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Abstract: The Lamongan Regency is an area in East Java, Indonesia, which often experiences drought, especially in the 
south. The Corong River basin is located in the southern part of Lamongan, which supplies the irrigation area of the 
Gondang Reservoir. Drought monitoring in the Corong River basin is very important to ensure the sustainability of the 
agricultural regions. This study aims to analyse the causal relationship between meteorological and agricultural drought 
indices represented by standardised precipitation evapotranspiration index (SPEI) and standard normalisation 
difference vegetation index (NDVI), using time series regression. The correlation between NDVI and SPEI lag 4 has the 
largest correlation test results between NDVI and SPEI lag, which is 0.41. This suggests that the previous four months of 
meteorological drought impacted the current agricultural drought. A time series regression model strengthens the 
results, which show a causal relationship between NDVI and SPEI lag. According to the NDVI–SPEI-1 lag 4 time series 
model, NDVI was influenced by NDVI in the previous 12 periods, and SPEI-1 in the last four periods had a determinant 
coefficient value of 0.4. This shows that the causal model between SPEI-1 and NDVI shows a fairly strong relationship 
for drought management in agricultural areas (irrigated areas) and is considered a reliable and effective tool in 
determining the severity and duration of drought in the study area.  

Keywords: drought, river basin, standard normalisation difference vegetation index NDVI, standardised precipitation 
evapotranspiration index SPEI, time series regression 

INTRODUCTION 

Drought is a recurring and unpredictable natural event occurring 
almost worldwide (Orimoloye et al., 2022). Drought monitoring 
is very important to identify and examine the occurrence of 
drought, which always changes under different conditions and 
time scales (Chu et al., 2021). In the last 20 decades, drought has 
affected nearly 1.4 bln people worldwide, with an increase of 
nearly 30% in frequency and duration. By 2050, nearly 216 mln 

people will migrate due to drought due to a lack of access to clean 
water and productive land. These significant changes result in 
hunger and economic loss and hinder progress towards the SDGs, 
especially Goals 2 and 6 (Vähänen, 2022). 

The American Meteorological Society (AMS) categorises 
drought as having meteorological, agricultural, hydrological, and 
socioeconomic consequences (Mishra and Singh, 2010; Zargar 
et al., 2011). Meteorological drought, the initial drought phenom-
enon, begins with reduced rainfall (Guttman, 1998). Reduced 
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surface water and groundwater supply are one factors causing 
hydrological drought. The decrease in the water level in reservoirs, 
lakes and groundwater determines this drought. There is a lag 
between the decrease in rainfall and the level of rivers, lakes and 
groundwater (Chu, 2018). Drought in agriculture occurs when 
there is insufficient rainfall to support crop development. So, it is 
necessary to consider cropping patterns for sustainable agricultural 
output to overcome problems caused by changes and bad weather 
(drought) (Lesk, Rowhani and Ramankutty, 2016). In agricultural 
drought, the impact of the meteorological drought will also reduce 
evapotranspiration and soil moisture (Hobbins et al., 2016). As 
a result, governments and academics from various countries have 
turned their attention to research on agricultural drought. 

Many studies have analysed the relationship between the 
effects of meteorological drought on agricultural drought. 
Recently, it became clear how important it is to distinguish 
between agricultural and meteorological droughts. The standard 
precipitation index (SPI), a meteorological drought indicator, is 
less responsive to climate change than agricultural drought as 
evaluated by the standard groundwater index, or standardised soil 
water index (SSWI) (Wang et al., 2011). The examining of the 
relationship between the vegetative condition index (VCI), 
derived from satellite data, and SPI, that the relationship between 
meteorological and agricultural drought indicators is strength-
ened by seasonal developments, indicating a time-varying 
relationship between the two variables (Dhakar, Sehgal and 
Pradhan, 2013). In Morocco, the relationship between meteor-
ological drought and agricultural one is low, based on short-term 
(15 years) meteorological data and remotely sensed vegetation 
(Ezzine, Bouziane and Ouazar, 2014). The SPI index in 
meteorology and the standard precipitation evapotranspiration 
index (SPEI) in agricultural drought has a significant relationship 
(Hernandez and Uddameri, 2014). Using the SPI and SPEI indices 
for agricultural drought and Eastern Slovakia, SPI is more 
sensitive to water shortages and excesses in agricultural areas 
(Portela et al., 2017). In Zambia, the SPEI enable to foresee 
drought which is significantly longer and more severe than the 
one indicated by the SPI. Moreover, there is a difference between 
meteorological drought (SPI) and agricultural drought (SPEI) for 
effective planning and management of agricultural water 
resources (Tirivarombo, Osupile and Eliasson, 2018). 

