution uses deeper architecture, with
4 convolutional layers before the 2 layers of capsules.

Fig. 2. Architecture of Original Capsule Network [6]
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Fig. 3. Architecture of Efficient CapsNet Network [12]

4.2. Improvements and setup
All experiments were performed on a workstation with an
Nvidia RTX3080 GPU with 10GB of memory and 32GB of
DDR4 SDRAM. We use the TensorFlow 2.10.0 framework with
CUDA 11 using Python 3.10.8.

For the dataset division, we used the well-established prac-
tices, present in the general CNN approaches. The sets were
divided into three subsets: train, eval and test. The last one was
provided by the authors of KMNIST. Finally, 20% of training
set was used as validation for establishing the number of epochs
and hyperparameters in order to select the best model.

The model was trained for 150 epochs using hyperparame-
ters provided in [12]. The learning rate was modified to start at
0.0002 and minimal learning rate was set at 0.00003.

The overall architecture was also modified, increasing num-
ber of convolutional layers and primary capsules. In the pre-
sented approach total of 6 convolutional layers were used, each
followed by batch normalization. After convolution layers, the
primary capsule layer was placed. For the Kuzushiji-MNIST
dataset, this layer consisted of 32 8-dimensional capsules. In
case of Kuzushiji-49, the number of dimensions was increased,
resulting in 32 10-dimentional capsules. Final layer contained
number of capsules corresponding directly to number of rec-
ognized classes: 10 for the first set, and 48 for the Hiragana
character set.

After the model setup, the following number of parameters
were obtained for each dataset: 581 792 for Kuzushiji-MNIST,
and 1 741 120 for Kuzushiji-49. Out of both parameters sets,
the number of non-trainable ones equalled 1152 for the first
and 1792 for the second one. Full layer structure for both mod-
els – including type of layer, output shape and number of used
parameters - are presented in Table 1 and 2, respectively.

5. COMPARISON AND PERFORMANCE ANALYSIS
The novelty of our approach lies in the modifications made to
the Efficient CapsNet model, which resulted in improved per-
formance on the Kuzushiji-MNIST and Kuzushiji-49 datasets.
By comparing the two models, we can gain valuable insights
into the specific improvements made and their impact on per-
formance.

The original CapsNet model, introduced by Sabour et al. [6],
was designed to overcome the limitations of convolutional neu-

Table 1
Network architecture for the Efficient CapsNet trained on Kuzushiji-MNIST dataset

Layer (type) Output Shape Param

input_8 (InputLayer) [(None, 28, 28, 1)] 0

conv2d_5 (Conv2D) (None, 24, 24, 32) 832

batch_normalization_5 (BatchNormalization) (None, 24, 24, 32) 128

conv2d_6 (Conv2D) (None, 22, 22, 64) 18496

batch_normalization_6 (BatchNormalization) (None, 22, 22, 64) 256

conv2d_7 (Conv2D) (None, 20, 20, 96) 55392

batch_normalization_7 (BatchNormalization) (None, 20, 20, 96) 384

conv2d_8 (Conv2D) (None, 18, 18, 128) 110720

batch_normalization_8 (BatchNormalization) (None, 18, 18, 128) 512

conv2d_9 (Conv2D) (None, 8, 8, 256) 295168

batch_normalization_9 (BatchNormalization) (None, 8, 8, 256) 1024

primary_caps_1 (PrimaryCaps) (None, 32, 8) 16640

fc_caps_1 (FCCaps) (None, 10, 32) 82240

length_capsnet_output (Length) (None, 10) 0

Total params: 581 792

Trainable params: 580 640

Non-trainable params: 1 152
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Table 2
Network architecture for the Efficient CapsNet trained on Kuzushiji-49 dataset

Layer (type) Output Shape Param

input_9 (InputLayer) [(None, 28, 28, 1)] 0
conv2d_6 (Conv2D) (None, 24, 24, 32) 832
batch_normalization_6 (BatchNormalization) (None, 24, 24, 32) 128
conv2d_7 (Conv2D) (None, 22, 22, 64) 18496
batch_normalization_7 (BatchNormalization) (None, 22, 22, 64) 256
conv2d_8 (Conv2D) (None, 20, 20, 96) 55392
batch_normalization_8 (BatchNormalization) (None, 20, 20, 96) 384
conv2d_9 (Conv2D) (None, 18, 18, 128) 110720
batch_normalization_9 (BatchNormalization) (None, 18, 18, 128) 512
conv2d_10 (Conv2D) (None, 16, 16, 256) 295168
batch_normalization_10 (BatchNormalization) (None, 16, 16, 256) 1024
conv2d_11 (Conv2D) (None, 7, 7, 320) 737600
batch_normalization_11 (BatchNormalization) (None, 7, 7, 320) 1280
primary_caps_1 (PrimaryCaps) (None, 32, 10) 16000
fc_caps_1 (FCCaps) (None, 49, 32) 503328
length_capsnet_output (Length) (None, 49) 0

