
BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 71(4), 2023, Article number: e146285
DOI: 10.24425/bpasts.2023.146285

ARTIFICIAL AND COMPUTATIONAL INTELLIGENCE

Smart network anomaly detection software
architecture for network-enabled ubiquitous devices

Mariusz PELC1,2 , Dawid GALUS1 , Mariusz GOLA1 , and Aleksandra KAWALA-STERNIUK1 ∗∗∗

1 Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, Opole, Poland
2 School of Computing and Mathematical Sciences, University of Greenwich, London, UK

Abstract. In this paper we present an architecture for run-time reconfiguration of network-enabled ubiquitous devices. The whole idea is based
on a policy-based system where the whole decision-making (e.g. anomaly detection-related) logic is provided in a form of an externally loaded
policy file. The architecture is verified through real-life implementation on an embedded system whose sensitivity can be easily modified should
a need arise in run-time without affecting network device/segment (and thus potentially a number of network services) so that they continue
working while the re-configuration process is triggered.

Key words: network anomaly/threats detection; smart systems; policy-based computing.

1. INTRODUCTION

Typically, various kinds of anomaly detection algorithms are
physically implemented as a piece of software running on a net-
work device or a system. In this paper an architecture support-
ing smart and flexible anomaly detection systems for network-
enabled ubiquitous (e.g. IoT) devices is proposed. Methodol-
ogy: Typically, many network-enabled devices are usually con-
sidered as resource-constrained systems (with limited process-
ing power, storage, memory, etc.). At the same time they are
exposed to various kinds of threats which specifics and nature
may change in time. This means that these devices may greatly
benefit from running a system / middleware (meant by middle
layer software) which will allow them to adjust their network
anomaly detection capability in run-time and potentially trigger
in response some sort of self-protection mechanism / behaviour.
Results: Taking into account the aforementioned devices, some
benefits resulting from decoupling the decision-making logic
(responsible for anomaly detection) from the software com-
ponent (application) that will be presented. As a result, the
software component will decrease in size (reducing memory-
related requirement) and at the same time, the decision-making
logic stored in a form of a separate policy file in the device
file system) may be easily updated with a newer version. Con-
clusions: The solution proposed in this paper can be imple-
mented on various kinds of devices, starting from the core net-
work components and devices (e.g. routers) through consumer-
grade devices with internet connectivity up to various kind of
network-enabled devices to guarantee their increased security
and enable their easy yet very effective run-time reconfigu-
ration.

∗∗∗e-mail: a.kawala-sterniuk@po.edu.pl

© 2023 The Author(s). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Manuscript submitted 2023-01-15, revised 2023-06-05, initially
accepted for publication 2023-06-09, published in August 2023.

Nowadays, when networks and systems security becomes
a paramount, it is of utmost importance to guarantee that the
anomaly detection or threats analysis system are able to deal
with ongoing security-related events as effectively and effi-
ciently as possible. Unfortunately, due to a huge variety of
possible anomalies and threats (routing-related, buffer overflow
based, protocol-specific, traffic flowing, trojans, worms, etc.)
and their changing characteristics (different protocols, ports,
traffic volumes, etc.) it is not very likely that a single, even best-
trained / best-tuned, algorithm would perform equally well and
guarantee the same level of security over a long period of time
or for all potential threats. In case it would no longer be able
to work up to the expected standard, there are actually only a
few things that could potentially be done to improve its perfor-
mance:
• update the currently used monitoring algorithms(s) with re-

spect of its core parameters (e.g. neuron weights in ANN)
to guarantee its increased efficiency and accuracy,

• update the currently used monitoring algorithm(s) so that it
would become aware of some other anomaly/attacks types
(e.g. increase the number of rules in the fuzzy system, etc.),

• replace the currently used monitoring algorithm(s) with an
alternative in case the type of anomaly/attacks fall beyond
their detection capability or to provide more fine-grained
classification (e.g. thresholds).

Typically, anomaly detection or threats analysis systems are
implemented as some kind of a program embedded into a net-
work device(s) or a designated computer(s) and/or worksta-
tion(s), subject of the anomaly detection scope, volume of data
that needs to be analysed or complexity of the anomaly detec-
tion algorithm(s). Such a program usually needs to be (and in
most cases is) tuned to make it suitable for a specific network or
for a specific solution. Tuning process may incorporate directly
an expert knowledge about network and/or system behaviour
or implement some techniques allowing the anomaly detection

Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 4, p. e146285, 2023 1

https://orcid.org/0000-0003-2818-1010
https://orcid.org/0000-0002-6970-6760
https://orcid.org/0000-0003-1469-5723
https://orcid.org/0000-0001-7826-1292
mailto:a.kawala-sterniuk@po.edu.pl


M. Pelc, D. Galus, M. Gola, and A. Kawala-Sterniuk

algorithm to learn this by itself to be consequently able to de-
tect any activity that deviates from the normal behaviour pat-
tern. There are many technologies allowing to properly reflect
the normal network behaviour, including machine/deep learn-
ing techniques [1, 2], statistical methods [3–5], etc.

The system we are going to present is based on MAPE
(Monitor-Analyse-Plan-Execute) architecture [6] that allows us
to equip various kinds of systems with the capability to act
autonomously or with limited human supervision. So the au-
tonomous behaviour is the novelty of the paper because systems
which will incorporate our solution will be able to perform vari-
ous tasks with context awareness and in case the environmental
conditions change – adapt their behaviour to the changed work-
ing conditions. Alternatively, such an ability could be imple-
mented using ML-based methods (see e.g. [7, 8]), but the prob-
lem with ML-based approach is that it needs a proper data set to
train the network, it is difficult to estimate time needed to come
up with a decision (reduces applicability in the real-time sys-
tems) and most of all - any reconfiguration requires the process
to be started over (contrary to the proposed solution where the
only thing needed for the system to re-configure is a newer ver-
sion of policy provided by the system expert.) For the purpose
of anomaly detection all the MAPE architecture components
will be based on AGILE [9] and AGILE-FUZZY PDL (Policy
Definition Language) [10] that can monitor a system behaviour
through a number of environment (process) variables, then it
can perform analysis, plan actions in response to a specific sys-
tem behaviour based on expert-provided reasoning mechanism
(can be AGILE policy, can be FUZZY rules-based policy, etc.)
and finally, it can action (execute) decisions to alter the system
behaviour (to mitigate the identified problem).

Structure of the remaining part of this paper is the follow-
ing: Section 2 provides literature review, in Section 3 one can
find description of the policy-based anomaly detection software
architecture, Sections 4 provides explanation of how the pro-
posed software architecture contributes to run-time reconfig-
uration and smart behaviour of the target system whilst Sec-
tion 5 details features of the fuzzy system used for the anomaly
detection purposes as well as includes description of the test
cased test environment and test data. Section 6 shows the re-
sulting system behaviour with the emphasis on how its sensitiv-
ity may change when run-time policy-based reconfiguration is
triggered. Section 7 includes concluding statement.