To assess the severity of the drought and to prevent 
significant losses and adverse effects from the disaster, drought 
monitoring was deployed. In addition to monitoring soil 
moisture, drought, temperature variability and precipitation, 
satellite measurements have been used to evaluate the con-
sequences of drought on ecosystems, including vegetation growth 
and health (AghaKouchak, 2015; Nicolai-Shaw et al., 2017). The 
vegetation dryness index can show how little chlorophyll there is 
in plants experiencing drought. Vegetation-related drought 
indicators have been established, e.g. the normalised difference 
vegetation index (NDVI) (Wan, Wang and Li, 2004) and the 
vegetation health index (Kogan, 2002). Indicators derived from 
soil moisture and soil surface temperature (LST) are also used to 
track drought severity and duration (AghaKouchak, 2015; Liu 
et al., 2020). Variations of rainfall patterns in an area are 
attributable to the volatility of satellite-based environmental 
variables, such as NDVI and LST (Trenberth and Shea, 2005; Jia 
et al., 2011). The relationship between rainfall (SPI) and 
vegetation condition (vegetation health index) is very complex 

and strong, requiring a derivation approach with various time 
scales (Gidey et al., 2018; Spracklen et al., 2018). Subsequent 
research into a relationship with the highest correlation value 
between NDVI and SPI was obtained at nine months and six 
months with discounts of 43.5 and 40%, respectively. This shows 
that NDVI can be used to analyse agricultural drought (Mikaili 
and Rahimzadegan, 2022). 

For effective, comprehensive drought planning in Indonesia, 
it is important to understand the relationship between meteor-
ological drought and agricultural drought. It is necessary since 
rain is the main source of water in agriculture, and there is a high 
correlation between weather patterns and agricultural drought. 
The Corong River basin is a sub-river basin of the Bengawan Solo 
River basin. It has an area of 815 km2 and is located between 
Lamongan and Gresik districts in East Java, Indonesia. The 
characteristics of this river basin, especially its southern part, are 
very different from conditions in other areas. The southern region 
tends to be very dry during the dry season, which affects water 
supply to the Gondang Reservoir. It is important to analyse it 
because the Gondang Reservoir has six field reservoirs to supply 
water in the Gondang irrigation area. Being a supplier to the 
Gondang Reservoir, the Corong River Basin plays a very 
important role. The monitoring of drought in irrigation areas is 
closely related to agricultural drought, which is very important for 
monitoring and regulating water availability in reservoirs and 
water demand in paddy fields (Yasa et al., 2018). 

Previous studies show that it is important to examine the 
relationship between meteorological drought and agricultural 
drought to plan and manage agricultural water resources 
effectively. This research needs to be done because plants do 
not immediately react to drought caused by the shortage of 
rainfall. Agricultural and meteorological droughts occur at 
different times, so each condition and region needs to be 
analysed to detect and mitigate agricultural drought. Although 
heavily dependent on agriculture, similar studies have yet to be 
conducted in Indonesia, particularly in the East Java River basin. 
Therefore, this study aims to determine the causal relationship 
between meteorological drought and agricultural drought and the 
time gap between the two in the Corong River basin and to 
examine the highest correlation between meteorological drought 
(SPEI-1, SPEI-3, SPEI-6, SPEI-9, SPEI-12 and SPEI-24 to 
agricultural drought (NDVI). Thus, we determine the lag from 
the beginning of the drought (rainfall) and its impact on 
agriculture (vegetation). Two types of drought indicators are 
used: meteorological drought (SPEI) based on rainfall, tempera-
ture, and agricultural drought determined by using remote 
sensing based on the standardized normalized difference vegeta-
tion index (NDVI) to calculate vegetation density in the Corong 
River basin. Thus, SPEI and NDVI can be used as appropriate 
indices to estimate and determine drought severity and mitigate 
agricultural drought disasters, especially in irrigated areas. 

STUDY MATERIALS AND METHODS 

STUDY AREA 

The research area is located in the Corong River basin which 
includes the Gondang Irrigation Area, Lamongan Regency, 
Indonesia. It is one of the largest sub-river basins in the 
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Bengawan Solo River basin, with an area of 815,081 km2. The 
Corong River basin supplies water to the Gondang Reservoir. The 
Corong River basin is located at coordinates 7°52'–7°28' S and 
125°23'–121°36' E, which flows through three sub-districts, 
namely Sugio District, Lamongan District, and Karangbinangun 
District (Fig. 1). The Corong River flows from the Gondang 
Reservoir which is in the Sugio District. Then it flows down-
stream to the Karangbinangun District. The Gondang Reservoir 
supplies water to seven field reservoirs for ten months, covering 
6,233 ha during the dry season (Nuf’a, Limantara and Soetopo, 
2016; Himawan, Susanto and Purwanta, 2021). 

