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In 1904, the Swedish mathematician 
Helge von Koch first described a geometrical 
extraordinary figure with a "self-similar" edge, 
which he dubbed a "snowflake:' Nowadays such 
"self-similar" but "rough" sets are called fractals, 
well-known for their exceptional beauty, 
and are a subject of intense research 

Enchanted with the receding infinity of von Koch's 
curve, the Italian mathematician Ernesto Cesaro wrote 
about it: "Had it been given life, it would not be possible 
to do away with it without destroying it altogether for it 
would rise again and again from the depths of its triangles, 
as life does in the Universe." 

The prevalence of such figures in both mathematics 
and the natural world was noticed by Benoit Mandelbrot. 
He already had computers at his disposal, and he was 
the one who named them "fractals": as their geometrical 
dimension, which is greater than their topological dimen 
sion (the topological dimension of a curve is equal to 1, 
that of a surface 2, etc.), may be a fraction rather than a 
whole number. 

Many fractals are characterized by self-si mi lari ty: 
within any given neighborhood, each of its parts bears a 
similarity to the whole fractal (or a large portion thereof). 
Because of this trait fractals also have applications in 
fields far remote from mathematics: generating computer 
graphics to realistically render landscapes, developing 
data compression techniques, studying the structure of 
the Universe as a whole, and even forecasting stock-ex 
change fluctuations. 

The self-similarity exhibited by fractals often stems 
from the fact that there exists a locally stretching transfor 
mation/which maps the fractal onto itself, such that itera 
tions off transform small sets into large ones, deforming 
the shape only in a bounded way (called "limited distor 
tion"). Of course the smaller the size (the smaller the set) 
the greater the time (the more iterations) it takes to reach 
a large scale. Thus micro-scale spatial properties turn out 
to be linked to the long-term behavior of the transforma 
tion trajectory. 

In search of stability 
It is here that fractal analysis and geometry meet the 

theory of dynamic systems. Such systems describe the 
trajectory behavior of points as a certain transformation is 
iterated, or the trajectory followed by solutions to differen 
tial equation solutions describing physical processes over a 
long duration. This field of mathematics is concerned with 
the stability of systems and invariant sets, and its stretch 
back to celestial mechanics. The behavior of two-body sys 
tems was already understood by Kepler and Newton, but 
three-body systems (e.g. the Sun, Jupiter, and the Earth) are 
still not fully understood in mathematical terms. In such 
multiple-body situations, space generally breaks down into 
invariant sets of points whose movement is almost peri 
odic, as well as others whose movement is "chaotic." The 
latter only came to be understood in recent decades: their 
motion turns out to be describable in terms of the simplest 
stochastic processes, hence the term "deterministic chaos." 
In situations where scale (and energy) does not have to be 
retained, there are also regions which are attracted towards 
periodic trajectories, attractors that are more complicated 
than individual trajectories, repellers, etc. 

Population dynamics 
The simplest transformation that can be iterated to ob 

tain interesting phenomena is the quadratic polynomial 

A filled Julia set, c = -0.8 - 0.15 I 
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x ~ ax (1 - x), with the positive coefficient a not greater
than 4. The dynamics of this transformation yields the
simplest model for the behavior of a population, e.g. a
certain species of animal. If x is small it will increase in
subsequent iterations (provided a > 1 ), meaning that the
number of animals increases in subsequent generations.
If x comes close to 1, however, the next generation will be
small - an overpopulated habitat causes to a drop in num
bers. Depending on the value of a, the future trajectory
of a typical point (population size) may approach a peri
odic trajectory (orbit) or it may behave chaotically. Then,
however, for nearly all parameters a, nearly every point
of x will exhibit "the same" trajectory behavior - after a
long duration, the entire span [O, 1] (or a certain finite
number of its subsegments) will become "covered" by
the trajectory, and the "density" of that coverage will not
depend on x! This property is described as an "ergodic"
equilibrium state.

Julia and Mandelbrot 
Back in the 1980s, the present author researched itera

tion of holomorphic transformations of the plane. These are
stretching transformations whose iterations (aside from
certain special points called singularities) exhibit limited
distortion, and which therefore imply self-similarity.

In order to understand the iterations of ax (1 - x), we
sometimes need to study the iterations z~ az (1 - z) or,
after the appropriate change of coordinates, z ~ z2 - c. 
Here z is a point on the plane, treated as a complex number,
and the holomorphic transformation is simply a quadratic
polynomial. Geometrically, complex numbers are added in
the same way as one would add vectors running from the
origin to these points, and they are muJtiplied by multi
plying their lengths and orienting the resulting vector at
an angle (running counterclockwise) with respect to the
positive semiaxis (or argument) which is the sum of the
arguments of those vectors. Given an arbitrary complex
number c, if the point is sufficiently far from O, during the
iteration of the transformation fc its trajectory approaches
infinity. We then say that it lies in the basin of attraction
of infinity. That basin has a boundary which is called a
Julia set - after Gaston Julia, a French mathematician who
defined such sets for fe and for certain broader classes of
functions in the early 20th century (independently of the
sets' other discoverer, Pierre Fatou).

A Julia set is a "chaotic repeller." Please note that for
f0 the Julia set (/0) is a circle with its center at the origin
and radius of 1, which is in fact also a fractal. When c 
moves further away from the origin, moving outside the
curve known as the cardioid, the resulting curve begins
to self-attach and the Julia comes to look like the outline
of a "dragon." When c moves outside a certain set known
as the Mandelbrot set, in turn, the Julia set becomes to
tally disconnected.
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The Mandelbrot set 

For many values of c, the Julia set for fe represents a
sum of real line segments, "overgrown" with spines within
the plane. Most of this "bush" (or "hedgehog") is self-simi
lar, although not exactly so in view of the singularity O
within the Iulia set. The present author is now studying
the statistical properties of such "non-uniform stretching"
transformations of fc, or more generally of rational func
tions (the polynomial quotient of a complex variable) and
the more precise description of their local geometry.

We can also iterate the transformation z~ aes, where
for z = (x, y) (a point on a plane with coordinates x, y) 
e' = ex (cosy+ i siny) and i is the square root of -1. The
Julia set of the transformation ae' consists of an infinite
number of "hairs" clung together into strands, called a
"Cantor bouquet." In an outstanding doctorate thesis writ
ten under the present author's supervision, B. Karpińska
has demonstrated that the Hausdorff geometric dimension
of the ends of these hairs is equal to 2, while paradoxically
the dimension of the entire bouquet without the ends (the
dimension of the "stems" alone) is 1. This bouquet, there
fore, is one of "very densily scatterd flowers."

Our Warsaw-based team, together with math
ematicians from the United States, the United Kingdom,
France, and Chile is involved in studying the Julia sets
for general complex analytic functions of one or more
variables, related to fractal dynamics. Some of this re
search is being pursued within the framework of the
Marie Curie Research Training Network on "Conformal
Structures and Dynamics" and the Marie Curie Transfer
of Knowledge program on "Deterministic and Stochastic
Dynamics, Fractals, Turbulence," hosted at the Institute of
Mathematics, Polish Academy of Sciences. ■
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