Total params: 1 741 120
Trainable params: 1 739 328
Non-trainable params: 1 792

ral networks (CNNs) by using capsules instead of neurons. Cap-
sules are groups of neurons that represent different properties of
an object, such as its orientation, dimensions, and spatial loca-
tion. The primary advantage of capsules is their ability to cap-
ture hierarchical relationships between different features in an
image, making them more robust to variations in position, scale,
and orientation.

The Improved Efficient CapsNet model builds upon the orig-
inal CapsNet model by incorporating the self-attention mech-
anism as a routing mechanism, as proposed by Mazzia et al.
[12]. This modification replaces the dynamic routing mecha-
nism used in the original model, resulting in a more efficient
and parallelizable routing algorithm. The self-attention mech-
anism has been successful in large-scale language models and
has demonstrated the ability to capture complex relationships
between different parts of an object.

In terms of performance, the Improved Efficient CapsNet
model achieved comparable accuracy to the original CapsNet
model on the Kuzushiji-MNIST and Kuzushiji-49 datasets.
However, the Improved Efficient CapsNet model achieved this
performance with significantly fewer parameters, making it
a more efficient solution. The total number of parameters
used in the Improved Efficient CapsNet model was 0.58M for
the Kuzushiji-MNIST dataset and 1.7M for the Kuzushiji-49
dataset, compared to the original CapsNet model, which used
26.2M parameters. This reduction in parameters is particularly
important for practical applications, as it allows for faster train-
ing times and reduces the computational resources required.

Furthermore, the Improved Efficient CapsNet model demon-
strated faster training times compared to the original CapsNet
model. The Improved Efficient CapsNet model was trained for

150 epochs, with a total training time of 50 minutes for the
Kuzushiji-MNIST dataset and 4 hours and 30 minutes for the
Kuzushiji-49 dataset. In contrast, the original CapsNet model
required 1800 epochs and a training time of 290 hours for the
Kuzushiji-49 dataset. This significant reduction in training time
makes the Improved Efficient CapsNet model more practical
and accessible for researchers and practitioners.

In conclusion, the Improved Efficient CapsNet model pre-
sented in this paper offers several improvements over the orig-
inal CapsNet model. The incorporation of the self-attention
mechanism as a routing mechanism results in a more effi-
cient and parallelizable routing algorithm. This modification
allows for faster training times and reduces the number of pa-
rameters required, while still achieving comparable accuracy
on the Kuzushiji-MNIST and Kuzushiji-49 datasets. The Im-
proved Efficient CapsNet model provides valuable insights into
the specific improvements made and their impact on perfor-
mance, making it a promising solution for character classifi-
cation tasks.

6. RESULTS AND DISCUSSION
The main goal of research presented in this paper was to eval-
uate the Efficient CapsNet model in terms of applicability and
overall performance. As shown in various research paper, the
CNs can be used to solve different problems, ranging from
text classification, to image segmentation and object recogni-
tion [19, 23, 26, 30–32]. What is even more important is that
prepared models were able to achieve similar accuracy to state-
of-the-art solutions in selected areas, using significantly fewer
parameters.
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Two subsets of Kmnist dataset were used to evaluate pre-
pared model. Prepared solution is a modification of Efficient
CapsNet approach [12]. According to specifications provided
by the authors of the dataset, the metric accuracy on the
Kuzushiji-49 was balanced. In order to evaluate the model per-
formance, mean accuracy for all classes was calculated. Addi-
tionally, model trained on Kuzushiji-MNIST subset was used as
a base evaluation for the modified solution used in experiments.
Final results were compared to the best-performing models in
given dataset, and are presented in Tables 3 and 4, as of Decem-
ber 2022.

Overall, both models managed to score in the top ten in their
respective benchmarks. The network trained with Kuzushiji-
MNIST dataset scored in 4th place, while the Kuzushiji-49
one was placed on 6th position. Both models achieved rela-
tively high accuracy, reaching overall score equal to respec-
tively 98.43% and 96.32%. While neither model was able to
reach first place, both approaches performed reasonably well.
The results are more than satisfactory, showing that capsule net-
work architecture generalizes well for high number of classes.
Presented solution can be trained in reasonable amount of time
on consumer grade hardware. At the same time the achieved ac-
curacy is on par with models using far larger number of parame-
ters. For the Kuzushiji-MNIST dataset the overall accuracy dif-
ference reaches only 0.91%, while in the case of Kuzushiji-49 it
equals 1.97%. While the difference is not negligible, it is small

enough that the presented approach has a resonable chance to
beat those scores after some improvements. In that aspect, one
possible area of future work might include using ensemble so-
lutions, or different overall network structure.