2. RELATED WORK
Widely understood anomaly detection systems constitute one of
the most rapidly developing research domains. It can apply to
many potential applications, including network anomaly detec-
tion, intrusion detection, etc. Depending on the application do-
main different methods are used to identify any deviation from
what is considered to be the normal network/system behaviour.

Among the typical approaches that are being used for net-
work anomaly detection are those originating from the statisti-
cal sciences. In these solutions, typically, the network behaviour
is analysed from the point of view of its statistical or proba-
bility features. Very often the appropriate mathematical appa-

ratus is also used to identify potential anomalies. Such an ap-
proach was undertaken in [4] where the authors provided com-
parison of methods to identify anomalies including Principal
Component Analysis, Ant Colony Optimisation and AutoRe-
gresive Moving Average Forecasting. The same approaches can
be found in [11], where the authors have used Chi-square based
statistical anomaly detection for VMWare performance data or
in [12], where Bayesan (statistical) model with time slicing was
used in order to detect network anomalies. Similarly, in [13]
the authors have provided appropriate analytical framework ap-
plied for anomaly-detection in network traffic. The specific goal
was to provide a method that would, e.g. reduce the human in-
volvement in the anomaly detection process. The methods of
interest were Seasonal Autoregressive Integrated Moving Aver-
age (SARIMA) times series model and Long Short-Term Mem-
ory (LSTM).

Alternative approach may also use some mathematical mod-
elling which is specifically used for traffic classification (clus-
tering) purposes. In this approach the focus is to detect outliers
meaning all the events that fall outside of a group that reflects
traffic patterns classified as normal. Following this method,
the authors in [14] have proposed NADO method (Network
Anomaly Detection using Outlier Approach) for identifying
outliers. Outlier detection technique using fuzzy neural network
and k-means algorithm was also presented in [15]. In order to
classify traffic to the normal cluster k-means clustering tech-
nique was used. Clustering-based approach to network anomaly
detection was also described in [16] and in [17]. In [18] certain
type of Intrusion Detection System was proposed. This IDS sys-
tem used Support Vector Data Description (SVDD) to train the
system to cluster normal user behaviour.

Unfortunately, the formal methods based on mathematical
modelling or statistical analysis are not always applicable, es-
pecially whenever expressing the network behaviour in math-
ematical terms constitutes a very complex task. In such a case
the solution might be based on employing, e.g. artificial intel-
ligence based methods which usually require knowledge about
the typical network behaviour (learnt by themselves through ob-
servation or provided in a form of traffic patterns) in order to
be able to identify any network traffic that stands out and does
not match the pattern. These solutions include machine learn-
ing or deep learning techniques. Majority of the latest research
papers targeting network anomaly detection are actually follow-
ing this way, e.g. [19], where the authors use machine learning
approach to prevent compromising network-enabled devices on
the network. The learnt behaviour allowed the network-enabled
devices to detect DDoS attacks. Deep Learning approach was
used for the purpose of network traffic anomaly detection was
presented in [20]. Recurrent Neural Networks were used for the
network anomaly detection purposes in [21]. Alternatively to
using ANN-based approaches, in some papers the Fuzzy Logic
methodology was used to identify anomalous behaviour, e.g.
in [22] IDs system was proposed where the fuzzy logic was
used to describe different security attacks.

A natural consequence of existence of both, the mathemati-
cal and artificial intelligence-based methods was that there were
also several solutions presented where the two approaches were

2 Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 4, p. e146285, 2023



Smart network anomaly detection software architecture . . .

combined in order to use their strengths for even better and
more accurate identification of anomalous behaviour. In [23]
the authors have proposed a combined approach where Back
Propagation Neural Network is using Genetic Algorithms along
with Simulated Annealing Algorithm to identify anomalies. In
[24] the authors propose IDS which is use decision tree and
Gaussian Mixture Model (GMM) for detection of anomalies.
In [25] there is a combination of neural deviation learning and
enforcement of statistically significant deviations from norm.

Quite an interesting trend in the network anomaly detec-
tion are different kinds of bio-inspired algorithms. For exam-
ple, in [26] a version of Cuckoo search algorithm was used
for the DDoS attacks detection. Another approach, where non-
parametric, distributed, bio-inspired algorithm has been used
for anomaly detection in networks applying observation on self-
organization principle similar to the one used in honey bees
colonies, was presented in [27].

As one can see from the selection of related work, there are
many existing and some new emerging approaches to solve the
problem of network anomaly detection, which includes some
examples of research involving different artificial intelligence,
fuzzy logic and expert knowledge-based methods (as well as
formal methods using mathematical apparatus for anomaly de-
tection task) for addressing the problem of anomaly detection in
network. In this context the proposed solution, although using
expert knowledge and/or fuzzy logic reasoning, is of a differ-
ent nature. It neither emphasises the accuracy of the applied
anomaly detection methods (though it is clearly visible that
the anomaly detection algorithm we use has the ability to react
to some deviations from a typical traffic characteristics within
a given time window), nor it includes a comparison to some
alternative solutions. What we have proposed is rather focus-
ing on the implementation aspects where, no matter whichever
anomaly detection method is finally used, the proper design of
the software components would guarantee much better utilisa-
tion of these methods through providing an interface for easy
cooperation of different anomaly detection technologies (e.g.
policy-based computing and Fuzzy Logic systems) as well as
it equips anomaly detection systems with additional degree of
freedom regarding their run-time re-configuration.

3. ANOMALY DETECTION SOFTWARE ARCHITECTURE
FOR NETWORK-ENABLED UBIQUITOUS DEVICES

Typically, the software used for anomaly detection that is in-
stalled and/or embedded into a network device implements a
specific detection algorithm where the crucial parameters (de-
tection rules, thresholds values, etc.) are hard-coded into the
software itself. Such software benefits from its simple config-
uration but in case there is a need to update the anomaly de-
tection algorithm, this actually can only be done through whole
firmware update and cannot often be done “on the fly”. As a
result, during the update process some of the network com-
ponents may become temporarily unavailable but in the worst
case scenario this may affect whole network segments (sub-
nets) and render them inaccessible until the network device re-
configuration has finished.

The alternative solution that is proposed in this paper will
deal with the re-configuration problem in a completely differ-
ent way. Rather than re-uploading the whole firmware and/or
software to the network device requiring its anomaly detec-
tion algorithm only to be updated, the firmware might have a
modular architecture with the anomaly detection-related mod-
ule (and hence the anomaly detection algorithm itself) able to
be changed and/or replaced “on the fly” without the need of
re-installing the whole device firmware. Obviously, such a soft-
ware architecture will become more complex and ultimately it
may require (in some cases) more resources (such as process-
ing power, memory, etc.). But the potential benefits are quite
obvious and justify this increased complexity.