DATA COLLECTION AND PROCESSING 

In the Corong River basin, there are three important rain stations: 
Gondang, Karangbinangun, and Lamongan. The required met-
eorological data include rainfall and temperature. The 2001–2021 
rainfall data were obtained from the Bengawan Solo River Center 
(BBWS-Bengawan Solo, no date). Meanwhile, temperature data 
for the same period were obtained from the Meteorology, 
Climatology and Geophysics Agency (Ind. Badan Meteorologi 
Klimatologi dan Geofisika – BMKG) at Perak II Station (BMKG, 
no date). These data were then analysed to assess their impact on 
the Thiessen polygon method within the 2001–2021 timeframe. 
In addition, the Meteorology, Climatology, and Geophysics 
Agency of the Republic of Indonesia provided the researchers 

with minimum and maximum temperatures from the Tanjung 
Perak Station in Surabaya in 2001–2021. This information is 
presented in Figure 2. 

The geographic location of the rain stations and data 
periods used are as follows: Waduk Gondang Station located at – 
7.20108337 latitude and 112.271833 longitude, data from 2001 to 
2021. Lamongan Station situated at –7.12058337 latitude and 
112.417516 longitude, data from 2001 to 2021. Karangbinangun 
Station positioned at –7.01286004 latitude and 112.505036 
longitude, and data from 2001 to 2021. Lastly, Balongpanggang 
Station located at –7.27025004 latitude and 112.414033 longitude, 
data from 2010 to 2021. 

DATA ANALYSIS 

SPEI 

The standardized precipitation evapotranspiration index (SPEI) 
was used to measure the rainfall deficit for multiple timescales by 
moving the time average. This period reflected the impact of 
drought on different water resources. The SPEI is an extension of 
the standardized precipitation index (SPI). However, the analysis 
includes a temperature change (Vicente-Serrano, Beguería and 
López-Moreno, 2010; Lweendo et al., 2017). The SPEI succeeds in 
providing a complete measure of climate variability in a region 
since it is simple, multitemporal in nature, and statistical in the 
interpretation of the SPI. The SPEI gives a drastically different 

Fig. 1. Corong River basin administration map; source: own study 
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drought index than the SPI, confirmed by the index value changing 
when potential evapotranspiration (PET) is considered. Then, the 
SPEI was suggested as an alternative to the SPI for computing 
climate water balance accumulation anomalies that took into 
account potential evapotranspiration (Stagge et al., 2014). 

Rstudio carried out the SPEI analysis with the SPEI package 
(R Core Team, 2021). The required data was rainfall and PET. 
PET data were obtained using maximum and minimum 
temperature data calculated through Rstudio. The SPEI calculated 
multiple timescales, meaning it processed many different types of 
drought due to the temporal flexibility in evaluating rainfall 
conditions concerning water supply (Tirivarombo, Osupile and 
Eliasson, 2018). 

While the Thornthwaite technique requires temperature 
data as input, the Hargreaves model is more straightforward but 
still requires temperature data as input; the Hargreaves model is 
more specific but requires two meteorological parameters: 
temperature (mean, maximum, and minimum) and incident 
radiation. Despite the necessity for fewer data, Thornthwaite 
developed a way of enhancing the PET in locations other than the 
original application site. Thornthwaite developed a method of 
strengthening the PET in places other than the original 
application site despite the need for fewer data. 

SPEIi ¼ Pi � PETi ð1Þ

where: SPEIi = standardized precipitation-evapotranspiration 
index calculation for time i, Pi = observed precipitation (rainfall) 
for time i, PETi = potential evapotranspiration for time i. 

The PET can be modelled using several equations (e.g. 
Thornthwaite equation, Penman–Monteith equation, Hargreaves 
equation, etc.). Compared to the Thornthwaite technique, the 
Hargreaves model is more straightforward but requires two 
meteorological parameters: temperature (average, maximum, and 
lowest) and radiation effect (Hargreaves and Samani, 1985; 
Tukimat, Harun and Shahid, 2012). The Thornthwaite approach, 
despite requiring fewer data, can overestimate the PET at 
locations other than where the procedure was first used (Tukimat, 
Harun and Shahid, 2012). Due to the limited amount of data 
available for this investigation, the PET was calculated using the 
Thornthwaite method. 

PET ¼ 1:6K
10T

I

� �m

ð2Þ

where: PET = monthly potential evapotranspiration, T = mean 
temperature, I = heat index calculated as the total of 12 monthly 
index values, m = coefficient that depends on the heat index, 
K = factor of correction calculated as a function of the month and 
latitude. 

Based on this concept, the SPEI was computed at 1-, 3-, 6-, 
9-, 12-, and 24-month time scales using the SPEI package in R- 
statistical software (Beguería and Vicente-Serrano, 2017). 

NDVI 

Imagery from Landsat 8 OLI Two sensors, the Operational Land 
Imager and the Thermal Infrared Sensor, are carried by the 
Landsat 8 spacecraft (TIRS). Whereas the OLI image sensor 
(Operational Land Imager) has a spatial resolution of 30 m 
and has 1 near-infrared channel as well as 7 visible reflective 
channels that may cover the wavelengths reflected by objects on 
the earth’s surface. Additionally, the thermal infrared sensor 
(TIRS) can measure and record the earth’s surface temperature. 
Landsat imaging aims to gather data on natural alterations to 
improve forecasts of climate, weather, and natural calamities. 

