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SPECIAL SECTION

Abstract. High-speed rotors on gas foil bearings (GFBs) are applications of increasing interest due to their potential to increase the power-to-
weight ratio in machines and also formulate oil-free design solutions. The gas lubrication principles render lower (compared to oil) power loss
and increase the threshold speed of instability in rotating systems. However, self-excited oscillations may still occur at circumferential speeds
similar to those in oil-lubricated journal bearings. These oscillations are usually triggered through Hopf bifurcation of a fixed-point equilibrium
(balanced rotor) or secondary Hopf bifurcation of periodic limit cycles (unbalanced rotor). In this work, an active gas foil bearing (AGFB)
is presented as a novel configuration including several piezoelectric actuators that shape the foil through feedback control. A finite element
model for the thin foil mounted in some piezoelectric actuators (PZTs), is developed. Second, the gas-structure interaction is modelled through
the Reynolds equation for compressible flow. A simple physical model of a rotating system consisting of a rigid rotor and two identical gas
foil bearings is then defined, and the dynamic system is composed with its unique source of nonlinearity to be the impedance forces from the
gas to the rotor and the foil. The third milestone includes a linear feedback control scheme to stabilize (pole placement) the dynamic system,
linearized around a speed-dependent equilibrium (balanced rotor). Further to that, linear feedback control is applied in the dynamic system
utilizing polynomial feedback functions in order to overcome the problem of instability.

Key words: bifurcation control; Hopf bifurcation; active gas foil bearings; high-speed rotors; nonlinear control.

1. INTRODUCTION
In their conventional design, gas foil bearings are self-acting
machine elements designed to support high-speed rotating ma-
chines. They utilize an oil-free technology by creating a thin
load-carrying gas film, without the need for external pressur-
ization, see [1]. Furthermore, because of the absence of contact
between the rotor and the internal shell of the bearing, it was
found that low power loss could be achieved, as described by H.
Heshmat et al. in [2]. Over the past few decades, there has been
a rapid development of GFBs and their applications, especially
in small turbomachines. Moreover, there is an ever-increasing
interest in the application of GFBs in turbocharging systems,
and small jet engines for UAVs.

GFBs at their conventional design include a deformable top
and bump foil. Specific materials are used in real applications
to accommodate friction in boundary lubrication regimes dur-
ing the journal lift-off at relatively low speeds. The effective
damping of a conventional gas foil bearing is sourced in gas
flow properties, the friction between the top foil and the bump
foil, and the friction between the bump foil and the outer rigid
shell. In general, the deformable top foil benefits the energy dis-
sipation mechanism and the load capacity of the bearing, simul-
taneously. Low or minor damping portion is sourced on the in-
ternal damping (material damping) of the coupled components,
which are steel alloys in most applications. The energy dissi-
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pation mechanism is therefore quite complex, and in theoreti-
cal prediction, it strongly depends on the respective model ap-
plied for the deformation and the dynamics of the components.
As expected, the bump foil stiffness and damping (sourced in
Coulomb friction), together with the effective damping from
the gas flow, influence significantly the threshold speed of in-
stability of the rotating shaft (journal) [3]. Similarly to oil-
lubricated bearings, gas foil bearings suffer from negative effec-
tive damping and self-excited oscillations at speeds higher than
the threshold speed of instability, which restricts the operating
range of the rotor-bearing system as high amplitude oscillations
appear.

The need for controllable GFBs arises from the requirement
to improve the dynamic characteristics of the supported high-
speed (or ultra-high-speed) rotors, such as the suppression of
the oscillation amplitudes and the elimination of instabilities
within a wide range of rotating speeds. Different computational
models for GFBs are presented in [3–8] along with the numeri-
cal and experimental results concerning the response of the con-
sidered rotors. Also, investigation of the stability margins of ro-
tating systems supported by GFBs is implemented in [9–11].