One of the technologies that may be very useful in case
such a software architecture was to be implemented is policy-
based computing and specifically, ODP (Open Decision Point)
software architecture [28, 29]. This software architecture al-
lows constructing software components where the key decision-
making logic is provided externally as a run-time loadable pol-
icy. The policy is usually specified by system expert(s) in a
form of XML-compliant policy file written in AGILE PDL or
AGILE-FUZZY PDL and by-design supports self-* / smart fea-
tures (in our case self-* is mostly related to self-configuring).

In order to implement the policy-based computing technol-
ogy within a network device, a complete re-design (from the
architecture viewpoint) of the software component is required.
Typically, in case the network device provides any kind of in-
trusion network/host anomaly detection (or e.g. intrusion de-
tection) features, they usually are fixed as just one of the func-
tional parts of the whole software component. Hence whenever
it is required to make changes to the anomaly detection part
only, then, since this part is inseparable from a bigger whole,
this kind of update operation is doable only via downloading a
newer version of software component program as whole and re-
start it after the update/upgrade operation has been completed.
One can easily notice that updates of the anomaly/intrusion
detection part (due to nature of the threats which are subject
to frequent change) will be performed much more often com-
pared to the updates of the core network device functionality
(e.g. transmitting/receiving packets, packets routing, etc.). As a
result, the architecture of the software component must be of
modular structure and there must be some kind of additional
mechanisms in place to support only partial reconfiguration of
the software component allowing to update the core component
logic while keeping the other parts up and running not to cause
network or services unavailability during the update process.
Example design for such an architecture is shown in Fig. 1.

As one can see in Fig. 1, the fixed section represents all
the core functionality that is usually altered via whole soft-
ware update. In a typical network device software component
architecture this section is everything that a network device is
running. In the proposed software component architecture the
Fixed Section represents mainly the functionality that relates
to handling networking while the Decision Section block rep-
resents solely the anomaly detection/decision-making related
functionality that can be dynamically altered “on the fly” (in
run-time) without the need for re-installing remaining part of

Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 4, p. e146285, 2023 3



M. Pelc, D. Galus, M. Gola, and A. Kawala-Sterniuk

Fig. 1. Proposed architecture for network device software

the software. This approach would guarantee that the network-
ing functionality is available all the time and there is no dis-
ruption in the network operation whilst the capability to bet-
ter recognise/react to anomaly is improved. The dashed line
around those two blocks indicate that in the typical architecture
those two blocks are integrated. Additionally, the proposed ar-
chitecture includes a Decision Storage which allows the system
to conform to the MAPE-K [6] which is foundation for vari-
ous kind of self-* and autonomous systems. This storage can
store new decisions (being result of recognised network/host
anomaly) and allows us to find out whether specific anoma-
lies have been previously detected and load corresponding de-
cisions rather than evaluate them every time. Such an approach
may save time and potentially reduce the effect of an intrusion,
etc. Each decision is applied to the monitored network/host as
a reaction to the detected anomaly.

4. SMART BEHAVIOUR THROUGH POLICY-BASED
RE-CONFIGURATION

The key point of this paper is to propose a flexible software
architecture allowing a network-enabled device meaning any
device but especially the resource-constrained ones to adjust
its behaviour in response to various kinds of changes related
to the device working environment or improve its operation in
case new information or a better way of processing available
information is available. And to do it not through re-loading the
whole device software (e.g. through firmware update) but rather
through altering the decision-making logic part and leaving rest
of the device software as it is.

The proposed architecture was shown in Fig. 1. On the other
hand, the architecture is supposed to support smart behaviour of
such a network device and allow the software component to be
re-configured without the need of restarting the network device.
What we propose as the solution to the problem is policy-based
re-configuration supported by AGILE_Lite library. The library

supports Open Decision Point (ODP) [28] architecture which
allows any software component to implement the architecture
to be re-configurable in run-time. Open Decision Points are
host place holders for loadable policy files containing decision-
making logic which is formed based on the knowledge of a sys-
tem expert about the monitored/supervised/controlled system.
If, apart from using typical AGILE policies [9], the reasoning
is based on fuzzy logic (supported by AGILE-FUZZY exten-
sion) [10], then such a system incorporates AI technology into
the decision-making logic and thus allows to implement smart
behaviour.

Traditional software components also include decision-ma-
king logic but contrary to the proposed approach, the logic
is integral part of the whole software. All programming lan-
guages provide various kinds of conditional constructs, e.g. if-
else conditional instructions, while/until conditional loops, etc.
and these instructions constitute part of the software component
code and as such are they not separable from the rest of the
function or future-specific code. AGILE_Lite library [30] pro-
vides API interface through which such a separation is doable.
The only change on the programming side is very little com-
pared to the typical software component code and rather than
arranging all those conditional instructions into a decision-
making logic, using the AGILE_Lite library requires the soft-
ware developer to follow the below three-step routine:
• assign a set of EnvironmentVariables to reflect the current

system state and provide information essential to make a
decision,

• evaluate the appropriate policy,
• read the policy decision and only provide a piece of code

that is actuating the decision (e.g. call corresponding func-
tions).

Such an approach results also in one more but crucial change,
a new programming paradigm, in comparison to the typical ap-
proach: it is possible to decouple the software developer and
policy developer roles. In the traditional approach the software
developer is also coding the decision-making logic (this can be
done in co-operation with the system expert to properly reflect
the desired system behaviour). In the proposed approach the
only thing the software developer needs to know is what kind of
information is needed on the policy side to make the decision,
what the potential decisions are and how they should translate
into changing the system behaviour. Then the code and the pol-
icy/policies can be developed separately and brought together
at the very end of the target system.

The AGILE/AGILE-FUZZY policy as such maps a set of En-
vironmentVariables containing all necessary information about
a system state into one of ReturnValues. Additionally, policy
can return one or more OutputVariabies to provide more infor-
mation about the decision (e.g. the ReturnValue reflecting the
policy decision may require increasing temperature (e.g in a
room) whilst through an OutputVariable it can additionally be
specified by how much the temperature should be increased.
Such a policy reflection is shown in Fig. 2.

All the rhomboidal shapes seen in Fig. 2 represent
policy decision-making blocks, respectively Rules, Toler-
anceRangeChecks or UtilityFunctions which allow different

4 Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 4, p. e146285, 2023



Smart network anomaly detection software architecture . . .

