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Abstract: A machine learning model was developed to support irrigation decisions. The field research was conducted 
on ‘Gala’ apple trees. For each week during the growing seasons (2009–2013), the following parameters were 
determined: precipitation, evapotranspiration (Penman–Monteith formula), crop (apple) evapotranspiration, climatic 
water balance, crop (apple) water balance (AWB), cumulative climatic water balance (determined weekly, ∑CWB), 
cumulative apple water balance (∑AWB), week number from full bloom, and nominal classification variable: irrigation, 
no irrigation. Statistical analyses were performed with the use of the WEKA 3.9 application software. The attribute 
evaluator was performed using Correlation Attribute Eval with the Ranker Search Method. Due to its highest accuracy, 
the final analyses were performed using the WEKA classifier package with the J48graft algorithm. For each of the 
analysed growing seasons, different correlations were found between the water balance determined for apple trees and 
the actual water balance of the soil layer (10–30 cm). The model made correct decisions in 76.7% of the instances when 
watering was needed and in 87.7% of the instances when watering was not needed. The root of the classification tree 
was the AWB determined for individual weeks of the growing season. The high places in the tree hierarchy were 
occupied by the nodes defining the elapsed time of the growing season, the values of ∑CWB and ∑AWB.  
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INTRODUCTION 

Humanity faces the challenge of feeding a dynamically growing 
population. Globally, acute food insecurity is increasing. In 2020, 
approximately 42% of the world’s people did not have access to 
good quality food (GRFC, 2022). The only way to increase food 
production is to further intensify agriculture. The availability of 
water is a factor that significantly affects the efficiency of plant 
production. Currently irrigated crops covers 20% of all cultivated 
land and about 40% of the global yields are harvested on irrigated 
fields (Meier et al., 2018). Higher yields of plants are obtained 
thanks to irrigation, which results in a high demand for water. 
Amarasinghe and Smakhtin (2014) estimate that agriculture uses 
as much as 55% of fresh water drawn. 

Climatic and soil conditions and the availability of good 
quality water are factors determining the possibility of agricultur-
al development, as well as the type of cultivated plants and the 
cultivation technologies used (Iglesias et al., 2012). Since the 

dawn of humanity, the availability of water has determined the 
development opportunities of regions of the human population. 
The main climatic factors limiting the possibility of growing 
plants are the level of solar radiation, air temperature and rainfall. 

The European Commission’s communication points out 
that over 24% of abstracted water is wasted, which indicates the 
need to counteract this phenomenon. Therefore, it is recom-
mended to develop and implement water resource management 
systems for agricultural purposes (Farmer et al., 2008). The 
assumed goal can be achieved through the use of the most 
effective irrigation systems and the implementation of reliable 
irrigation criteria into practice. 

According to Gu et al. (2020) the best known irrigation 
scheduling methods are: plant water status, soil moisture status, 
evapotranspiration, and water balance. Conventional methods for 
irrigation scheduling rely on the direct measurement of soil 
matric potential (ψm) or soil water content (Θ) (Mittelbach, 
Lehner and Seneviratne, 2012; Treder et al., 2022; Yu et al., 2021). 
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Sensors are very helpful, but due to the price, their common use is 
not always possible. Therefore, a cost reduction could be obtained 
by the use of a limited number of soil moisture sensors supported 
by artificial intelligence. 