The necessity for adaptability to different operational con-
ditions, such as ambient temperature or unbalance conditions
led to significant research in this direction, and a significant ef-
fort was made for the design and development of controllable
or active GFBs (AGFBs). The most frequently used method
is the placement of piezoelectric actuators in the circumferen-
tial direction of the bearing, between the top foil and the rigid
shell. J. Park and K. Sim proposed an active gas foil bearing
(AGFB) with a laminated top foil, a classic bump foil, and piezo
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stacks aiming to accommodate the clearance by adjusting the
thickness of the piezo stacks and mechanically preloading the
bearing by modifying the elongation of those piezo stacks, as
described in [12]. It was found that the clearance control had
a positive impact on the dynamic force coefficients of the sys-
tem, whereas the preload control had a slighter one. On the
other hand, a large preload results in a safer passage through the
critical speeds. Additionally, L. Savin et al. explain in detail the
most common controllable bearing system, as described in [13].
Recent works on the adaptability of journal bearings in operat-
ing conditions can be found, among several others, in [14–16].
Regarding active GFBs, radial air injection was introduced by
S. von Osmanski and I.F. Santos in [17]. In any case, the goal
was the safe passage through critical speeds, the increase of the
damping force coefficients, and the suppression of the ampli-
tudes of the oscillations for medium unbalance grades.

a)

b)

Fig. 1. Representation of a) the active gas foil bearing suggested in
this work and b) the rigid shaft carrying a disc located at its center,

mounted on two AGFBs

In this work, another concept of active gas foil bearing is in-
troduced. The AGFB consists of a rigid shell (bearing sleeve),
a thin top foil and piezoelectric actuators allowed to move ra-
dially, see Fig. 1a. The bump foil is neglected and the actuators

are connected directly to the top foil. The performance of the
AGFB is tested in a simple rotating system, composed of two
identical AGFBs and a rigid rotor with a disc located in its cen-
ter, as shown in Fig. 1b. No misalignment is considered. The
top foil is modelled using the finite element method (FEM) and
the resulting matrices are reduced using the static (Guyan) re-
duction method, described in [18]. The Reynolds equation gov-
erning the compressible gas lubrication is discretized with the
finite difference method (FDM). The differential state equations
concerning the rotor motion are then derived by Newton’s law.
Simulation results are presented for two bearing diameters, D30
and D100, for different layouts of actuator placement and dif-
ferent values of the disc mass. A linear control method using an
observer is used in order to stabilize unstable fixed points of the
balanced system. Also, a linear polynomial feedback control
law is used in order to eliminate secondary Hopf bifurcations
of the balanced system, as proposed by Yu and Chen in [19].
The same feedback law is used to suppress the oscillation am-
plitudes and produce synchronous output signals.

2. PHYSICAL AND ANALYTICAL MODEL
OF THE ROTOR-AGFB SYSTEM

2.1. Computational model for the deformable foil
The foil of the AGFB, see Fig. 1a, is assumed to behave as
a thin flat plate and the state equations are derived using the
MZC (Melosh–Zienkiewicz–Cheung) finite element, described
in [20]. The piezoelectric actuators are added to mount the foil.
A high stiffness value is assigned to all actuators. After the con-
struction of the FE mesh, each node is allowed to be displaced
perpendicular to the mid-surface of the plate. Those deflections
are considered as the radial displacements of the foil. Also, each
node is allowed to perform two rotations around the two axes
that are perpendicular to the normal vector of the plate surface.
These rotations are not included in the reduced model as the
static (Guyan) condensation is applied. The finite element mesh
along with the placement of the actuators for the two bearings
is shown in Figs. 2a and 2b.

As shown, twelve actuators are used for the bearing D30 and
twenty-four for the bearing D100. The actuators in the middle
plane are always moving according to the desired control feed-
back law, while the actuators in the front and rear planes can
be either moving or static. In both cases, sixteen elements are
considered in the circumferential direction and ten in the axial.
Both bearings have a length-to-diameter ratio L f /D = 1. An in-
dicative foil deformation Ω = 700 rad/s is exhibited in Fig. 2c.