This NDVI is used to compare the amount of chlorophyll in 
vegetation, which is generated from multispectral data as 
a normalised value (Lillesand, Kiefer and Chipman, 1997). 

NDV I ¼
�NIR � �RED

�NIRþ �RED
ð3Þ

where: � = reflectance values, NIR = Near-Infrared (band 5), 
RED = Red band (band 4). 

Relationship between SPEI and NDVI 

The calculation results for agricultural drought (NDVI) and 
meteorological drought (SPEI) were correlated using the Pearson 
correlation to investigate the relationship between SPEI and 
NDVI due to a single data (Schober, Boer and Schwarte, 2018). 
The formula and interpretation of the correlation coefficient 
values used by the authors are presented in Equation (4). 

rXY ¼
n
P
XY � ð

P
XÞð

P
Y Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
P

X2ð Þ � ð
P
XÞ

2
h i

� n
P

Y 2ð Þ � ð
P
Y Þ

2
h ir ð4Þ

where: rXY = correlation between variable X and Y, n = number of 
data points, X = first variable (SPEI), Y = second variable (NDVI). 

Fig. 2. Average annual rainfall and maximum and minimum temperature of the Corong River basin (2001–2021); 
source: own elaboration 
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This study uses correlation analysis (r) and regression 
analysis to examine the influence and relationship between the 
two. The correlation analysis aims to assess the degree of 
similarity between variable (X), which contains the meteorolo-
gical drought index (SPEI) value, and variable (Y), which includes 
the agricultural vegetation drought index (NDVI) value. Con-
versely, regression analysis aims to assess the scope of the impact 
caused by changes in each unit variable (X). 

RESULT AND DISCUSSION 

ANALYSIS OF STANDARDIZED PRECIPITATION 
EVAPOTRANSPIRATION INDEX (SPEI) WITH RSTUDIO 

Rstudio carried out the standardized precipitation evapotran-
spiration index (SPEI) analysis with the SPEI package (RCore, 
2021). It required data on rainfall and potential evapotranspira-
tion (PET). The PET data were obtained using maximum and 
minimum temperature data calculated through Rstudio. The SPEI 
can be calculated for multiple timescales, meaning it can process 
many different types of drought due to the temporal flexibility in 
evaluating rainfall conditions concerning water supply (Vicente- 
Serrano, Beguería and López-Moreno, 2010). The SPEI can be 
designed to measure the rainfall deficit for multiple timescales by 
moving the time average. Such a period reflects the impact of 
drought on different water resources. In agricultural drought, 

meteorological conditions and soil moisture respond to pre-
cipitation anomalies over a relatively short period (1–6 months), 
while rivers, reservoirs, and groundwater respond to long-term 
rainfall anomalies (6–24 months and longer). The SPEI for this 
research is calculated at 1, 3, 6, 9, 12, and 24 months; rainfall data 
(2001–2020) from the Bengawan Solo Regional Center is used in 
this analysis. Maximum and minimum temperature data are 
obtained from BMKG (Ind. Badan Meteorologi Klimatologi dan 
Geofisika) Tanjung Perak. 

METEOROLOGY DROUGHT (SPEI) 

The standardized precipitation evapotranspiration index (SPEI) 
can be calculated for multiple timescales, which means it can 
process different types of drought due to its temporal flexibility in 
evaluating rainfall conditions related to water supply (Vicente- 
Serrano, Beguería and López-Moreno, 2010). The SPEI can be 
designed to measure the rainfall deficit for several time scales by 
moving the time average. This period reflects the impact of 
drought on different water resources. In the context of 
agricultural drought, meteorological conditions and soil moisture 
respond to rainfall anomalies in a relatively short time (1–6 
months), while rivers, reservoirs, and groundwater respond to 
long-term rainfall anomalies (6–24 months and longer). The SPEI 
for this study was calculated at 1, 3, 6, 12, and 24 months. 

The SPEI results in Figure 3 show substantial fluctuation 
during 1-month; this does not apply to 3-, 6-, and 12-month 

Fig. 3. The temporal distribution of SPEI time scales from 2001 to 2021; a) SPEI-1; b) SPEI-3; c) SPEI-6; d) SPEI-9; 
e) SPEI-12; f) SPEI-24; ETO_har = evapotranspiration reference (Hargreaves); source: own study 

182 Nur A. Affandy, Data Iranata, Nadjadji Anwar, Mahendra A. Maulana, Dedy D. Prastyo, Lalu M. Jaelani, F.X. Suryadi 

© 2023. The Authors. Published by Polish Academy of Sciences (PAN) and Institute of Technology and Life Sciences – National Research Institute (ITP – PIB). 
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/3.0/) 



grades. A negative index corresponds to a rainfall deficit, which 
can cause drought. According to the SPEI 1-month, the 
maximum drought index value occurred in February 2019 
(–1.833) (Fig. 3a), whereas the 3-month SPEI value shows the 
lowest index value for June 2018 (–1.754) (Fig. 3b). The 6-month 
SPEI value shows the lowest index value for June 2018 (–1.981) 
(Fig. 3c). The 9-month SPEI value shows the lowest index value 
for September 2018 (–1.999) (Fig. 3d), while the 12-month SPEI 
value shows the lowest index value for September 2018 (–1.6758) 
(Fig. 3e), and the 24-month SPEI value shows the lowest index 
value for November 2019 (–1.8048) (Fig. 3f). 