Farmers can make decisions on irrigation on the basis of 
weather conditions. Determining the water needs of a specific 
crop (ETc) can be estimated by multiplying the crop coefficient 
(K) by reference evapotranspiration (ETo). Evapotranspiration is 
determined using evaporometers or estimated using mathema-
tical models (Allen et al., 1998; Yuan, Nishiyama and Kang, 
2003). Machine learning methods can also be used to determine 
evapotranspiration. Cobaner (2011) developed an evapotranspira-
tion estimation method based on a fuzzy system which is trained 
by a learning algorithm derived from the neural network theory. 
The neuro-fuzzy model is also based on solar radiation, air 
temperature and humidity. Also Adnan, Latif and Nazir (2017) 
demonstrated the usefulness of the machine learning method for 
determining evapotranspiration with limited availability of 
measurement data. For proper irrigation, a precise method of 
estimating evapotranspiration and knowledge of the values of the 
K coefficient changing during the growing season are necessary. 
The Food and Agriculture Organization (FAO) has introduced an 
indirect method for ETo estimation. This method involves 
incorporating the Penman–Monteith equation, which was 
modified by Allen et al. (1998), as a reference equation (FAO- 
56 PM). According to Davis and Dukes (2010), ET-based 
frameworks can save up to 42% of water over time-based 
irrigation scheduling. 

Evapotranspiration can also be determined using computer 
applications, e.g. CropWat 8.0 (Gabr, 2022) and ETo calculator 
(Lykhovyd, 2022). Treder et al. (2013) have developed an Internet 
platform (www.nawadnianie.inhort.pl/eto) on which evapotran-
spiration can be determined using the Penman–Monteith, 
Hargreaves, and Grabarczyk models, and a simple algorithm 
where the only input parameter is air temperature. The calculated 
ETc values can be used to manually or automatically control the 
irrigation valves. 

According to Martin, Stegman and Fereres (1990) irrigation 
scheduling can be based on water balance calculations or 
measurements of soil or plant hydration status. The amount of 
water stored in the soil is calculated on the basis of daily 
evapotranspiration (ETo), precipitation, percolation, runoff and 
irrigation applied. The method of balancing the water content in 
soil is subject to a high probability of an error resulting from the 
difficulty of accurately estimating the inflows of water from 
infiltration and the correct assessment of the effectiveness of 
rainfall. 

Soil moisture depends on the amount and intensity of 
rainfall. In the event of high and intense rainfall, part of the water 
percolates below the level of the root system or flows over the 
ground surface (surface runoff). Also, the initial soil moisture has 
a significant impact on the effectiveness of precipitation. The 
efficiency decreases along with the increase in soil moisture 
(Treder and Konopacki, 1999; Xiaoyan et al., 2000; Treder et al., 
2022). The water balance method lacks high accuracy, but it has 
proved to be reliable in many conditions (Jones, 2004). 
Unfortunately, in the climatic conditions of Poland, where there 
is usually a high level of groundwater in the spring, using it causes 
the application of too high doses of water to plants. 

Irrigation decision making can also be supported through 
the use of the Internet of Things (IoT) and weather forecasting. 
With the advancement in technologies, the weather forecasting 
accuracy has improved significantly and the data obtained from 
forecasting can be used for predicting changes in soil moisture 
(Goap et al., 2018). IoT-based solutions have proved to be very 
helpful in smart irrigation with the optimal utilisation of water 
(Sharma et al., 2016). Gill et al. (2006) developed a method for 
soil moisture prediction using support vector machines based on 
air and soil temperature as well as relative air humidity. Hedley 
et al. (2013) used machine learning to predict soil water status 
and water table depth on the basis of electromagnetic mapping. 
A layered neural network was used by Murase, Honami and 
Nishiura (1995) to identify plant water status based on the 
textural features of the pictorial information of the plant canopy. 

The aim of the presented study was to develop a machine 
learning model to support irrigation decisions based on the 
climatic water balance. 