In this theoretical study, strong idealizations apply regarding
the modelling of the actuators and their mounting in the rigid
shell and the top foil. In reality, the contact surface of the ac-
tuator and the moving foil or the outer rigid shell will not be
discrete as assumed in this work. Further to that, the modelling
of actuator stiffness and damping follows in an approximation
of the values for the characterization of piezoelectric actuators
presented in [21–23] and the control loop for the positioning of
actuators is not included in the current model. Further to that,
the foil deformation may experience a slightly different magni-
tude when different finite elements are utilized. The foil defor-
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mation in general is a challenging problem, especially for small
bearings like D30 or lower, due to the high curvature. Consid-
ering the above, the theoretically predicted benefit of stabiliza-
tion, presented in below, is most likely overestimated.

a) b)

c)

Fig. 2. Finite element mesh and placement of the actuators for the
AGFB of a) D30, and b) D100. c) typical foil deformation at Ω =

700 rad/s for D100, and md = 1 kg

The resulting state equations of the foil are shown in equa-
tion (1), where Fr is the reduced vector containing the gas
forces, Fact is the vector containing the actuator forces and q
is the vector containing the radial displacements of the nodes
of the finite element mesh. The actuator forces are calculated
as Facti j = k f j

(
qa j −qi

)
, where k f j , and qa j are the stiffness and

the elongation of the j-th actuator, respectively. Also Mr, Cr,
Kr is the reduced mass, damping, and stiffness matrix of the
foil structure, respectively, where q̇ is the derivative concerning
time t: {

q̇
q̈

}
=

[
0 I

−M−1
r Kr −M−1

r Cr

]{
q
q̇

}

+

{
0

M−1
r (Fr +Fact)

}
. (1)

2.2. Solution of the elasto-aerodynamic lubrication
problem

The Reynolds equation governing the phenomenon of com-
pressible fluid lubrication is derived, taking into account the
following assumptions: the gas film is isothermal, the flow is
laminar, the fluid inertia is negligible, the fluid is ideal, i.e.
p/ρair = ct, where ρair is the density of the lubrication mean

(air), there are no fluid leaks, R f = R+ cr ≈ R, where R is the
radius of the rotor and cr is the bearing clearance and the pres-
sure does not change in the radial direction, see [24]. Under
those assumptions, the Reynolds equation is transformed into
a system of ODEs, by using a central FD approach only for the
spatial partial derivatives, see equation (2). The computational
mesh for the application of the FD method is the same as the
mesh used for the FEM. The Reynolds equation is:

ṗ =
h2

12µ

(
p2

x + p2
z
)
+

ph
4µ

(hx px +hz pz)

+
ph2

12µ
(pxx + pzz)−

RΩ

2
px−

RΩp
2h

hx−
p
h

ḣ, (2)

where h(t,θ ,z) = cr− x j(t)cos(θ)− y j(t)sin(θ)+ q(t,θ ,z) is
the thickness of the gas film and x j,y j are the lateral displace-
ments of the centre of the disc in x and y directions respectively.
In equation (2), pχ is the partial derivative of the pressure p
with respect to χ (circumferential direction) and pz is the partial
derivative of the pressure p with respect to z (axial direction).
For the solution of equation (2), boundary and initial conditions
are required. Dirichlet boundary conditions are applied to each
boundary of the domain, setting the pressure to be equal to the
ambient one. Also, at a time t = 0, the pressure is considered to
be equal to the ambient one for every node of the domain (initial
conditions). The boundary conditions and the initial conditions
are defined in equation (3).

p(t,0,z) = p(t,2π,z) = p0→ p1, j(t) = pNX+1, j(t) = p0 ,

p(t,θ ,0) = p(t,θ ,L f ) = p0→ pi,1(t) = pi,NZ+1(t) = p0 ,

p(0,θ ,z) = p0 .

(3)

The resulting gas forces, see Fig. 3a, acting on the rotor are
calculated as:

FB,X =−
NX

∑
i=2

NZ

∑
j=2

(pi, j− p0)cos(θi)∆χ∆z,

FB,Y =−
NX

∑
i=2

NZ

∑
j=2

(pi, j− p0)sin(θi)∆χ∆z,

(4)

where NX and NZ are the number of intervals in the circumfer-
ential and axial direction of the computational domain, respec-
tively, and the corresponding pressure distribution is shown in
Fig. 3b. Note that if the value of the pressure at a node of the
computational domain falls below the ambient value, then, at
that node, the pressure will be considered equal to the ambient.
The validity of the numerical solution applying finite difference
method has been recently verified in [25] comparing to the ex-
isting literature for applications in conventional GFBs including
bump foil structure.

