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Abstract: The geodesy literature seems to offer comprehensive insight into the planar
Helmert transformation with Hausbrandt corrections. Specialist literature is mainly devoted
to the issues of 3D transformation. The determination of the sought values, coordinates in
the target system, requires two stages of computations. The classical approach yields ‘new’
coordinates of reference points in the target system that should not be changed in principle.
This requires the Hausbrandt corrections. The paper proposes to simplify the two-stage
process of planar transformation by assigning adjustment corrections to reference point
coordinates in the source system. This approach requires solving the Helmert transformation
by adjusting conditioned observations with unknowns. This yielded transformation results
consistent with the classical method. The proposed algorithm avoided the issue of correcting
the official coordinates of the control network and using additional (post-transformation)
corrections for the transformed points. The proposed algorithm for solving the plane Helmert
transformation for 𝑛 > 2 reference points simplifies the computing stages compared to the
classical approach. The assignment of adjustment corrections to coordinates of reference
points in the source system helps avoid correcting coordinates of the reference points in
the target system and additional corrections for transformed points. The main goal of any
data adjustment process with the use of the least squares method is (by definition) obtaining
unambiguous quantities that would strictly meet the mathematical relationships between
them. Therefore, this work aims to show such a transformation adjusting procedure, so that
no additional computational activities related to the correction of already aligned results are
necessary.
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1. Introduction

The Helmert transformation is a basic geometric transformation between coordinate
systems used in basic land surveying tasks, engineering surveying, geodesy, and pho-
togrammetry (Sjöberg, 2013; Zeng et al., 2018; Odziemczyk, 2020). Both 2D and 3D
transformations involve solving non-linear systems of equations with the least-squares
method where the rotation matrix is orthonormal. The 2D transformation is converted
into a linear problem and can be solved using classical methods. The 3D transformation
requires linearization and, usually, iterative algorithms (Zeng and Yi, 2011; Zeng et al.,
2016; Odziemczyk, 2020) or analytical algorithms (Shen et al., 2006; Zeng, 2015) which
deprives the rotationmatrix of its orthonormality (Sjöberg, 2013; Ioannidou and Pantazis,
2020). The iterative algorithm utilize the numerical (iterative) computation technique to
seek the transformation parameters. A good initial estimate of transformation parameters
is usually required to start the iterative computation. In some cases the inital estimate is
no needed, however it may cause much more computation time and burden (Zeng et al.,
2019). The analytical algorithm is rare to see because the complexity of mathematical
derivation. The analytical algorithms are fast and reliable because the parameters are
recovered directly by the given exact formulae Therefore, over the years the literature of-
fers much more focus on 3D transformations than 2D transformations (Zeng et al., 2019;
Bektas, 2022). However, 2D transformation can be streamlined regarding computation
steps as demonstrated here.
The problem of the Helmert transformation in plane usually occurs when converting

local (source) system coordinates into the national-level 2D coordinate system in the
national spatial frame of reference (Polish Journal of Laws (2020); Kadaj 2001). The
solution to this problem leads to the determination of transformation parameters (transla-
tion vector, rotation angle, and scale factor) based on at least two reference points. When
the reference point number is higher (𝑛 > 2), the transformation equation system be-
comes overdetermined (inconsistent). The problem can be solved with the least-squares
adjustment method. An adjustment ensures the mathematical consistency of the system
of equations but at the expense of the coordinates of the reference points in the target
coordinate system, which are ‘tainted’ by adjustment corrections (Vanicek and Steeves,
1996). The coordinates of reference points in the target system are usually those of official
control network points (detailed, third class, for example) that are ‘well determined’ and
should not be ‘corrected’ through transformation alignment. Using the classical approach
(Polish Journal of Laws (2020); Kadaj, 2002a), the problem is resolved by preserving the
official coordinates unchanged in the target system and applying so-called Hausbrandt
post-transformation corrections to the coordinates of the transformed points (Swieton,
2010; 2012).
The necessity to adjust the transformation is the inconsistency of the geometric ref-

erence point set system in the target system with its counterpart in the source system.
According to the Authors the two systems should be reconciled by correcting the coor-
dinates in the source (local) system because (presumably) they are burdened with much
greater uncertainty of point positioning (based on surveying) than the official coordinates
of the control (target system). This research gap was been filled by the transformation
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adjustment algorithm proposed here involves the assignment of adjustment corrections to
reference point coordinates in the source coordinate system to avoid the issue of correct-
ing official coordinates of control network points and additional (post-transformation)
corrections of the transformed points.