AGRICULTURAL DROUGHT (NDVI) 

The normalized difference vegetation index (NDVI) is based on 
the analyses of digital brightness to calculate the density of 
vegetation in a given area. The waves that the digital recording 
device receives impact the digital brightness value, the satellite 
Landsat in this instance. Sunlight waves are made up of several 
waves that reach plant leaf surfaces. Some are absorbed and used 
for photosynthesis, while others are reflected. The reflected wave 
is used to gauge the vegetation density in a region. Healthy 
vegetation absorbs large amounts of visible (infrared) light 
and reflects large amounts of near-infrared light. Equation (3) 
can mathematically calculate the NDVI, and the ArcGIS can 
be used to process satellite data to acquire NDVI readings. 
Landsat 8 data were obtained and each image had a unique 
processing method (Fig. S1). The likelihood of drought in the 
area increases with decreasing NDVI values but decreases with 
increasing NDVI values. NDVI processing is divided into 
5 classes, namely land with no vegetation, very low density, 
low density, medium density, and high density vegetation 
(Hartoyo et al., 2021). 

As a result, in Figure 4 green dominates as regards the land 
use based on the outcomes of data processing from Landsat 
8 which reflects the degree of vegetation density in the river basin. 
With a minimum value of 0.21 in November 2021 with medium 
vegetation density and a maximum value of 0.732 in February 

2021 with dense vegetation density, the NDVI value in the 
Corong River basin tended to be dominated by medium density 
and dense vegetation from 2017 to 2021. 

THE RELATIONSHIP BETWEEN METEOROLOGICAL  
AND AGRICULTURAL DROUGHTS 

The characteristics of drought in this study are determined by 
linking the meteorological drought index using the SPEI and 
agricultural drought using the NDVI to characterise drought in 
the Corong River basin. The characteristics can later be applied to 
the drought analysis in the Gondang irrigation area. Regression 
and correlation analyses were used to better understand the 
relationship between meteorological and agricultural drought. 
This study uses the SPEI drought index from four rainfall gauges 
in the study area based on rainfall and temperature parameters 
between 2001 and 2021, while the NDVI vegetation analysis is 
performed using Landsat 8 satellite data from 2017 to 2021. The 
analysis of the linear relationship between SPEI and NDVI was 
carried out with several types of timeframe, SPEI 1-month, SPEI 
3-months, SPEI 6-months, SPEI 9-months, SPEI 12-months, and 
SPEI 24-months against NDVI. 2017–2021 NDVI and SPEI data 
are used because they adjust the available NDVI data. The NDVI 
processing uses Landsat 8 satellite imagery, while the data in the 
previous range have very poor resolution. 

REGRESSION ANALYSIS 

A statistical technique called the regression analysis establishes 
a link between the dependent variable and one or more 
independent variables. This analysis can assess the strength of 
the relationship between variables and make predictions about 
the relationship between two or more variables. This analysis 
determines the relationship between meteorological drought and 
agricultural drought. The meteorological drought uses the SPEI 
method with parameters for rain and potential evapotranspira-
tion. The agricultural drought analysis uses the NDVI method. 

Fig. 4. The average normalized difference vegetation index (NDVI) values of the Corong River basin in 2017– 
2021; source: own study 
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Agricultural drought is related to meteorological drought, 
where the occurrence of agricultural drought results from 
meteorological drought. The analysis results show that meteor-
ological droughts and agricultural droughts, in general, do not 
start at the same time, but there is a time lag. The time lag occurs 
because the soil water content does not decrease directly when 
there is a rainfall deficit. The research examined the time lag 
between meteorological and agricultural droughts based on the 
SPEI value relationship to the NDVI value with the linear 
regression time series and based on the correlation coefficient 
between the NDVI and a monthly scale SPEI-1, SPEI-3, SPEI-6, 
SPEI-9, SPEI-12, SPEI-24 in the Corong River basin. 