2.3. Rigid rotor on AGFBs and composition of the full
nonlinear system

The forces acting on the rotor are of three types: gas forces, see
equation (4), gravity forces, and unbalance forces. Unbalance
forces are centrifugal forces appearing on the rotor due to the
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a)

b)

Fig. 3. a) representation of the gas forces acting on the rotor and the
foil, and b) typical pressure distribution at Ω = 700 rad/s for D100,

and md = 1 kg

non-uniformly distributed mass of the disc and the rotational
speed. This leads to vibrations that often need to be suppressed.
The unbalance force in the x-direction is denoted by FUX and
in the y-direction by FUY . For constant rotational speed, these
unbalance forces are:

FU,X = mdeuΩ
2 cos(ϕr) , FU,Y = mdeuΩ

2 sin(ϕr) , (5)

where ϕr = Ωt and md is the mass of the disc.
The unbalance eccentricity eu is calculated according to the

ISO unbalance G-grades. In this work medium (G2.5) and high
(G6.3) unbalance grades will be considered. The disc unbal-
ance is of magnitude u = mdeu and the eccentricity is eu[m] =
0.001G/Ωr, where Ωr denoting the maximum service speed in
rad/s. The state equations of the rotor are

ẋ1 = x2 , ẋ2 =
FB,X

md
+

FU,X

md
,

ẋ3 = x4 , ẋ4 =
FB,Y

md
+

FU,Y

md
−g,

(6)

where x1 = x j, x2 = ẋ j, x3 = y j, x4 = ẏ j.

It is important to note that the two journal centers and the
disc centre execute identical planar motions as the rotor is rigid
and no tilting motion is considered in the rotor kinematics.
Therefore, only the journal kinematics is considered in the state
feedback control (see Section 3). Taking into account the state
equations of the foil, equation (1), of thepressure field, equa-
tion (2), and of the rotor, equation (6), the full system is written
in the form:

ẋ = f(t,p,q, q̇,x j, ẋ j,qa,Ω) = f(t,x,qa,Ω), (7a)

ẋ = f(p,q, q̇,x j, ẋ j,qa,Ω) = f(x,qa,Ω), (7b)

where

x =
{

p q q̇ x j ẋ j

}T
and

ẋ =
{

ṗ q̇ q̈ ẋ j ẍ j

}T
.

In equations (7), f is the vector field that describes how the
state variables of the system evolve over time, as a function of
the current state and the external input (elongation of the ac-
tuators). Note that the system described in equation (7a) has
the time appearing explicitly in the vector field f, therefore it is
a non-autonomous system. If the unbalance grade is zero, i.e.
the rotor is perfectly balanced, the system described in equa-
tion (7b) is autonomous.

In equations (7a) and (7b), x j =
{

x1 x2 x3 x4

}T
is the

vector containing the lateral displacements and velocities of the
center of the disc. The total number of state variables used to
describe the response of the system is N = 491. Simulation re-
sults of the open loop system follow for both bearing geome-
tries, with different unbalance grades (see Figs. 4 and 5).

a) b)

c) d)

Fig. 4. a) x-displacement, b) y-displacement, c) orbit, and d) x-
displacement signal representation in the frequency domain of the cen-
tre of the disc at Ω = 1550 rad/s. Bearing D30, disc mass md = 0.1 kg,

foil thickness h f = 0.1 mm, unbalance grade G2.5
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a) b)

c) d)

Fig. 5. a) x-displacement, b) y-displacement, c) orbit, and d) x-
displacement signal representation in the frequency domain of the cen-
tre of the disc at Ω = 850 rad/s. Bearing D100, disc mass md = 1 kg,

foil thickness h f = 0.5 mm, unbalance grade G6.3

3. APPLICATION OF FEEDBACK CONTROL

First, a linear control technique is used, utilizing an observer.
Polynomial feedback control laws are also considered, in order
to stabilize the equilibrium point and eliminate possible Hopf
bifurcations. This technique appears to be applicable in the case
of existing unbalance forces and results in steady-state oscilla-
tions with decreased amplitude and synchronous period.

3.1. Stabilization via linear control

For fixed elongations of the actuators qa = qa0 and at a spe-
cific value of the rotational speed, the system (7b) has a sin-
gle (unique) equilibrium (fixed) point x∗. The stability of this
fixed point is defined by the first Lyapunov criterion, see [26],
according to the real parts of the eigenvalues of the Jacobian
matrix A = ∂ f/∂x

∣∣∣ x=x∗
qa=qa0

.