2. The classical Helmert transformation adjustment algorithm using
post-transformation corrections

Plane rectangular coordinates are usually transformed between systems according to the
Helmert (similarity) model. The initial transformation equations (Wysocki, 2011) define
a strict relation between the location (coordinates) of a point in the source system (𝑥, 𝑦)
and its coordinates in the target system (𝑋, 𝑌 ):{

𝑋 = 𝑋0 + 𝑥 · 𝐶 + 𝑦 · 𝑆,
𝑌 = 𝑌0 + 𝑦 · 𝐶 − 𝑥 · 𝑆, (1)

where: {
𝐶 = 𝑘 · cos𝛼,
𝑆 = 𝑘 · sin𝛼, (2)

𝐶, 𝑆 – the transformation coefficients, (𝑋0, 𝑌0) – the translation (coordinates of the origin
of the source system in the target system), 𝛼 – the rotation angle between the source and
target systems, 𝑘 – the transformation scale factor.
The four parameters of the transformation (𝑋0, 𝑌0, 𝛼, 𝑘) can be determined only

when there are at least two points of reference (𝑛). When there are more reference points
(𝑛 > 2), their coordinates need to be adjusted. The functional model of the adjustment
is based on transformation Equations (1) specified for each 𝑖-th reference point. The
coordinates in both coordinate systems are reduced to a certain reference point (the same
in both systems: 𝑥0, 𝑦0 and 𝑋0, 𝑌0) that is the centre of gravity of the geometric system
of the reference points (Kadaj, 2002b):{

𝑋𝑖 − 𝑋0 = (𝑥𝑖 − 𝑥0) · 𝐶 + (𝑦𝑖 − 𝑦0) · 𝑆,
𝑌𝑖 − 𝑌0 = (𝑦𝑖 − 𝑦0) · 𝐶 − (𝑥𝑖 − 𝑥0) · 𝑆,

𝑖 = 1, 2, 3, . . . , 𝑛, (3)

𝑥0 =
1
𝑛

𝑛∑︁
𝑖=1

𝑥𝑖 , 𝑦0 =
1
𝑛

𝑛∑︁
𝑖=1

𝑦𝑖 , 𝑋0 =
1
𝑛

𝑛∑︁
𝑖=1

𝑋𝑖 , 𝑌0 =
1
𝑛

𝑛∑︁
𝑖=1

𝑌𝑖 . (4)

This way, Eq. (3), Eq. (4), two parameters are eliminated from the system of transforma-
tion equations: the coordinates of the translation vector (𝑋0, 𝑌0).
Let us introduce auxiliary symbols for coordinate increments:

𝐴𝑖 = (𝑋𝑖 − 𝑋0) , 𝐵𝑖 = (𝑌𝑖 − 𝑌0) , 𝑎𝑖 = (𝑥𝑖 − 𝑥0) , 𝑏𝑖 = (𝑦𝑖 − 𝑦0) , (5)

Eq. (3) becomes: {
𝐴𝑖 = 𝑎𝑖 · 𝐶 + 𝑏𝑖 · 𝑆,
𝐵𝑖 = 𝑏𝑖 · 𝐶 − 𝑎𝑖 · 𝑆.

(6)
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In the classicalHelmert transformation, adjustment corrections (𝑉𝑋 , 𝑉𝑌 ) are assigned
to coordinates of each 𝑖-th reference point in the target system:{

𝐴𝑖 +𝑉𝑋𝑖
= 𝑎𝑖 · 𝐶 + 𝑏𝑖 · 𝑆,

𝐵𝑖 +𝑉𝑌𝑖 = 𝑏𝑖 · 𝐶 − 𝑎𝑖 · 𝑆.
(7)

It yields an overdetermined system of correction equations with two parameters
(coefficients 𝐶 and 𝑆): {