Fig. 2. Policy representation

way of processing the context information to reach a decision
whilst the rectangular blocks represent, e.g. Action blocks cor-
responding to some specific actions to be taken. The context
information is processed through these policy objects in or-
der to make sense of what it means in the context of moni-
tored/controlled system state and which actions are supposed
to be taken as a result. The more such objects are used within
a policy the better use of the context information can be made
and, consequently, the more precise and correct the policy de-
cision will be. And since policies are formed usually by system
experts and reflect their knowledge about their specifics, then
policy-based reasoning and decision-making translates in a nat-
ural way into smartness of such a system.

5. SMART ANOMALY DETECTION SYSTEM
For the purpose of demonstrating how the smart features could
be embedded into a network device/system through we have
developed a software that implements the policy-based comput-
ing solution to the problem. For that reason we have designed a
software component with two Decision Points:
• AGILE FUZZY type Decision Point that will be monitoring

the number of sent/received segments from/to a host and
deciding the extent of anomaly.

• AGILE type Decision Point that will be using the deci-
sion/information provided by the AGILE FUZZY Decision
Point and after combining the information with a trend anal-
ysis outcome will make a decision regarding the system op-
erational mode. For simplicity of the demonstration only 2
modes will be implemented:
1) unrestricted, with all services available from all loca-

tions;
2) restricted, where certain services will only be accessible

from selected locations only. The restrictions will be ap-
plied through appropriate firewall re-configuration using
a Bash script.

For the trend analysis the Mann-Kendall method [31,32] will
be used which is implemented in pyMankendal package for
Python programming language [33].

The resulting software component architecture is shown in
Fig. 3 originates from the one shown in Fig. 1.

Fig. 3. Implementation architecture for host smart anomaly
detection

It contains two elements representing the fixed section of the
code:
1. Mann-Kendall trend analysis algorithm (which is fixed and

does not require real-time changes).
2. Firewall re-configuration code that will, depending on the

policy decision, switch the system (firewall) into one of
two previously described operational/security modes (this
section also does not need to be altered in real-time as
the only thing it does is trigger a Bash script execution.
The Bash script can be altered externally, if needed, to in-
clude/exclude restricted services.

The Decision Section from Fig. 1 is reflected by two Deci-
sion Points, one running AGILE FUZZY policy and one run-
ning AGILE policy. The policies are provided in GitHub repos-
itory at [34].

5.1. Test environment and setup
In order to present the implementation architecture in operation
for host anomaly detection purposes, the test environment was
located on a real production server. The server is normally used
to provide some teaching resources for students, hence, taking
into segments sent, segments received, etc.

5.2. Role of AGILE FUZZY and AGILE POLICIES
In the presented software component architecture (see: Fig. 3,
both Decision Points must be populated with appropriate ver-
sions/types of policies written in AGILE Policy Definition Lan-

Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 4, p. e146285, 2023 5



M. Pelc, D. Galus, M. Gola, and A. Kawala-Sterniuk

guage (PDL). AGILE PDL was first presented in [9] as a lan-
guage used to express a decision-making logic. Fuzzy logic ex-
tension of AGILE PDL allows defining fuzzy sets and specify
parameters of fuzzy systems as well as define fuzzy rules.

The two above-mentioned policy types have different pur-
pose in the proposed system. From the hierarchy point of view,
the AGILE FUZZY policy is at lower level and its main role
is to match input data into defined membership functions rep-
resenting corresponding fuzzy sets. In the considered system
the input data was assumed to be segments sent out (SSO) and
change in segments sent out (SSODT) reflecting by how much
the number of SSO changed compared to its previous level. The
output variable is the level of risk based on which decisions
may be taken regarding system re-configuration, applied secu-
rity measures, etc. All those input and output data are assumed
to be normalised (with values [−1.0 . . .1.0]. The specifics of the
fuzzy sets definition in the AGILE FUZZY policy is shown as
it is in Fig. 4.

<LinguisticVariables>
<LVar Name="SSOVal" Type="Input"/>
<MembershipFunctions>
<MF Name="Small" Type="Mamdani"
Value="0,0,0.25,0.5"/>
<MF Name="Medium" Type="Mamdani"
Value="0.25,0.5,0.5,0.75"/>
<MF Name="High" Type="Mamdani"
Value="0.5,0.75,1.0,1.0"/>
</MembershipFunctions>
</LVar>
<LVar Name="SSODTVal" Type="Input"/>
<MembershipFunctions>
<MF Name="Minus" Type="Mamdani"
Value="-1.0,-1.0,-0.5,0"/>
<MF Name="Zero" Type="Mamdani"
Value="-0.5,0,0,0.5"/>
<MF Name="Plus" Type="Mamdani"
Value="0,0.5,1.0,1.0"/>
</MembershipFunctions>
</LVar>
<LVar Name="Risk" Type="Output"/>
<MembershipFunctions>
<MF Name="Small" Type="Mamdani"
Value="0,0,0.25,0.5"/>
<MF Name="Medium" Type="Mamdani"
Value="0.25,0.5,0.5,0.75"/>
<MF Name="High" Type="Mamdani"
Value="0.5,0.75,1.0,1.0"/>
</MembershipFunctions>
</LVar>

</LinguisticVariables>

Fig. 4. Fuzzy sets definition

Fuzzy sets definition shown in Fig. 4 assumes their even dis-
tribution, any tuning procedure was applied. The rule base is
shown in Table 1.

Table 1
Rule base

SSO \
SSODT

Small Medium High

Minus Small Small Medium

Zero Small Medium High

Plus Medium High High

The role of the AGILE policy working at a higher level of the
decision-making hierarchy is on one hand to get the informa-
tion about the risk resulting from the actual values of the rele-
vant metrics and on the other hand, it can utilise another type of
information, e.g. trend analysis, to alter the risk assessment re-
turned by the fuzzy system and provide its final evaluation. For
example, a high value of segments sent out/segments received
and a high value of its change will have different significance
in case the trend is raising or falling.

In order to perform the final risk assessment, the AGILE pol-
icy shown in Fig. 5 defines a ToleranceRangeCheck SSOLevel-
TRC which checks how the risk assessment provided by the
fuzzy system (represented by textutFLRisk variable) compares
to a FLRiskReference reference value located in the middle of
the output space. Tolerance value of 0.2 defines a dead zone
which allows performing the same action AInZone for a range
of values (in this case [0.2 . . .0.3]), Some alternative actions
may be taken in case the risk assessment is located above or
below the dead zone (respectively, AHigher and ALower.