MATERIAL AND METHODS 

The field research was conducted in the years 2009–2013 in the 
Experimental Orchard of the National Institute of Horticultural 
Research, Skierniewice, Poland, on ‘Gala’/M.9 apple trees planted 
(in 2002) at a distance 4.0 × 1.2 m. The soil was a sandy loam in 
texture, low in organic matter (1.5%). The trees were trained as 
spindles. Insects and diseases were controlled according to 
standard production practices. Irrigation was applied using a drip 
system on the basis of soil water potential measured with 
tensiometers (Jet-Fill, Soilmoisture Equipment Corp., USA) 
installed at a depth of 20 cm at half the distance between the 
trees (3 tensiometers per plot were installed between the 
drippers). Microirrigation (small doses of water: 0.5–2.0 mm) 
was applied during the vegetation period to keep the soil water 
potential at a level of –40 to –20 kPa. Soil moisture was measured 
every week with a (calibrated) profile probe (Diviner 2000, 
Australia). One PVC tube (50 mm in diameter) was installed on 
each plot as an access tube for the moisture meter probe. Weather 
conditions were recorded using an automated meteorological 
station (Metos, Austria). Based on the meteorological data for 
each week during the experiment, the following parameters were 
determined: 
– precipitation (P) (mm); 
– evapotranspiration (ETo) (mm) determined by the automatic 

weather station according to the Penman–Monteith formula: 

ETo ¼
0:408 � Rn � Gð Þ þ � 900

Tþ273
u2 es � eað Þ

� þ � 1þ 0:34u2ð Þ
ð1Þ

where: ETo = reference evapotranspiration (mm∙day–1), Δ = slope 
vapour pressure curve (kPa∙°C–1), Rn = net radiation at the crop 
surface (MJ∙m–2∙day–1), G = soil heat flux density (MJ∙m–2∙day–1), 
T = mean daily air temperature at 2 m height (°C), u2 = mean 
daily wind speed at 2 m height (m∙s–1), es = saturation vapour 
pressure (kPa), ea = actual vapour pressure (kPa), es – ea = vapour 
pressure deficit (kPa), γ = psychrometric constant (kPa∙°C–1); 
– apple evapotranspiration (ETapple) = Kc∙ETo where: Kc = crop 

coefficient according to Allen et al. (1998); 
– climatic water balance (CWB) = P – ETo; 
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– apple water balance (AWB) = P – ETapple; 
– cumulative climatic water balance (∑CWB) = sum of consecu-

tive weekly CWB values; 
– cumulative apple water balance (∑AWB) = sum of consecutive 

weekly AWB values; 
– week number from full bloom (No.W); 
– nominal classification variable: Irrigation (Yes), No irrigation 

(No). 
Statistical analyses were performed with the use of the 

WEKA 3.9 application – Machine Learning Group, University of 
Waikato (Bouckeart et al., 2016). The WEKA workbench contains 
a collection of algorithms for data analysis and predictive 
modelling, together with visualisation tools and user graphical 
interface. 

The attribute evaluator was performed using Correlation 
Attribute Eval with the Ranker search method. The value of an 
attribute was assessed by measuring the correlation (Pearson) 
between it and the class. Attributes with the highest ranker were 
chosen (Fig. 1). 

After the initial comparative tests of the various classifica-
tion algorithms (unpublished own data), the final analyses were 
performed using the WEKA classifier package with the J48graft 
algorithm due to its highest accuracy. It is the most popular tree 
classifier (C4.5) developed by Quinlan (1993). A decision tree is 
a classifier expressed as a recursive partition of the instance space. 
Decision tree grafting is the process of adding nodes to an 
existing decision tree to reduce prediction error (Webb, 1999). 
Decision trees are tree-based algorithms in which each path 
begins in a root node representing a sequence of data divisions 
until reaching an outcome at a leaf node. Each leaf is assigned to 
one class that represents the optimal target value. The final 
objective is to obtain a model that can predict the search value for 
the specific scenario by learning simple decision rules inferred 
from prior data (Yang, 2019). This method was used to classify 
the weeks when irrigation was needed based on the CWB, AWB, 
∑CWB and ∑AWB parameters. The analyses were conducted 
using the tenfold cross-validation mode. The obtained results 
were used to determine the percentage of correctly classified 
instances (CCI %, was calculated as the percentage of the true 
positive and true negative predictions). CCI = (a + b)/N; a = true 
positive (Yes), b = true negative (No). 