𝑉𝑋𝑖
= 𝑎𝑖 · 𝐶 + 𝑏𝑖 · 𝑆 − 𝐴𝑖 ,

𝑉𝑌𝑖 = 𝑏𝑖 · 𝐶 − 𝑎𝑖 · 𝑆 − 𝐵𝑖 .
(8)

The matrix form of system of Eq. (6) for 𝑛 reference points is:

V = A · X − L, (9)

where: 
𝑉𝑋𝑖

𝑉𝑌𝑖
· · ·

2𝑛,1 =

𝑎𝑖 𝑏𝑖
𝑏𝑖 −𝑎𝑖
· · · · · ·

2𝑛,2 ·
[
𝐶

𝑆

]
−


𝐴𝑖

𝐵𝑖

· · ·

2𝑛,1 . (10)

System of Eq. (9) conforms to the least squares condition (VT · V = min), when
parameters 𝐶 and 𝑆 are determined the following way:

X̂ =

(
AT · A

)−1
· AT · L =

[
𝐶

𝑆

]
. (11)

Next, using Eq. (2), we can calculate unique values of parameters 𝑘 and 𝛼:

𝑘 =
√︁
𝐶2 + 𝑆2 , (12)

𝛼 = atan
(
𝑆

𝐶

)
. (13)

Having substituted the calculated unknowns vector Eq. (11) into Eq. (9), we obtain
corrections (𝑉𝑋𝑖 , 𝑉𝑌 𝑖) to correct coordinates of the reference points in the target system:{

�̄�𝑖 = 𝑋𝑖 +𝑉𝑋𝑖
,

𝑌𝑖 = 𝑌𝑖 +𝑉𝑌𝑖 .
(14)

Transformation coefficients 𝐶 and 𝑆 Eq. (11) facilitate the conversion of transformed
points’ coordinates from the source system into the target system using Eq. (3):{

𝑋 𝑗 =
(
𝑥 𝑗 − 𝑥0

)
· 𝐶 +

(
𝑦 𝑗 − 𝑦0

)
· 𝑆 + 𝑋0 ,

𝑌 𝑗 =
(
𝑦 𝑗 − 𝑦0

)
· 𝐶 −

(
𝑥 𝑗 − 𝑥0

)
· 𝑆 + 𝑌0 ,

𝑗 = 1, 2, 3, . . . , 𝑡, (15)

where: 𝑗 – the index of the transformed point, 𝑡 – the number of transformed points.
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The coordinates of the reference points converted using Eq. (15) should be equal to
the corrected coordinates Eq. (14), which demonstrates the consistency of the adjusted
system of reference points:{

�̄�𝑖 = (𝑥𝑖 − 𝑥0) · 𝐶 + (𝑦𝑖 − 𝑦0) · 𝑆 + 𝑋0 ,

𝑌𝑖 = (𝑦𝑖 − 𝑦0) · 𝐶 − (𝑥𝑖 − 𝑥0) · 𝑆 + 𝑌0 .
(16)

Accuracy is assessed by calculating mean square errors of the coordinate transfor-
mation 𝑀𝑋 , 𝑀𝑌 and the general transformation error 𝑀𝑇 :

𝑀𝑋 = ±

√︄∑
𝑉2
𝑋𝑖

𝑛
, 𝑀𝑌 = ±

√︄∑
𝑉2
𝑌𝑖

𝑛
, (17)

𝑀𝑇 = ±
√︃
𝑀2

𝑋
+ 𝑀2

𝑌
, (18)

The Hausbrandt post-transformation correction consists in restoring values of the
coordinates of the reference points in the target system Eq. (16) to the state before the
adjustment (Hausbrandt, 1971; Beluch, 2009; Swieton, 2012):{

𝑋𝑖 = �̄�𝑖 −𝑉𝑋𝑖
,

𝑌𝑖 = 𝑌𝑖 −𝑉𝑌𝑖 .
(19)

Next, the adjustment corrections 𝑉𝑋𝑖 , 𝑉𝑌 𝑖 Eq. (9) are used to calculate the post-
transformation corrections (𝑉𝑋 𝑗 , 𝑉𝑌 𝑗) for the coordinates of the transformed points
Eq. (15):

𝑉𝑋 𝑗 =

∑︁ (
𝑉𝑋𝑖

· 1
𝑑2
𝑖 𝑗

)
∑︁ (

1
𝑑2
𝑖 𝑗

) , 𝑉𝑌 𝑗 =

∑︁ (
𝑉𝑌𝑖 ·

1
𝑑2
𝑖 𝑗

)
∑︁ (

1
𝑑2
𝑖 𝑗

) , (20)

where: 𝑑𝑖 𝑗 – the distance of the 𝑗-th transformed point to the 𝑖-th reference point.