THE ANALYSIS OF THE PARTIAL AUTOCORRELATION 
FUNCTION (PACF) 

Partial correlations are conditional correlations between two 
variables, assuming that we know and account for the values of 
some other variables. The partial autocorrelation function 
(PACF) is a function that shows the magnitude of the partial 
correlation between observations at the time t with previous 
observations. The ACF and PACF functions identify models from 
time series data. As an illustration, let us consider a regression 
where independent variables are x1, x2, and x3, and the 
dependent variable is y. The correlation between y and x3 that 
considers how y and x3 connect to x1 and x2 is known as the 
partial correlation. By following the definition of partial 
correlation above, the PACF for time series data, the partial 
autocorrelation between yt and yt−k is the correlation between yt 

and yt−k after adjusting for or taking into account the values of 
yt−1, yt−2, …, yt−k+1. 

Figure 5 with the PACF graph reveals a meaningful PACF 
value at lag 12 that is almost equal to the limit value; this 
illustrates a seasonal periodisation of monthly (s = 12) intervals. 
Then, to determine the optimal association between NDVI lag 12 
and the SPEI, we must do a cross-correlation between each type 
of SPEI and NDVI lag 12. 

CROSS-CORRELATION (NDVI–SPEI) 

Cross-correlation is a widely used method in the time series data 
analysis. The technique predicts a relationship between data series 
X (input) and data Y (output) in a system. To perform the cross- 
correlation analysis, both series must be sampled in the same time 
interval and assumed to be stationary in mean and variance 
(Metcalfe and Cowpertwait, 2009). 

In the serial data analysis, cross-correlation is used as 
a common technique. This technique can predict how a data set 
and y (output) in a system relate. The optimum relationship 
between SPEI-1 and NDVI occurs at SPEI-1 lag 4, as shown in 
Figure S2a. For SPEI-3 and NDVI, the best relationship is seen in 
SPEI-3 lag 2 (Fig. S2c). An association occurs at SPEI lag 1. Figure 
S2d shows the SPEI-9 cross-correlation with NDVI and it is the 
best relationship at SPEI-9 lag 2. In Figure S2e we can see the 
SPEI-12 cross-correlation with NDVI, and the best relationship is 
demonstrated in SPEI-12 lag 3. Figure S2f shows the cross- 
correlation between SPEI-24 and NDVI, with SPEI-24 corres-
ponding to the best relationship. 

COEFFICIENT OF DETERMINATION 

The coefficient of determination is a measure of the line fit. 
Regression of the data is used to examine the influence of X 
(SPEI) on Y (NDVI) and express it in percentage figures. 

Figure S3 shows a linear regression equation SPEI to NDVI 
and SPEI lag to NDVI. The linear regression relationship used to 
determine the effect of meteorological drought (SPEI) on 
agricultural drought (NDVI) results in a very small coefficient 
of determination (R2). There is a time-out to see the influence of 
the two. Based on the SPEI-1 linear regression analysis for NDVI, 
the R2 value obtained is 1.5%. The SPEI-1 effects are lagged 
according to the cross-correlation results between SPEI and 
NDVI, and the SPEI-1 lag 4 value is connected to the NDVI, 
and the R2 value increases to 16.7%. We do this step on SPEI-3, 

Fig. 5. Normalized difference vegetation index (NDVI) graph for partial autocorrelation function (PACF) 
(with 5% significance limits for the partial autocorrelations); source: own study 
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SPEI-6, SPEI-9, SPEI-12 and SPEI-24. The result is that the value 
of R2 has increased. 

The NDVI–SPEI-1 lag 4 coefficient of determination (R2) is 
16.7%, meaning that the variation that occurs in agricultural 
drought (NDVI) is caused by meteorological drought (SPEI-1 lag 
4). In contrast, the remaining 83.3% of variables are caused by 
other variables that are not analysed. SPEI-1 lag 4 shows that the 
SPEI-1 monthly lag takes four months to affect the NDVI. For the 
NDVI–SPEI-3 lag 2 relationship, the R2 value is 9.8% with a lag 
time of 2 months. The NDVI–SPEI-6 lag 1 relationship obtains an 
R2 value of 6.8% with an interval of 1 month. R2 of NDVI–SPEI-9 
lag 2 is 5.8% with a lag time of 2 months. In NDVI–SPEI-12 lag 3, 
R2 is 3.5% with a 3-month lag time, while NDVI–SPEI-24’s R2 

value is 6% without any lag time. 
This small R2 value becomes part of the next analysis 

covering other variables that affect drought in agriculture 
(NDVI); the influence of the previous NDVI also affected it. 

THE LINEAR RELATIONSHIP BETWEEN NDVI AND SPEI 

Many studies have focused on the relationship between two or 
more variables. Correlation is a measure of the linear relationship 
between variables. While examining the linear relationship 
between NDVI and SPEI, Pearson’s correlation coefficient was 
used to determine the linear relationship between NDVI and SPEI 
at different times. Pearson’s correlation coefficient was used to 
test the linear relationship between NDVI and SPEI. 