<ToleranceRangeChecks>
<TRC Name="RiskLevelTRC" Check="FLRisk"
Compare="FLRiskReference"
Tolerance="0.2" ActionInZone="AInZone"
ActionLower="ALower" ActionHigher="AHigher"/>

</ToleranceRangeChecks>

Fig. 5. Fuzzy sets definition

Once the information (risk level assessed by the fuzzy logic
system) is processed in the TRC, the next step is to put the in-
formation into a wider context, which is in relation to the trend
detected in the monitored data. This is due to the fact that, as
mentioned before, the situation is different if the changes are
high but the trend is raising or falling (e.g. falling trend and high
values of the risk do not require equally firm response from the
system compared to the situation when the risk is high and the
trend is already increasing). Hence, the next step is to consider
the FLRisk value (representing the risk level returned by the
fuzzy inference system) in relation to the trend. This is being
done in a series of Rules, as shown in Fig. 6.

Just to remind, the RuleInZone(. . .) are processed in case
the FLRisk value is in the dead zone defined in the TRC, the
RuleLower(. . .) when the FLRisk value is above the defined
dead zone and the RuleHigher(. . .) are processed otherwise.

6 Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 4, p. e146285, 2023



Smart network anomaly detection software architecture . . .

<Rules>
<Rule Name="RuleLowerFalling" LHS="Trend"
Op="EQ" RHS="Falling"
ActionIfTrue="RetLowAction"
ElseAction="null"/>
<Rule Name="RuleLowerNoTrend" LHS="Trend"
Op="EQ" RHS="NoTrend"
ActionIfTrue="RetLowAction"
ElseAction="null"/>
<Rule Name="RuleLowerRaising" LHS="Trend"
Op="EQ" RHS="Raising"
ActionIfTrue="RetMediumAction"
ElseAction="null"/>
<Rule Name="RuleInZoneFalling" LHS="Trend"
Op="EQ" RHS="Falling"
ActionIfTrue="RetLowAction"
ElseAction="null"/>
<Rule Name="RuleInZoneNoTrend" LHS="Trend"
Op="EQ" RHS="NoTrend"
ActionIfTrue="RetMediumAction"
ElseAction="null"/>
<Rule Name="RuleInZoneRaising" LHS="Trend"
Op="EQ" RHS="Raising"
ActionIfTrue="RetHighAction"
ElseAction="null"/>
<Rule Name="RuleHigherFalling" LHS="Trend"
Op="EQ" RHS="Fallling"
ActionIfTrue="RetLowAction"
ElseAction="null"/>
<Rule Name="RuleHigherNoTrend" LHS="Trend"
Op="EQ" RHS="NoTrend"
ActionIfTrue="RetHighAction"
ElseAction="null"/>
<Rule Name="RuleHigherRaising" LHS="Trend"
Op="EQ" RHS="Raising"
ActionIfTrue="RetHighAction"
ElseAction="null"/>
</Rules>

Fig. 6. Final risk assessment in a series of Rules

5.3. Test data
In order to gather some relevant statistics, a designated bash
script was running every minute for over 2 weeks time on the
server through the crond daemon . Internally, the script was run-
ning netstat -s and then was filtering some relevant metrics, out
of which the segments sent out and segments received were the
most important. Example chunk of data showing results from
10-minute monitoring is shown in Fig. 7.

Fig. 7. Interface statistics – segments sent out and segments received

These values were used to calculate the SSO and SSODT.
Firstly, as the netstat -s command provides the segment sent out
and segment received values at the given time measured from
the interface activation time. As one can see, they increase in
time. So, to get the information how many packets were sent
out/received over a period of time it was necessary to take out
the value at the beginning of the period from the value at the
end of the period. This produced the SSO (and SR) values.
Now, in order to know the change between the two succeed-
ing periods it was necessary to take out the SSO value at the
beginning of the period from the value at the end of the period.
This produced the SSODT (and SRDT) values. As mentioned
before, the granularity for getting the network statistics read-
ings through the crond daemon was set to 1 minute. But due to
the fact that this produced huge amounts of data, we decided
to process every fifth of the recorded samples for the anomaly
detection purposes (which corresponds to getting the network
statistics readings every 5 minutes. Diagram showing both met-
rics are shown in, respectively, Fig. 8 and Fig. 9.

Fig. 8. Interface statistics – segments sent out (SSO)

Fig. 9. Interface statistics – segments received (SR)

5.4. Test cases
As it was mentioned before, the AGILE policy uses trend anal-
ysis to make the final decision regarding final risk assessment.
Trend analysis requires a number of data to work on and is

Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 4, p. e146285, 2023 7



M. Pelc, D. Galus, M. Gola, and A. Kawala-Sterniuk

strongly dependant on the sample size. In our simulation we
decided to use a sliding window of width of 500 samples to cal-
culate the trend. This means that the whole method will reach
its nominal anomaly detection capability as soon as the required
number of data is captured. Also, since the AGILE FUZZY
policy requires normalised values of the SSO (SR) and SSODT
(SRDT), all data were passed to the policy relative to maximum
value within the window. This is the only solution for this kind
of on-line algorithms where global maximum (maximum value
that would ever appear) is unknown. The window size, apart
from policy-related choices, in itself is actually one of the cru-
cial parameters when it comes to the anomaly detection system
sensitivity which makes it a very relevant test case for the sim-
ulation purposes.

In order to show the whole anomaly detection system in op-
eration, two are three scenarios provided showing its main ad-
vantages.

• Case I: In this case the system is processing the data us-
ing different combination of AGILE and AGILE FUZZY
policies for different sizes of moving windows: 200, 250,
300, 350, 400 and 450 samples. So in this case the effect of
improved versions of policies will be demonstrated.

• Case II: In this case the system will in run-time switch at
some point (around half of the simulation time) from one
combination of AGILE and AGILE Fuzzy policy to another
(to simulate the case where the system’s decision making
logic gets changed “on the fly”).

For the simulation purpose there were in total of 2 AGILE
and 2 AGILE FUZZY policies developed.The difference be-
tween the AGILE policies is that the second policy has differ-
ent value of FLRiskReference variable (change from 0.5 to 0.8)
which results in qualifying only high risk values (being out-
come of the AGILE FUZZY policy) as those potentially requir-
ing attention. And the difference between the two mentioned
versions of AGILE FUZZY policies is that in the second policy
the fuzzy system was tuned (SOOVal input linguistic variable
was changed) so that it would qualify as really risky only those
SSO values which are relatively substantially different from the
rest. The tuned version of the SSOVal input linguistic variable
definition is show in Fig. 10. Other variables remained as in the
first version of AGILE FUZZY policy.

<LinguisticVariables>F
<LVar Name="SSOVal" Type="Input"/>
<MembershipFunctions>
<MF Name="Small" Type="Mamdani"
Value="0,0,0.4375,0.6875"/>
<MF Name="Medium" Type="Mamdani"
Value="0.4375,0.6875,0.6875,0.9375"/>
<MF Name="High" Type="Mamdani"
Value="0.6875,0.9375,1.0,1.0"/>
</MembershipFunctions>
</LVar>

</LinguisticVariables>

Fig. 10. SSOVal variable after Tuning

6. EVALUATION OF THE PROPOSED SYSTEM
In order to present the behaviour of the anomaly detection
system in case it uses different versions of AGILE and AG-
ILE FUZZY policies, a range of tests were carried out where
each potential combination of the two AGILE and two AGILE
FUZZY policies was applied in the system with different ob-
servation window sizes. The results are gathered in Table 2.