3. Proposed algorithm for adjusting reference points in the source system
in the Helmert transformation

In this case, the adjustment corrections (𝑉𝑥 , 𝑉𝑦) are assigned to the coordinates of the
reference points in the source system (𝑥𝑖 , 𝑦𝑖) that are represented in transformation
Eq. (6) by increments 𝑎𝑖 , 𝑏𝑖 in accordance with Eq. (5). Therefore, the functional model
of the adjustment consists of conditional equations that can be expressed (for each 𝑖-th
reference point) as: { (

𝑎𝑖 +𝑉𝑥𝑖

)
· 𝐶 +

(
𝑏𝑖 +𝑉𝑦𝑖

)
· 𝑆 = 𝐴𝑖 ,(

𝑏𝑖 +𝑉𝑦𝑖

)
· 𝐶 −

(
𝑎𝑖 +𝑉𝑥𝑖

)
· 𝑆 = 𝐵𝑖 .

(21)
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As is apparent, the conditional Eq. (21) also have parameters, the 𝐶 and 𝑆 transfor-
mation coefficients. Therefore, it is a system of non-linear conditional equations with
unknowns. After expansion into a Taylor series (regarding corrections𝑉𝑥 ,𝑉𝑦 and param-
eters 𝐶, 𝑆), Eq. (21) yield:{

𝑎𝑖 · 𝛿𝐶 + 𝑏𝑖 · 𝛿𝑆 = −𝐶0 · 𝑉𝑥𝑖 − 𝑆0 · 𝑉𝑦𝑖 + 𝜔𝑥𝑖 ,

𝑏𝑖 · 𝛿𝐶 − 𝑎𝑖 · 𝛿𝑆 = −𝐶0 · 𝑉𝑦𝑖 + 𝑆0 · 𝑉𝑥𝑖 + 𝜔𝑦𝑖 ,
(22)

where: {
𝜔𝑥𝑖 = −𝑎𝑖 · 𝐶0 − 𝑏𝑖 · 𝑆0 + 𝐴𝑖 ,

𝜔𝑦𝑖 = −𝑏𝑖 · 𝐶0 + 𝑎𝑖 · 𝑆0 + 𝐵𝑖 .
(23)

System Eq. (22) can be represented generally as a matrix (for 𝑛 reference points):

A · 𝜹X = C · V + W, (24)

where:

A =


𝑎1 𝑏1
𝑏1 −𝑎1
𝑎2 𝑏2
𝑏2 −𝑎2
· · · · · ·

2𝑛,2
, 𝜹𝑿 =

[
𝛿𝐶

𝛿𝑆

]
, C =



−𝐶0 −𝑆0 · · · 0 0
𝑆0 −𝐶0 · · · 0 0

· · · · · · . . . · · · · · ·
0 0 · · · −𝐶0 −𝑆0
0 0 · · · 𝑆0 −𝐶0

2𝑛,2𝑛
, (25)

V =
[{
𝑉𝑥𝑖 ; 𝑉𝑦𝑖

}
; 𝑖 = 1, 2, . . . , 𝑛

]𝑇
, W =

[{
𝜔𝑥𝑖 ; 𝜔𝑦𝑖

}
; 𝑖 = 1, 2, . . . , 𝑛

]𝑇
.