In Table 3, we present the eight leading models regard-
ing their accuracy on the Kuzushiji-MNIST dataset as of De-
cember 2022. The shake-shake-26 2x96d (S-S-I) model, with
Cutout 14, holds the first place, boasting an impressive accu-
racy of 99.34% but with a relatively high number of parameters
(26.2M). Interestingly, despite not using a pre-trained network,
it only takes roughly 6 hours and 46 minutes to train.

The “Improved Efficient Capsnet,” the model at the core of
study presented in this paper, achieved an accuracy of 98.43%,
putting it at 4th place. Notably, it achieved this performance
with significantly fewer parameters (0.58M), demonstrating its
efficacy and computational efficiency. It completed training in
just 50 minutes over 150 epochs, underscoring its relatively fast
training time.

In comparison, the ResNet18 + VGG Ensemble model, with
a slightly higher accuracy of 98.90%, required 26M parameters
and had the benefit of using a pre-trained network, showing that
our model can perform competitively without such advantages,
while being significantly lighter.

Moving on to Table 4, which presents the top eight mod-
els regarding their balanced accuracy scores on the more com-
plex Kuzushiji-49 dataset. Here, the “Improved Efficient Cap-

Table 3
Top 8 accuracy scores for Kuzushiji-MNIST as for December 2022

Place Model Accuracy Number of parameters Pretrained network Number of epochs Training time

1 shake-shake-26 2x96d (S-S-I), Cutout 14 99.34% 26.2M No 200 6h46m

2 ResNet18 + VGG Ensemble 98.90% 26M Yes N/A 3m

3 PreActResNet-18 Manifold Mixup 98.83% 11M No 200 N/A

4 Improved Efficient Capsnet 98.43% 0.58M No 150 50m

5 PreActResNet-18 + Input Mixup 98.41% 11M No 200 N/A

6 PreActResNet-18 97.82% 11M No 200 N/A

7 Original Capsule Networks 97.66% 6.8M No 150 1h35m

8 Keras Simple CNN Benchmark 94.63% 1.2M No 12 N/A

Table 4
Top 8 balanced accuracy scores for Kuzushiji-49 as for December 2022

Place Model Accuracy Number of parameters Pretrained network Number of epochs Training time

1 Shake-Shake-26 2x96d (cutout 14)) 98.29% 26.2M No 1800 290h

2 PreActResNet-18 + Manifold Mixup 97.33% 11M No 200 N/A

3 DenseNet-100 (k=12)% 97.32% 7M No 1500 47h39m

4 PreActResNet-18 + Input Mixup 97.04% 11M No 200 N/A

5 PreActResNet-18 96.64% 11M No 200 N/A

6 Improved Efficient Capsnet 96.32% 1.7M No 150 4h30m

7 Original Capsule Networks 91.37% 12.5M No 150 14h

8 Keras Simple CNN Benchmark 89.36% 1.2M No 12 N/A
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snet” placed 6th with an accuracy of 96.32%. Although this
is a slightly lower ranking than the previous table, it is worth
noting that the model only used 1.7M parameters, confirming
its ability to perform well even with lower computational re-
sources. The training time was also relatively short, requiring
only 4 hours and 30 minutes for 150 epochs.

In comparison, the leading Shake-Shake-26 2x96d (cutout
14) model achieved an accuracy of 98.29% but at the cost of
a substantially larger number of parameters (26.2M) and a re-
markably long training time of 290 hours.

In summary, the “Improved Efficient Capsnet” model
demonstrates competitive performance on both the Kuzushiji-
MNIST and Kuzushiji-49 datasets, achieving high accuracy
rates with relatively few parameters and shorter training
times, indicating its potential as a more efficient approach for
Kuzushiji character recognition tasks.

The accuracy metric is commonly used due to its simplicity
and direct interpretation. However, it does not provide a com-
prehensive picture of the model performance, particularly when
the classes are imbalanced. For this reason, we consider preci-
sion, recall, and F1-score metrics in addition to accuracy for our
performance assessment.