Table 2
Gathered results

window width A1F1 A1F2 A2F1 A2F2

s = 200 570 277 181 84

s = 250 522 201 131 67

s = 300 482 154 95 53

s = 350 435 134 93 50

s = 400 398 108 69 38

s = 450 376 107 61 26

As one can see from Table 2, widening the window size
results in reducing the number of situations when the system
thought there is some sort of deviation from the typical be-
haviour. Differences are really spectacular, the system was able
to reduce the number from 507 cases to only 26 leaving e.g.
system admin or some other systems significantly less cases to
analyse. So, even if the system would not be the final one on
the decision making path, it would still be useful as some sort
of screening system that identifies the most suspicious traffic.
The units for the data shown in 2 (as well as 3) are the fol-
lowing: in the first column the window width is expressed in
the number of samples while in the all remaining columns the
results reflect the number of system reactions 9meaning how
many times the proposed system qualified the processed data as
indication some sort of anomaly).

However, as indicated at the very beginning of this paper,
our main goal was actually not to provide a new method for
anomaly detection (though policy-based anomaly detection sat-
isfies this requirement very well) but rather to show flexibil-
ity of the system resulting from the possibility of updating its
anomaly detection logic in run-time. After doing so it is pos-
sible to improve the system efficiency in case there is a new
knowledge about anomalies characteristic provided (in a form
of a new policy) by a system expert. For that reason we have
run a few tests showing the system behaviour in case the either,
the AGILE or AGILE FUZZY policy gets updated on the fly. In
table Table 3 we have shown some results for the scenario when
the policy update is triggered around the middle of the simula-
tion time. We tested a few configurations of AGILE and AGILE
FUZZY policies as far as the switching procedure is concerned
to show the effect of each policy substitution by a different ver-
sion. The window sizes were assumed to be the same as in the
previous set of simulations. For all simulations we assumed that
the system starts with the first version of AGILE policy (which
is denoted in the table as A1) with the FLRiskReference set

8 Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 4, p. e146285, 2023



Smart network anomaly detection software architecture . . .

to 0.5 and first version of AGILE FUZZY policy (denoted in
the table as F1 with evenly distributed (not tuned) membership
functions for the input linguistic variable SSOVal.

Table 3
Selected results

window width A1F1:A1F2 A1F1:A2F2 A1F1:A2F1

s = 200 404 291 356

s = 250 316 277 293

s = 300 300 276 279

s = 350 277 257 259

s = 400 242 225 227

s = 450 228 214 217

As one can see in Table 2, the number of system reactions
clearly indicates that every time there was a switching from the
A1F1 policy configuration to any other, the system precision
in detecting potential anomalies was increasing. This clearly
shows that policy update helps to improve the anomaly detec-
tion system accuracy.

A better understanding in terms of in which situations the
system reacts is shown in Fig. 11.

Fig. 11. Sensitivity Difference

As one can see, the Fig. 1, shows differences in the systems
reactions for two different policy configurations, respectively
A2F1 and A2F2. So, the difference between these configura-
tions is that the AGILE FUZZY policy changes from the F1,
which is qualifying slightly lower values of the SSO data as
constituting a potantial risk into F2 policy, which treats as po-
tentially risky only those SSO values that really stand out from

others within the observation window. This means that, with the
SSODT value in both versions of the AGILE FUZZY policy
having identical impact on the policy decisions (identical fuzzy
sets), the only responsibility for the whole system decisions are
mainly resulting from the values SSO values. Having a look at
the policy decisions and the actual values of the SSO shown for
each decision, one can see, e.g. for the decision made regarding
data registered at 11/11/20 at 12:11–12:16, that for the F1 AG-
ILE POLICY the relative SSO value equal 0.692558 resulted in
overall risk assessment at the level of 0.707442 whilst for the F2
policy, for which the membership functions were shifted toward
higher values, the same relative value of SSO resulted in overall
risk assessment at the level of 0.651706. This means that what
was qualified as abnormal for the F1 policy, was now equally
bad for the F2 policy. By analogy, the lower relative values of
the SSO data, e.g. 0.597816 registered at 11/11/20 17:51-17:56
fell below the threshold defined in the AGILE policy A2 (which
was the same in both configurations) hence as a result the fi-
nal decision of the system was to ignore them as not potentially
anomalous.

The sequence of data processing in both policies is shown in
Fig. 12.

~~~~ Loading script <"anomaly_f1.xml">~~~~
~~~~ <"anomaly_f1.xml"> script loaded
successfully ~~
~~~~ DP:<"fuzzy"> policy evaluation ~~~~~~
-->Evaluate Policy: "Policy1"<--------
-->Execute Action: "Logic"<-----------
-->Evaluate FuzzyRule: "FR1"<--
-->Evaluate FuzzyRule: "FR2"<--
-->Evaluate FuzzyRule: "FR3"<--
-->Evaluate FuzzyRule: "FR4"<--
-->Evaluate FuzzyRule: "FR5"<--
-->Evaluate FuzzyRule: "FR6"<--
-->Evaluate FuzzyRule: "FR7"<--
-->Evaluate FuzzyRule: "FR8"<--
-->Evaluate FuzzyRule: "FR9"<--
-->Evaluate ReturnValue: "Out"<-------

DP:<fuzzy> return value -->0.707442
~~~~ Loading script <"anomaly_a2.xml"> ~~~
~~~~ <"anomaly_a2.xml"> script loaded
successfully ~~
~~~~ DP:<"dp2"> policy evaluation ~~~~~~
-->Evaluate Policy: "Policy1"<------
-->Evaluate Template: "T1"<---------
-->Execute Action: "Start"<---------
-->Evaluate TRC: "RiskLevelTRC"<----
-->Execute Action: "AInZone"<-------
-->Evaluate Rule: "RuleInZoneNoTrend"<--
-->Evaluate Rule: "RuleInZoneRaising"<--
-->Execute Action: "RetHighAction"<--
-->Evaluate ReturnValue:
"OverallRiskHigh"<--

DP:<dp2> return value -->2

Fig. 12. Policy evaluation trace

Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 4, p. e146285, 2023 9



M. Pelc, D. Galus, M. Gola, and A. Kawala-Sterniuk

The above trace shows that at first all the rules in the AGILE
FUZZY policy are processed and the outcome of the policy is a
specific risk level. That risk level is compared to the threshold
value in the AGILE policy (specifically, in the RiskLevelTRC)
and, as one can see in the specific trace, the FLRisk value for
which the trace was recorded appeared to be in the dead zone.
Next, the trend value was checked and as it is visible in the
trace, the RuleInZoneRaising triggered the RetHighAction indi-
cating that in this given circumstances the overall risk is high.