We will use the pair of transformation Eq. (6) for any reference point (such as 𝑖 = 1)
to calculate the approximate values of 𝐶0, 𝑆0:{

𝑎1 · 𝐶0 + 𝑏1 · 𝑆0 = 𝐴1 ,

𝑏1 · 𝐶0 − 𝑎1 · 𝑆0 = 𝐵1 ,
(26)

in matrix form:
A0 · X0 = L0 ,

[
𝑎1 𝑏1
𝑏1 −𝑎1

]
·
[
𝐶0
𝑆0

]
=

[
𝐴1
𝐵1

]
. (27)

Having solved system Eq. (27), we obtain:

X0 = A−1
0 · L0 =

[
𝐶0
𝑆0

]
. (28)

In the next step, the pseudo-corrections vector v is substituted into thematrix Eq. (24):

A · 𝜹X = W + v, (29)

where:
v = C · V. (30)
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Under the least squares condition:

vT · Qv · v = min, (31)

system Eq. (29) is solved:

𝜹X =

(
AT · Qv · A

)−1
· AT · Qv · W. (32)

Matrix Qv is obtained under the variance-covariance propagation law (Wisniewski,
2005; Gargula, 2011), following the form of Eq. (30):

Qv = C · QV · CT, (33)

where:
QV = P−1 = diag

{
1
𝑝𝑥𝑖

;
1
𝑝𝑦𝑖
; 𝑖 = 1, 2, 3, . . . , 𝑛

}
, (34)

P – the weighting matrix.
Weighing of reference point coordinates in the source system remains to be decided:

for an 𝑖-th reference point, weights 𝑝𝑥 , 𝑝𝑦 can be assumed (for example) as inversely
proportional to increment moduli 𝑎𝑖 , 𝑏𝑖 (see Eq. (5) and Eq. (4)), for example:

𝑝𝑥𝑖 =
1
|𝑎𝑖 |

, 𝑝𝑦𝑖 =
1
|𝑏𝑖 |

, (35)

or to the distance from this point to the centre of gravity 𝑥0, 𝑦0.
The vector of unknowns 𝜹X, calculated according to (32), helps determine the pseudo-

corrections vector v (based on Eq. (29)):

v = A · 𝜹X − W. (36)

The adjustment corrections vector V is determined (in the general case of a system
of conditional equations – see e.g. Baran, 1999; Gargula, 2009) from the equation:

V = QV · CT · Q−1
v · v. (37)

Still, as in this case, the system of Eq. (30) is uniquely determinable (the number of
corrections 𝑉𝑥 , 𝑉𝑦 is equal to the number of equations) and vector V can be obtained in
the following way (assuming an inverse of matrix C):

V = C−1 · v. (38)

The final results of the transformation adjustment using the proposed method are
unique transformation parameters (𝐶, 𝑆) and corrected coordinates of the reference
points in the source system:

X = X0 + 𝜹X =

[
𝐶0
𝑆0

]
+

[
𝛿𝐶

𝛿𝑆

]
, (39)
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𝑥𝑖 = 𝑥𝑖 +𝑉𝑥𝑖 ,

�̄�𝑖 = 𝑦𝑖 +𝑉𝑦𝑖 .
(40)

The adjusted values (Eq. (39) and Eq. (40)) should strictly satisfy the initial system of
transformation Eq. (1) including intermediate steps Eq. (4) and Eq. (5).
Such adjusted transformation parameters Eq. (39) provide a basis for converting the

coordinates of the transformed points from the source system into the target system
according to Eq. (16). The reference points, converted for control according to the
same Eq. (16), are assigned zero corrections in the target system (remain unchanged as
originally assumed).
The mean-square errors of the transformation of coordinates 𝑥, 𝑦 and the general

transformation error can be calculated from adjustment corrections for the reference
points in the source system (𝑉𝑥 , 𝑉𝑦) with equations similar to Eq. (17) and Eq. (18).
The complete calculation procedure (taking into account the new algorithm) is shown

in the diagram (Fig. 1).

Fig. 1. Diagram of the proposed algorithm of Helmert transformation adjustment
(with reference to the corresponding equations)
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4. Numerical example. Results and discussion

The method for adjusting the Helmert transformation proposed here (Section 3) has been
tested in practice on a dataset (Table 1).

Table 1. Input data for the Helmert transformation between coordinate systems

Point
no.