It is supposed that the outputs are the state variables concern-
ing the rotor. The linearized system (equation (8a)) undergoes
a coordinate transformation δxb = Tbδx, into modal coordi-
nates (equation (8b)). Also, a rearrangement of the new state
variables is performed in order to separate the stable and unsta-
ble subsystems:

δ ẋ = Aδb f x+Bδqa , δy = Cδx, (8a)

δ ẋb = Abδxb +Bbδqa , δy = Cbδxb , (8b)

where B = ∂ f/∂qa

∣∣∣ x=x∗
qa=qa0

, Ab =

{
Au 0
0 As

}
, Bb =

{
Bu

Bs

}
,

Cb =
{

Cu Cs

}
.

The unstable (equation (9a) and stable (equation (9b) subsys-
tems are defined in equation ((9):

δ ẋu = Auδxu +Buδqa , (9a)
δ ẋs = Asδxs +Bsδqa . (9b)

The closed-loop system is designed only for the unstable sub-
system (9a). It was observed that two conjugate eigenvalues
cross the imaginary axis and become unstable, therefore the
unstable subsystem consists of two state variables. The addi-
tion of the observer results in a close loop system of four state
variables, the states δxu, and the errors δ x̃u resulting from the
estimation of the observer. The dominant closed-loop eigenval-
ues are chosen to have the same imaginary part as the eigenval-
ues of the unstable subsystem, and the real parts are calculated
according to the desired setting time Re(λ1,2) =−4/ts. The re-
maining eigenvalues λ3,4 are chosen in such a way that the esti-
mations of the observer converge to the actual value of the states
ten times faster than the convergence of the states to the equilib-
rium point. The feedback law is δqa =−Kgδ x̂u and the closed-
loop system is defined in equation (10), where Kg and L are the
feedback and the observer gain matrices respectively, and place
the eigenvalues λ1,2, and λ3,4 at the desired location. They result
from the application of Akermann’s formula, see [27]. After the
solution of the system (10), the system (9b) is solved, and then
the state variables δx are calculated:∣∣∣∣∣δ ẋu

δ ˙̃xu

∣∣∣∣∣=
{

Au−BuKg BuKg

0 Au−LCu

}∣∣∣∣∣δxu

δ x̃u

∣∣∣∣∣ . (10)

Figure 6 shows the response of the open and closed-loop sys-
tem with the bearing D100. Initially (open loop) the equilibrium

a) b)

c)

Fig. 6. Open and closed loop a) x-displacement, b) velocity, and c) or-
bit of the center of the disc at Ω = 850 rad/s. Linear control, bearing

D100, disc mass md = 1 kg, balanced rotor
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point is unstable and a self-excited oscillation is observed. The
orbit of the centre of the disc is attracted by a stable limit cycle,
see Fig. 6c. After the initiation of the control (closed-loop sys-
tem) the orbit of the centre of the disc is attracted by the stable
fixed point, see Fig. 6c and the x-velocity becomes zero after
finite time. In this case it was chosen ts = 0.5 s. The behaviour
of the system with the bearing D30 is identical, see Fig. 7. In
this case, the setting time was chosen to be ts = 0.1 s.

a) b)

c)

Fig. 7. Open and closed loop a) x-displacement, b) velocity, and c) or-
bit of the center of the disc at Ω = 1550 rad/s. Linear control, bearing

D30, disc massmd = 0.1 kg, balanced rotor

3.2. Stabilization via polynomial feedback
From equation (1) it is shown that there is a linear dependence
of the time derivatives of the states on the elongation of the actu-
ators. Therefore, the state equations of the balanced system can
be written in the form of equation (11), where G is a constant
matrix calculated from equation (1). The goal is to stabilize the
equilibrium points of equation (12) for every discrete value of
the rotational speed and fixed elongation of the actuators, qa0 ,
namely the fixed point of the system:

ẋ = f(x,qa,Ω) = g(x,Ω)+Gqa , (11)

ẋ = f
(
x,qa0 ,Ωk

)
= f
(
x,qa0

)
= g(x)+Gqa0

. (12)

A linear polynomial feedback law, proposed by Chen, is defined
in equation (13), wherex∗j , ẋ∗j ,y