We can summarise the obtained results briefly by stating that
the proposed system is fit for purpose – on one hand, it allows
relatively easy system re-configuration which improves its effi-
ciency and on the other hand, it is not resource-hungry which
makes it implementable even in relatively resource-constrained
systems (e.g. networks of IoT devices). The system perfor-
mance strongly relies on expert knowledge expressed in the
form of a policy which constitutes core logic of a network-
enabled device – structure and policy objects used in the policy
allow us to describe the system behaviour while various kind
of threshold values guarantee fast adaptation – in case the traf-
fic/parameters change, the logic may remain the same and the
only thing needed adjustments is the threshold values.

7. CONCLUSION
In this paper we proposed a software architecture for smart net-
work anomaly detection or threats analysis systems. The solu-
tion was thoroughly described as well as its main advantages in
comparison to systems that are not equipped with such features.
It was explained how such an architecture would allow expert
knowledge to be easily expressed in a form of a high-level user-
defined policy containing the main decision-making logic. This
logic being the core element of the whole system can be sub-
ject of ‘on-the-fly’ (or scheduled) updates allowing to easily
adapt to any changes regarding the tools and methods the at-
tackers/hackers could use to compromise a system/device. Such
an architecture is especially beneficial for resource-constrained
systems which do not have enough resources to host software
able to deal with all possible kinds of problems (e.g. detect
anomaly or threat) but instead can be tuned up to become
application- or mission-specific (the software hosted on the de-
vice may load logic from a policy which perfectly deals with a
very specific problem leaving out all others).

We also provided a number of test cases to clearly demon-
strate all the advantages the architecture can potentially bring
and implemented the whole solution by developing a working
program in C/Python programming languages running on a pro-
duction server. Especially, we showed how much the anomaly
detection system behaviour and accuracy may change in re-
sponse to run-time policy changes.

Nevertheless, although the main goal of this paper was to
focus on the architectural side of the solution, the final product
– a working application implemented on a Raspberry PI device
– proved ability to identify changes in the network traffic that
clearly stand out from the rest. So, despite being only a proof of
concept implementation it already demonstrated relatively good
accuracy.

We did not test the system from the point of view of resource
usage which would be a critical factor allowing to assess a po-
tential application domain. But nowadays even some basic net-
work devices (not to mention devices like routers or network
servers) seem to be equipped with enough resources to be con-
sidered as capable to host a system implementing the software
architecture we propose. Smart architecture and smart homes
can play a crucial role in the near future [35–37].

REFERENCES

[1] P. Mulinka and P. Casas, “Stream-based machine learning for
network security and anomaly detection,” in Proceedings of the
2018 Workshop on Big Data Analytics and Machine Learning
for Data Communication Networks, ser. Big-DAMA ’18. New
York, NY, USA: Association for Computing Machinery, 2018,
pp. 1–7.

[2] A. Meyer-Berg, R. Egert, L. Böck, and M. Mühlhäuser, “Iot
dataset generation framework for evaluating anomaly detection
mechanisms,” in Proceedings of the 15th International Confer-
ence on Availability, Reliability and Security, ser. ARES ’20.
New York, NY, USA: Association for Computing Machinery,
2020, p. 30.

[3] I.C. Paschalidis and Y. Chen, “Statistical anomaly detection with
sensor networks,” ACM Trans. Sen. Netw., vol. 7, no. 2, p. 17,
Sep. 2010.

[4] G. Fernandes, E.H.M. Pena, L.F. Carvalho, J.J.P.C. Rodrigues,
and M.L. Proença, “Statistical, forecasting and metaheuristic
techniques for network anomaly detection,” ser. SAC ’15. New
York, NY, USA: Association for Computing Machinery, 2015,
pp. 701–707.

[5] T.L. Fond, J. Neville, and B. Gallagher, “Designing size con-
sistent statistics for accurate anomaly detection in dynamic net-
works,” ACM Trans. Knowl. Discov. Data, vol. 12, no. 4, p. 46,
Apr. 2018.

[6] J.O. Kephart and D.M. Chess, “The vision of autonomic com-
puting.” Computer, vol. 1, pp. 41–50, 2003.

[7] G. Pang, C. Shen, L. Cao, and A.V.D. Hengel, “Deep learning
for anomaly detection: A review,” ACM Comput. Surv., vol. 54,
no. 2, p. 38, mar 2021, doi: 10.1145/3439950.

[8] J. Arevalo-Herrera, J.E. Camargo Mendoza, and J.I. Martinez
Torre, “Network anomaly detection with machine learning tech-
niques for sdn networks,” in Proceedings of the 7th Interna-
tional Conference on Information and Education Innovations,
ser. ICIEI ’22. New York, NY, USA: Association for Comput-
ing Machinery, 2022, pp. 129–135. [Online]. Available: https:
//doi.org/10.1145/3535735.3535750

[9] R.J. Anthony, “A policy-definition language and prototype im-
plementation library for policy-based autonomic systems,” in
Proc. of 3rd International Conference on Autonomic Computing.
IEEE Computer Society, 2006, pp. 265–276.

[10] M. Pelc, “Context aware fuzzy control systems.” Int. J. Softw.
Eng. Knowl. Eng., vol. 24(5), pp. 825–856, 2014.

[11] M. Solaimani, M. Iftekhar, L. Khan, and B. Thuraisingham,
“Statistical technique for online anomaly detection using spark
over heterogeneous data from multi-source vmware perfor-
mance data,” in 2014 IEEE International Conference on Big
Data (Big Data), 2014, pp. 1086–1094.

10 Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 4, p. e146285, 2023

https://doi.org/10.1145/3439950
https://doi.org/10.1145/3535735.3535750
https://doi.org/10.1145/3535735.3535750


Smart network anomaly detection software architecture . . .

[12] T. Liu, A. Qi, Y. Hou, and X. Chang, “Method for network
anomaly detection based on bayesian statistical model with time
slicing,” in 2008 7th World Congress on Intelligent Control and
Automation, 2008, pp. 3359–3362.

[13] P. Kromkowski, S. Li, W. Zhao, B. Abraham, A. Osborne, and
D.E. Brown, “Evaluating statistical models for network traffic
anomaly detection,” in 2019 Systems and Information Engineer-
ing Design Symposium (SIEDS), 2019, pp. 1–6.

[14] M.H. Bhuyan, D.K. Bhattacharyya, and J.K. Kalita, “Nado: Net-
work anomaly detection using outlier approach,” in Proceedings
of the 2011 International Conference on Communication, Com-
puting & Security, ser. ICCCS’11. New York, NY, USA: Asso-
ciation for Computing Machinery, 2011, pp. 531–536.