Source system Target system
𝑥 𝑦 𝑋 𝑌

1* 1000.000 1000.000 5552693.250 6583648.165
2* 998.301 1074.615 5552689.790 6583573.590
3* 917.260 1117.813 5552767.584 6583524.860
101 1000.000 1024.949
102 1000.968 1049.891
103 988.870 1097.184
104 965.361 1104.535
105 941.150 1110.333

* – reference points

The calculations were performed in four variants depending on reference point coor-
dinate weighing. In the first transformation variant (I), the weights were equal to inverses
of increment moduli 𝑎𝑖 , 𝑏𝑖 (see Eq. (35)). The second variant (II) involved weights
inversely proportional to squares of increments 𝑎𝑖 , 𝑏𝑖:

𝑝𝑥𝑖 =
1
𝑎2
𝑖

, 𝑝𝑦𝑖 =
1
𝑏2
𝑖

. (41)

The weights in the third variant (III) followed the formula:

𝑝𝑥𝑖 = 𝑝𝑦𝑖 =
1

𝑎2
𝑖
+ 𝑏2

𝑖

. (42)

In the fourth variant (IV), the weights were the inverse of the distance from the 𝑖-th
point to the centre of gravity 𝑥0, 𝑦0:

𝑝𝑥𝑖 = 𝑝𝑦𝑖 =
1√︃

𝑎2
𝑖
+ 𝑏2

𝑖

. (43)

The results of the Helmert transformation in the proposed method of adjusting con-
ditioned observations with unknowns were summarized in Tables 2–5.
For comparison’s sake, the coordinates were also transformed using the classical

method (presented in Section 2), also including the Hausbrandt post-transformation
correction (Tables 6, 7).
The results of the four variants of transformations were juxtaposed with the classical

method results. The transformations done with adjustment of conditioned observations
with unknowns and classically with the intermediate method employing the Hausbrandt
corrections yielded similar results regarding transformation parameters and accuracy.
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Table 2. Results of the Helmert transformation according to the proposed algorithm – Variant I

Point
no.

Source coordinates
(adjusted) Target coordinates Corrections of source

coordinates
𝑥𝑊 𝑦𝑊 𝑋 𝑌 𝑉𝑥 𝑉𝑦

1* 1000.019 999.991 5552693.250 6583648.165 0.019 –0.009
2* 998.272 1074.625 5552689.790 6583573.590 –0.029 0.010
3* 917.270 1117.812 5552767.584 6583524.860 0.010 –0.001
101 1000.000 1024.949 5552691.529 6583623.266 𝑀𝑥 = 0.0211
102 1000.968 1049.891 5552688.824 6583598.452 𝑀𝑦 = 0.0078
103 988.870 1097.184 5552697.596 6583550.430 𝑀𝑡 = 0.0225
104 965.361 1104.535 5552720.536 6583541.458 𝑘 = 1.000011
105 941.150 1110.333 5552744.284 6583533.986 𝛼 = 204.4418𝑔

* – reference points

Table 3. Results of the Helmert transformation according to the proposed algorithm – Variant II

Point
no.

Source coordinates
(adjusted) Target coordinates Corrections of source

coordinates
𝑥𝑊 𝑦𝑊 𝑋 𝑌 𝑉𝑥 𝑉𝑦

1* 1000.023 999.993 5552693.250 6583648.165 0.023 –0.007
2* 998.271 1074.626 5552689.790 6583573.590 –0.030 0.011
3* 917.268 1117.809 5552767.584 6583524.860 0.008 –0.004
101 1000.000 1024.949 5552691.531 6583623.268 𝑀𝑥 = 0.0222
102 1000.968 1049.891 5552688.825 6583598.454 𝑀𝑦 = 0.0081
103 988.870 1097.184 5552697.594 6583550.431 𝑀𝑡 = 0.0236
104 965.361 1104.535 5552720.533 6583541.457 𝑘 = 1.000015
105 941.150 1110.333 5552744.281 6583533.984 𝛼 = 204.4456𝑔

* – reference points

Table 4. Results of the Helmert transformation according to the proposed algorithm – Variant III

Point
no.