RESULTS AND DISCUSSION 

A characteristic feature of the climate in Poland is its variability, 
which is confirmed by the data in Table 1. Significant differences 
between the growing seasons of individual years occurred not only 
in the amounts of precipitation and evapotranspiration, but also in 
the average air temperature. The warmest and driest season was the 
growing season of 2012, when, due to very low rainfall, the climatic 
water balance (CWB) was as low as 241 mm. In the previous year 
(2011), the average temperature of the growing season was only 
0.1°C lower with a 70% higher rainfall, which resulted in a positive 
CWB (7 mm) at the end of the growing season. Due to the different 
patterns of the weather in the winter and, above all, considerable 
differences between the amounts of rainfall in April (Tab. 1), the 
soil moisture levels at the beginning of the growing seasons in the 
individual years of the study were different. 

Traditionally used rain gauges provide total rainfall without 
information on the intensity, which has a significant impact on 
efficiency. The high variability of precipitation during the 
growing season and also between individual years significantly 
limits the possibility of using the balance method to determine 
the dates of irrigation. 

For each of the growing seasons, different correlations were 
found between the water balance determined for apple trees and 
the actual water balance of the 10–30 cm soil layer. In years 2009– 
2013, these parameters were relatively highly correlated 
(r2 = 0.60–0.72). However, the parameters of their linear 
regression models were different. In 2013, such a relationship 
was found to be insignificant (r2 = 0.11) – Figure 2. This means 
that entering indiscriminately the measured precipitation value 
into the water inflow balance does not allow precise estimation of 
changes in soil moisture and thus determination of the date of the 
need for irrigation. 

Effective rainfall depends on many factors, for example: soil 
and crop characteristics, climate parameters, land slope, rainfall 
amount and intensity, covering the soil with mulches (Ali and 
Mubarak, 2017; Treder et al., 2022). This means that in practice, 
in many cases, estimates of balancing water inflows from 
precipitation are burdened with a large error. Also, as reported 
by Muzylo et al. (2009), the level of rainfall interception is very 
important and should not be neglected during the determination 

Fig. 1. Feature importance; AWB = apple water balance, ∑CWB = 
cumulative climatic water balance, ∑AWB = cumulative apple water 
balance; source: own elaboration 

Table 1. Meteorological data during the growing season (April– 
October) in 2009–2013 

Year 
Average 
tempe- 

rature (°C) 

Soil moisture 
measured at 
the end of 
April (%) 

Total 
precipi- 

tation (mm) 

ETo  

(mm) 
CWB 
(mm) 

2009 14.4 18.8 389 571 –182 

2010 14.1 19.9 429 508 –79 

2011 14.9 24.1 505 498 7 

2012 15.0 21.7 297 538 –241 

2013 14.6 21.2 431 483 –52  

Explanations: ETo = reference evapotranspiration, CWB = climatic water 
balance. 
Source: own study. 
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of water balances of orchards. According to Miranda de and 
Butler (1986), rainfall interception by plant canopies may account 
for 15% of total precipitation. This means that entering the actual 
amount of measured rainfall into the balance does not allow 
precise estimation of changes in soil moisture, which are the basic 
criterion for the irrigation of plants. An additional, almost 
impossible to determine, water inflow is the capillary rise of water 
in the soil profile. Capillary rise is a phenomenon that describes 
the movement of water in pores from lower to higher elevation. 
The maximum capillary rise height of soil is a complex 
phenomenon which is mainly determined by the distribution 
characteristics of the pores. Beltrão, Antunes da Silva and Asher 
(1996), who conducted research on corn, said that the upward 
flow from shallow water is a significant component in the water 
balance. Unfortunately, models estimating the amount and height 
of capillary rise of water, due to their specificity and lack of input 
data, are not available for practical use by farmers. For the same 
reason, many scientific publications on the climatic water balance 
ignore capillary rise. This is one of the reasons why the results of 
our own research and literature data show that the water balance 
method may be unreliable in practice. 