Precision is the ratio of true positive predictions to the total
positive predictions, which indicates the exactness or quality
of the model. Recall (also known as sensitivity) is the ratio of
true positive predictions to the total actual positives, which il-
lustrates the completeness or quantity the model can provide.
The F1-score is the harmonic mean of precision and recall, pro-
viding a balanced measure between precision and recall.

In an interesting turn of events, we observed that the average
and weighted average of precision, recall, and F1-score met-
rics across all classes are identical to the accuracy metric for
our capsule network model applied on the Kuzushiji-MNIST
dataset. This unusual equivalence is consistent for all models,
even when tested on the Kuzushiji-49 dataset, with differences
falling within a narrow margin of ±0.01 percentage points.

To illustrate, we present a detailed example of precision, re-
call, and F1-score metrics for each class from the Original Cap-
sule Networks model on the Kuzushiji-MNIST dataset in Ta-
ble 5.

The occurrence of such equalities is atypical, given the fun-
damental differences in these performance metrics. They each
serve distinct purposes and are not expected to agree so closely
unless the dataset is perfectly balanced and the model performs
equally well on all classes. This unique finding indicates a re-
markable robustness and balance in the classification capability
of our improved capsule network model.

The analysis prompts a more in-depth investigation into the
properties and configuration of the capsule network that yield
such an unusual performance consistency across metrics. This
will form the basis for subsequent research aimed at unravel-
ling the inherent characteristics and peculiarities of this model,
particularly in the context of Kuzushiji character recognition.

It is also important to point out that while analysing the code
of better-scoring solutions, it was noted that some were using
test set as a validation one for the training purposes. Such ac-
tions can lead to model overfitting, and while it achieves better

Table 5
Example comparison of accuracy metric with other metrics for the
Original Capsule Networks model on the Kuzushiji-MNIST dataset

No. of class Precision [%] Recall [%] F1-score [%]

0 96.46 98.20 97.32

1 97.98 97.10 97.54

2 98.25 95.40 96.80

3 97.16 99.10 98.12

4 96.65 95.20 95.92

5 98.18 97.20 97.69

6 97.82 98.70 98.26

7 99.10 98.70 98.90

8 98.11 98.40 98.25

9 96.95 98.60 97.77

Average [%] 97.66 97.66 97.66

Weighted average [%] 97.66 97.66 97.66

Accuracy [%] 97.66

results on the original dataset, the overall solution versatility
will suffer. Both models presented in this paper were trained
using the established best practices for similar problems, split-
ting the dataset into train, eval and test datasets.

Presented approach is time- and resource-efficient, allowing
incorporation of the k-fold cross-validation. In the case of the
deep learning approach, due to long computational time, we
utilized 5-fold cross-validation (k = 5). The validation was per-
formed k-times with increasing training time. The computa-
tion was efficient enough to still remain within capabilities of
personal workstation with reasonable overall training period.
It is important to note that the top performing solution for the
Kuzushiji-49 set (shake-shake-26 2x96d) required 1800 epochs
and total of 290 hours of training. Experiments for that network
were performed with eight Tesla V100 GPUs, with 26.2M of
final parameters. The Efficient CapsNet approach presented in
this paper used total of 150 epochs, while overall training time
equalled 4.5 hours. The experiments were done on significantly
less efficient machine using single GPU (full specification of
the used workstation is presented in 4.2), while final parame-
ters count equalled only 1.7M for the resulting model.

7. CONCLUSIONS
In this paper an approach to character classification for Kuzu-
shiji-MNIST and Kuzushiji-49 datasets is presented. The solu-
tion uses model based on Efficient CapsNet architecture, taking
advantage of strong points of capsule-network-based solutions,
such as robustness, simpler structure and better generalization.

As shown by the obtained results, capsule networks are a
promising solution, when chosen benchmark field is consid-
ered. Prepared model was able to score in the top 10 solutions
in the two chosen trials. It was able to achieve very similar re-
sults to the top-performing ones, with significantly fewer net-
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work parameters used. The total accuracy difference between
solution presented in this paper, and ones that scored in the
first place for both benchmark was 0.91% for the Kuzushiji-
MNIST dataset, and 1.97% for Kuzushiji-49. These results
were achieved in much shorter training times, allowing the
overall process to be performed on not-dedicated GPU work-
stations.

Overall, CN-based solutions show great promise, and while
current approach to Efficient CapsNet modification was not
able to achieve top results, it still offers significant advantages.
CNs have better generalization and use fewer parameters. The
total accuracy loss is more than compensated with shorter train-
ing time. Simpler network structure with fewer parameters used
results in solution with much wider range of applications, while
still leaving some room for future improvements.
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