The result is shown in Table 1 and 2. The SPEI’s correlation 
with the NDVI is negative in SPEI-1 while the others are positive 

or in the same direction. SPEI lag correlation values with NDVI 
are all positive or unidirectional. This positive and one-way 
correlation means that if a meteorological drought occurs, it 
impacts agricultural drought in the Corong River basin. The 
highest correlation was in SPEI-1 lag 4 (0.408), and the lowest in 
SPEI-12 lag 1 (0.186). The p-value < 0.05 indicates a real and 
significant relationship between SPEI-1 lag 4, SPEI-3 lag 2, and 
SPEI-6 lag 1. Meanwhile, for SPEI-9 lag 2, SPEI-12 lag 1, and 
SPEI-24, the p-value is > 0.05. This is insignificant. SPEI-1 
correlation results in a lag of higher value than the SPEI without 
lag. This shows that the meteorological drought in the Corong 
River basin does not directly affect the vegetation condition at 
that time. There is a lag time of 4 months until the meteorological 
drought affects the state of vegetation in the Gondang irrigation 
area, which in this case translates into agricultural drought. These 
results are consistent with Touhami et al. (2022) who state that 
SPEI and NDVI have a good relationship in terms of drought 
duration, repetition time, and severity. 

CAUSAL TIME-SERIES REGRESSION 

The analysis of PACF, cross-correlation, and Pearson correlation 
shows that agricultural drought is influenced by previous 
agricultural drought, meteorological drought, and other variables. 
This could be the subject of next research. So to obtain a relationship 
that further expresses the effect of the SPEI on the NDVI, it is 
necessary to use the causal time series regression method. 

The time series regression analysis is us used under the 
condition that the response variable (Y) is autocorrelated, 

Table 1. Pearson correlations between standardized precipitation evapotranspiration index (SPEI) and standardized normalized 
difference vegetation index (NDVI) 

Meteorological drought Agricultural drought Correlation 95% CI for ρ p-value 

SPEI-1 NDVI –0.121 (–0.363, 0.137) 0.359 

SPEI-3 NDVI 0.107 (–0.151, 0.352) 0.415 

SPEI-6 NDVI 0.186 (–0.071, 0.420) 0.154 

SPEI-9 NDVI 0.178 (–0.079, 0.414) 0.173 

SPEI-12 NDVI 0.169 (–0.089, 0.405) 0.198 

SPEI-24 NDVI 0.245 (–0.009, 0.470) 0.059  

Explanations: CI = confidence interval, ρ = Pearson correlation coefficient, p = level of statistical significance in an analysis. 
Source: own study.  

Table 2. Pearson correlations SPEI lag-NDVI-NDVI lag 

Meteorological drought Agricultural drought Correlation 95% CI for ρ p-value 

NDVI_lag 12 NDVI 0.407 (0.138, 0.619) 0.004 

SPEI-1_lag 4 NDVI 0.408 (0.163, 0.606) 0.002 

SPEI-3_lag 2 NDVI 0.313 (0.059, 0.528) 0.017 

SPEI-6_lag 1 NDVI 0.261 (0.005, 0.485) 0.046 

SPEI-9_lag 2 NDVI 0.241 (–0.019, 0.470) 0.069 

SPEI-12_lag 1 NDVI 0.186 (–0.074, 0.422) 0.158 

SPEI-24_lag 0 NDVI 0.245 (–0.009, 0.470) 0.059  

Explanations: NDVI = standardized normalized difference vegetation index, NDVI lag = NDVI time lag, SPEI = standardized precipitation 
evapotranspiration index, other symbols as in Tab. 1; Source: own study. 
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allowing for the construction of a functional causal relationship 
between the two variables. The linear regression is the only 
relationship type ever used in the time series data analysis. Except 
for calculating estimated values of a parameter, which cannot 
always be utilized as a reference, the ordinary linear regression 
analysis may be applied to the time series regression analysis as 
a whole. 

Table 3 shows a causal relationship between NDVI and SPEI 
lag. According to the NDVI–SPEI 1 lag 4 model, which is a time 
series model, a given NDVI is influenced by the NDVI in the 
previous 12 periods and SPEI-1 in the last four periods by 39.55%. 
For NDVI and SPEI-3 in lag 2, the meteorological drought of 
SPEI-3 in the previous two periods is also influenced by the NDVI 
agricultural drought in the previous twelve periods by 31.92%. 
For NDVI-SPEI-6 in Lag 1, NDVI is affected by NDVI in the 
previous 12 periods, and for SPEI-6 in the last period, the R2 value 
is 27.20. In NDVI-SPEI-9 in lag 2, the relevant NDVI is influenced 
by the NDVI in the previous 12 periods, and SPEI-9 in the last 
two periods has an R2 value of 29.20%. NDVI–SPEI-12 in lag 3, 
this NDVI is influenced by the NDVI in the previous 12 periods 
and SPEI-12 in the last three periods, and R2 has the value of 
27.08%. For NDVI–SPEI-24 in lag 0, NDVI in the previous 12 
periods and SPEI-24 in the same period have the same impact on 
the NDVI; the R2 value is 24.77%. Based on the results above, the 
best model to determine the relationship between meteorological 
drought and agricultural drought is the NDVI–SPEI lag four 

models with the highest R2 value found in a causal relationship of 
39.55% and a correlation value of r = 0.408; the latter is quite 
strong. This model is also significant because it has a p < 0.05. 