∗
j , ẏ
∗
j are the equilibrium compo-

nents corresponding to the journal:

qa =−k1
(
x j− x∗j

)
−k2

(
ẋ j− ẋ∗j

)
− k3

(
y j− y∗j

)
−k4

(
ẏ j− ẏ∗j

)
+qa0 . (13)

First-order polynomials are adequate for the shifting of Hopf
bifurcations to higher rotating speeds. Investigation of the use
of second- and higher-order polynomials and the control of the

amplitude of the emerging limit cycles is part of ongoing re-
search. The gain vectors ki are such that the Jacobian matrix
corresponding to the closed-loop system has only eigenvalues
with negative real parts. Also, they can be chosen in such a way
that the dominant eigenvalues have real parts corresponding to
a desired setting time. For simplicity, the gains are chosen in

such a way that ki = ki

∣∣∣1 1 · · · 1
∣∣∣T. The gains are calcu-

lated using an optimization procedure, calculating the Jacobian
matrix at each step. The objective function is defined in equa-
tion (14) after choosing the desired ts:

min(obj) = |Re(λ1,2)+4/ts| . (14)

For the implementation of the above, the patternsearch func-
tion of the Matlab Global Optimization Toolbox [28] was used.
In Fig. 8 the response of the disc center for the system of bear-
ing D100 is shown. The qualitative behaviour of the open and
closed-loop system is similar to that in Fig. 6. The setting time
is chosen to be ts = 0.5 s. The actuators in the middle plane
are moving, while the actuators in the front and rear plane are
static (see Fig. 2b). The same feedback law can be applied in
the case of existing unbalance. The steady state response of
the system is a limit cycle with suppressed amplitude and syn-
chronous period, as shown in Fig. 9. For the bearing D30, the
polynomial feedback law is used to stabilize the fixed points
in the entire operational range. The dominant eigenvalues of
the open-loop system are shown in Fig. 10a. The gains of the
closed-loop system for every value of the rotational speed, as

a) b)

c)

Fig. 8. Open- and closed-loop a) x-displacement, b) velocity, and
c) orbit of the center of the disc at Ω = 850 rad/s. Polynomial feed-

back control, bearing D100, disc mass md = 1 kg, balanced rotor
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shown in Fig. 10b, with initially unstable fixed point are chosen
in such a way, that the dominant eigenvalues of the closed-loop
system (see Fig. 10c) correspond to setting time ts = 0.5 s.

a) b)

c)

Fig. 9. Open and close loop a) x-displacement, b) velocity, and c) orbit
of the center of the disc at Ω= 850 rad/s. Polynomial feedback control,

bearing D100, disc mass md = 1 kg, unbalance grade G6.3

a) b)

c)

Fig. 10. a) open loop dominant eigenvalues, b) feedback gains for
every value of the rotational speed with initially unstable fixed point,

and c) close loop dominant eigenvalues

4. CONCLUSIONS
In conclusion, linear polynomial feedback and classic linear
control theory are found to be sufficient for the stabilization of
fixed-point equilibria in rotor AGFB systems of small and large
diameters, and with high or low loading. More specifically:
1. The D30 bearing was stabilized at the speed of Ω =

1550 rad/s and the D30 bearing was stabilized at Ω =
850 rad/s when classic linear feedback control or polyno-
mial feedback control was applied.

2. Stabilization at speeds up to Ω = 20 krad/s (191 kRPM)
was found to be feasible, and with relatively low control
gains, for the D30 bearing.

3. The proposed AGFB, when stabilized, did not produce os-
cillation amplitudes which would compromise the integrity
and the operability of the element. Gas film thickness was
retained in acceptable values.

4. The AGFB was able to attract self-excited limit cycle mo-
tions of large (close to radial clearance) or low extent,
around stable fixed points, at both D30 and D100 bearings.
The system executed stable whirling of small (or minor)
amplitude around the stabilized fixed-point equilibrium.
This was verified by time integration at several speeds.

For the elimination of Hopf bifurcations and the stabilization
of the system around fixed points, the gains must be chosen
in a way that a specification, like the setting time, is satisfied.
It is found that evaluating the gains through an optimization
problem is sufficient to achieve the desired response in terms of
stability and time constant.

Future theoretical work to be performed includes nonlinear
terms in the feedback function, in order to control the amplitude
and the minimal period of self-excited limit cycle motions of
the balanced or the unbalanced system.
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