Based on our research, it seems that this method can be 
supported by relatively simple machine learning models. The 
accuracy of our forecasts of irrigation needs based on climate data 
and the model developed with the decision tree classifier with the 
J48 algorithm were promising (CCI = 83.3%). The detailed 
classification outcome is shown in the confusion matrix in 
Table 2. The model made correct decisions in 76.7% of the 
instances when irrigation was needed and in 87.7% of the 
instances when irrigation was not needed. The prediction errors 
were presumably the result of imperfections in the current data 
entered into the learning model. During the research there was, in 
several cases, a situation when, after conducting irrigation 

because of the low soil moisture potential, heavy rainfall occurred, 
consequently affecting the balance data. 

Our research confirmed the previous work by many authors 
(Farooq et al., 2020; Benos et al., 2021; Meshram et al., 2021), who 
pointed out that machine learning methods were widely used in 
agriculture. Increasingly, machine learning algorithms are also 
used in the application of precise irrigation of plants (Viani et al., 
2017; Megalingam et al., 2020; Ramachandran et al., 2022; 
Veerachamy and Ramar, 2022). Our results indicate that decision 
trees have been a powerful tool for use in making watering 
decisions. These results confirm the findings of Andriyas and 
McKee (2013), and Perea et al. (2019), who also used tree-based 
models suitable for predicting farmers’ decisions whether to 
irrigate or not. The classifier described in our work makes 
a decision based on the CWB, AWB, ∑CWB and ∑AWB, with the 
use the Penman–Monteih formula. Gill et al. (2006) and Cai et al. 
(2019) proposed the use of machine learning methods to predict 
variations in soil moisture as a criterion for the use of irrigation. 
Many authors emphasise the importance of and prospects for the 
development of practical applications that combine machine 
learning algorithms with modern IoT technologies for automatic 
irrigation control (Viani et al., 2017; Farooq et al., 2020; 
Veerachamy and Ramar, 2022). 

Fig. 2. Correlation between the water balance determined for apple trees and the actual water balance of the 10–30 
cm soil layer in 2009–2013; source: own study 

Table 2. Confusion matrix of the developed model 

Predicted values 
Actual values 

yes no 

Yes 33 10 

No 8 57  

Source: own study. 
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The model of the classification tree developed by us is so 
simple that in the next stage of work we plan to use it to 
automatically control irrigation in the apple orchard. On the basis 
of meteorological measurements, climatic water balances and 
climatic water balances of apple trees (irrigation needs) will be 
automatically determined. The planned solution will cooperate 
with a new wireless smart farming system (utilising the IoT 
technologies) for controlling irrigation (described in Treder et al., 
2023). This system enables such implementation thanks to its 
open structure and the portal operating in the “cloud”. Measuring 
probes that are a part of the system will be used for continuous 
learning of the decision model. 

The final image of the classification tree is shown in 
Figure 3. The structure of the tree is relatively simple; apart from 
the root, it consists of 10 nodes and 12 leaves, and the 
classification rules of the tree are easy to interpret. According 
to the previously established ranking of the importance of 
attributes, the root of the tree is the water balance of apple trees 
determined for each week of the growing season. The high places 
in the hierarchy of the tree are occupied by the nodes defining the 
elapsed time of the growing season (i.e. the week number). The 
classifiers following them are the values of ∑CWB and ∑AWB. 

CONCLUSIONS 

The obtained results indicate that in the changeable weather 
conditions of the temperate climate zone, planning of irrigation 
schedule using only the climatic water balance approach may be 
burdened with a large error due to difficulty of accurately 
estimating the soil infiltration rates and the correct assessment of 
the effectiveness of rainfall. It was showed that in such conditions, 
machine learning can support the balancing water content in soil 
and thus the estimation the needs for plant irrigation. Thanks to 
the easy-to-determine classification rules, the presented model 
can be directly used in practice. With the current development of 
measurement equipment and computational applications, it is 
easy to obtain data on the amounts of evapotranspiration and 
precipitation, as well as the values of crop coefficients for various 

plant species. The prediction model presented by us using the 
classification tree contains only the meteorological parameters 
used in the traditional balance method; thanks to this, it does not 
require additional measurement data from the user. 
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