Figure S4 shows the NDVIt graph, which closely resembles 
the actual NDVI, based on the time series plots of NDVI and 
NDVIt. The four categories, namely NDVI, NDVIt, and the 
residual, exhibit a remarkably similar pattern. The NDVIt model 
is presented in Table 3. NDVI-1t represents a causal time series 
regression model between NDVI lagged by 12 and SPEI-1 lagged 
by 4. Next, the same applies to NDVI-3t through NDVI-24t. 

DISCUSSION 

Agricultural drought connects many aspects of meteorological (or 
hydrological) drought that affect agriculture through precipita-
tion deficits, discrepancies between actual and prospective 

evapotranspiration, soil water deficits, decreased groundwater 
or reservoir levels, etc. The amount of water a plant needs 
depends on the weather, biological qualities of a plant, its growth 
stage, and the physical and biological characteristics of soil 
(Prabhu, 2021). 

According to the results of the analysis above, the coefficient 
of determination (R2) is still low. It is because meteorological 
drought does not directly affect agriculture, as there is a pause in 
drought. This is described in a study by Ezzine, Bouziane and 
Ouazar (2014) and Zuo et al. (2019) that if there is a rainfall 
deficit, plants can still use water reserves accumulated in soil, and 
according to Maina (2018), this lag time occurs because plants 
still have energy reserves in their bodies. The intensity and 
duration of meteorological drought certainly affect vegetation and 
water availability. If the intensity of rainfall is small and lasts for 
a long time, the availability of water will also be depleted, and the 
demand for water in plants can no longer be met. This is when 
agricultural drought occurs as a result of meteorological drought. 
This is in line with the research according to which one period of 
drought, sometimes the longest only, becomes the strongest. Such 
drought is a process that lasts for a certain period (Adhyani, June 
and Sopaheluwakan, 2017). Benedict and Jaelani (2021) state that 
the five-month shift has the highest correlation coefficient and it 
is considered the best shift model. This means that the current 
rainfall affects the vegetation NDVI in the next five months; this 
supports the research above (Benedict and Jaelani, 2021). 

CONCLUSION 

The highest correlation test results apply to the relationship 
between NDVI and SPEI lag 4 (0.41); this indicates that the 
meteorological drought of the previous four months has affected 
the current agricultural drought. The time series regression model 
reinforces the analysis, and it shows a causal relationship between 
NDVI and SPEI lag. According to the NDVI–SPEI-1 lag 4 time 
series model, the relevant NDVI is influenced by the NDVI in the 
previous 12 periods and SPEI-1 in the last four periods by 0.4. 
This shows that the causal relationship between SPEI-1 and NDVI 
can be used as an effective index to assess the severity and 
duration of drought and apply mitigation measures, especially in 
irrigated areas. This helps to prepare for future droughts. The 
longer the SPEI time scale, the number of drought events 
decreases, but the drought severity increases. We must protect 
water catchment areas from agricultural drought by managing 

Table 3. Causal regression time series 

Regression time series R2 (%) 

NDVI-1t = 0.1956 + 0.594 NDVIt-12 + 0.0554 SPEI-1t-4 39.55 

NDVI-3t = 0.2021 + 0.583 NDVIt-12 + 0.0441 SPEI-3t-2 31.92 

NDVI-6t = 0.2068 + 0.571 NDVIt-12 + 0.0354 SPEI-6t-1 27.79 

NDVI-9t = 0.1733 + 0.650 NDVIt-12 + 0.0443 SPEI-9t-2 29.20 

NDVI-12t = 0.1896 + 0.616 NDVIt-12 + 0.0371 SPEI-12t-3 27.08 

NDVI-24t = 0.2186 + 0.545 NDVIt-12 + 0.0284 SPEI-24t 24.77  

Explanations: R2 = coefficient of determination, NDVI-1t = normalized difference vegetation index at time t, NDVIt-12 = normalized difference 
vegetation index at time t = 12, SPEIt = standardized precipitation evapotranspiration index at time t. 
Source: own study. 
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a comprehensive irrigation system, building an effective water 
distribution system, and determining wise cropping patterns. We 
also need to provide a thorough analysis of variables that affect 
agricultural drought, especially those representing components of 
the water balance, such as ground water and ground humidity. 
We should also increasingly often use advanced remote sensing 
techniques. Long-term studies are needed to further examine 
drought characteristics, especially in agricultural areas, with more 
comprehensive drought monitoring. 

SUPPLEMENTARY MATERIAL 

Supplementary material to this article can be found online at  
https://www.jwld.pl/files/Supplementary_material_Affandy.pdf 
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