[15] P. Kaur, “Outlier detection using kmeans and fuzzy min max
neural network in network data,” in 2016 8th International
Conference on Computational Intelligence and Communica-
tion Networks (CICN), 2016, pp. 693–696, doi: 10.1109/CICN.
2016.142.

[16] J. Mazel, P. Casas, Y. Labit, and P. Owezarski, “Sub-space clus-
tering, inter-clustering results association & anomaly correlation
for unsupervised network anomaly detection,” in Proceedings of
the 7th International Conference on Network and Services Man-
agement, ser. CNSM ’11. Laxenburg, AUT: International Feder-
ation for Information Processing, 2011, pp. 73–80.

[17] K. Flanagan, E. Fallon, P. Connolly, and A. Awad, “Network
anomaly detection in time series using distance based outlier de-
tection with cluster density analysis,” in 2017 Internet Technolo-
gies and Applications (ITA), 2017, pp. 116–121.

[18] T. Kenaza, K. Bennaceur, and A. Labed, “An efficient hybrid
svdd/clustering approach for anomaly-based intrusion detec-
tion,” ser. SAC ’18. New York, NY, USA: Association for Com-
puting Machinery, 2018, pp. 435–443.

[19] R. Bhatia, S. Benno, J. Esteban, T.V. Lakshman, and J. Grogan,
“Unsupervised machine learning for network-centric anomaly
detection in iot,” ser. Big-DAMA ’19. New York, NY, USA: As-
sociation for Computing Machinery, 2019, pp. 42–48.

[20] X. Lu, P. Liu, and J. Lin, “Network traffic anomaly detection
based on information gain and deep learning,” in Proceedings
of the 2019 3rd International Conference on Information Sys-
tem and Data Mining, ser. ICISDM 2019. New York, NY, USA:
Association for Computing Machinery, 2019, pp. 11–15.

[21] Y. Su, Y. Zhao, C. Niu, R. Liu, W. Sun, and D. Pei, “Robust
anomaly detection for multivariate time series through stochas-
tic recurrent neural network,” in Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery &
Data Mining, ser. KDD ’19. New York, NY, USA: Association
for Computing Machinery, 2019, pp. 2828–2837.

[22] P.P. Chapke and R.R. Deshmukh, “Intrusion detection system
using fuzzy logic and data mining technique,” ser. ICARCSET
’15. New York, NY, USA: Association for Computing Machin-
ery, 2015, p. 63.

[23] Z. Chiba, N. Abghour, K. Moussaid, A.E. Omri, and M. Rida,
“A hybrid optimization framework based on genetic algorithm

and simulated annealing algorithm to enhance performance of
anomaly network intrusion detection system based on bp neural
network,” in 2018 International Symposium on Advanced Elec-
trical and Communication Technologies (ISAECT), 2018, pp.
1–6.

[24] M. Bitaab and S. Hashemi, “Hybrid intrusion detection: Com-
bining decision tree and gaussian mixture model,” in 2017 14th
International ISC (Iranian Society of Cryptology) Conference on
Information Security and Cryptology (ISCISC), 2017, pp. 8–12.

[25] G. Pang, C. Shen, and A. van den Hengel, “Deep anomaly detec-
tion with deviation networks,” in Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery &
Data Mining, ser. KDD’19. New York, NY, USA: Association
for Computing Machinery, 2019, pp. 353–362.

[26] K.M. Prasad, A.R.M. Reddy, and K.V. Rao, “Bartd: Bio-inspired
anomaly based real time detection of under rated app-ddos attack
on web,” J. King Saud Univ.-Comput. Inf. Sci., vol. 32, no. 1, pp.
73–87, 2020.

[27] L.K.G. Gonzalo P. Suárez and N.H. Fefferman, “A case study
in tailoring a bio-inspired cyber-security algorithm: Designing
anomaly detection for multilayer networks,” J. Cyber Secur. Mo-
bil., vol. 8, no. 1, pp. 113–132, 2019.

[28] P. Ward, M. Pelc, J. Hawthorne, and R.J. Anthony, “Embedding
dynamic behaviour into a self-configuring software system,” in
Proceedings of 5th International Conference on Autonomic and
Trusted Computing. Springer LNCS, 2008, pp. 373–387.

[29] R.J. Anthony, M. Pelc, P. Ward, and J. Hawthorne, “A run-time
configurable software architecture for self-managing systems,”
in Proc. of ICAC 2008. IEEE Computer Society, 2008, pp. 207–
208.

[30] M. Pelc and R. Anthony, “Towards policy-based self-configu-
ration of embedded systems,” SIWN Syst. Infor. Sci. Notes, vol. 2,
no. 1, pp. 20–26, 2007.

[31] H.B. Mann, “Non-parametric test against trend,” Econometrica,
vol. 13, pp. 245–256, 1945.

[32] M.G. Kendall, Rank Correlation Methods. Charles Griffin, 1975.
[33] M. Hussain and I. Mahmud, “Pymannkendall: a python package

for non parametric mann kendall family of trend tests.” J. Open
Source Softw., vol. 4, no. 39, p. 1556, 2019.

[34] M. Pelc, “Github policies repository,” https://github.com/mar
iusz- pelc/policies, 2023 (accessed January 14, 2023).

[35] E. Dostatni, D. Mikołajewski, J. Dorożyński, and I. Rojek, “Eco-
logical design with the use of selected inventive methods includ-
ing ai-based,” Appl. Sci., vol. 12, no. 19, p. 9577, 2022.

[36] I. Rojek, E. Dostatni, D. Mikołajewski, L. Pawłowski, and
K.M. Węgrzyn-Wolska, “Modern approach to sustainable pro-
duction in the context of industry 4.0,” Bull. Pol. Acad. Sci. Tech.
Sci., p. e143828, 2022.

[37] J. Vanus, J. Kubicek, O.M. Gorjani, and J. Koziorek, “Using the
ibm spss sw tool with wavelet transformation for co2 prediction
within iot in smart home care,” Sensors, vol. 19, no. 6, p. 1407,
2019.

Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 4, p. e146285, 2023 11

https://doi.org/10.1109/CICN.2016.142
https://doi.org/10.1109/CICN.2016.142
https://github.com/mariusz-pelc/policies
https://github.com/mariusz-pelc/policies

	Introduction
	Related Work
	Anomaly Detection Software Architecture for network-enabled ubiquitous devices
	Smart Behaviour Through Policy-based Re-configuration
	Smart Anomaly Detection System
	Test environment and setup
	Role of AGILE FUZZY and AGILE POLICIES
	Test data
	Test cases

	Evaluation of the proposed system
	Conclusion