Source coordinates
(adjusted) Target coordinates Corrections of source

coordinates
𝑥𝑊 𝑦𝑊 𝑋 𝑌 𝑉𝑥 𝑉𝑦

1* 1000.016 999.991 5552693.250 6583648.165 0.016 –0.009
2* 998.271 1074.624 5552689.790 6583573.590 –0.030 0.009
3* 917.274 1117.813 5552767.584 6583524.860 0.014 0.000
101 1000.000 1024.949 5552691.527 6583623.266 𝑀𝑥 = 0.0210
102 1000.968 1049.891 5552688.823 6583598.451 𝑀𝑦 = 0.0070
103 988.870 1097.184 5552697.597 6583550.429 𝑀𝑡 = 0.0222
104 965.361 1104.535 5552720.537 6583541.457 𝑘 = 1.000034
105 941.150 1110.333 5552744.286 6583533.986 𝛼 = 204.4396𝑔

* – reference points
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Table 5. Results of the Helmert transformation according to the proposed algorithm – Variant IV

Point
no.

Source coordinates
(adjusted) Target coordinates Corrections of source

coordinates
𝑥𝑊 𝑦𝑊 𝑋 𝑌 𝑉𝑥 𝑉𝑦

1* 1000.015 999.990 5552693.250 6583648.165 0.015 –0.010
2* 998.272 1074.623 5552689.790 6583573.590 –0.029 0.008
3* 917.274 1117.814 5552767.584 6583524.860 0.014 0.001
101 1000.000 1024.949 5552691.526 6583623.265 𝑀𝑥 = 0.0207
102 1000.968 1049.891 5552688.823 6583598.451 𝑀𝑦 = 0.0074
103 988.870 1097.184 5552697.597 6583550.428 𝑀𝑡 = 0.0220
104 965.361 1104.535 5552720.538 6583541.457 𝑘 = 1.000027
105 941.150 1110.333 5552744.287 6583533.987 𝛼 = 204.4385𝑔

* – reference points

Table 6. Results of the Helmert transformation according to the classical method

Point
no.

Source coordinates
(adjusted) Target coordinates Corrections of source

coordinates
𝑥 𝑦 𝑋𝑊 𝑌𝑊 𝑉𝑥 𝑉𝑦

1* 1000.000 1000.000 5552693.263 6583648.152 0.013 –0.013
2* 998.301 1074.615 5552689.762 6583573.600 –0.028 0.010
3* 917.260 1117.813 5552767.599 6583524.864 0.015 0.004
101 1000.000 1024.949 5552691.526 6583623.263 𝑀𝑥 = 0.0195
102 1000.968 1049.891 5552688.823 6583598.449 𝑀𝑦 = 0.0098
103 988.870 1097.184 5552697.599 6583550.429 𝑀𝑡 = 0.0218
104 965.361 1104.535 5552720.539 6583541.459 𝑘 = 0.999997
105 941.150 1110.333 5552744.288 6583533.989 𝛼 = 204.4363𝑔

* – reference points

Table 7. The Hausbrandt post-transformation correction

Point
no.

Source coordinates
(adjusted) Target coordinates Corrections of source

coordinates
𝑥 𝑦 𝑋𝑊 𝑌𝑊 𝑉𝑥 𝑉𝑦

1* 1000.000 1000.000 5552693.250 6583648.165 – –
2* 998.301 1074.615 5552689.790 6583573.590 – –
3* 917.260 1117.813 5552767.584 6583524.860 – –
101 1000.000 1024.949 5552691.521 6583623.272 0.0051 –0.0084
102 1000.968 1049.891 5552688.842 6583598.444 –0.0181 0.0050
103 988.870 1097.184 5552697.621 6583550.421 –0.0215 0.0078
104 965.361 1104.535 5552720.546 6583541.453 –0.0071 0.0053
105 941.150 1110.333 5552744.278 6583533.985 0.0096 0.0039

* – reference points
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These characteristics stem from the least-squares method. Coordinates of the transformed
points have been variation analysed. To this end, we determined differences among plane
coordinates of the points following transformation.{

𝑑𝑋 𝑗 = 𝑋𝐻
𝑗 − 𝑋 𝑗 ,

𝑑𝑌 𝑗 = 𝑌𝐻
𝑗 − 𝑌 𝑗 ,

(44)

and their resultant value that is a linear measure of transformation translations:

𝑑 𝑗 =

√︃
𝑑𝑋2

𝑗
+ 𝑑𝑌2

𝑗
, (45)

where: 𝑋𝐻 , 𝑌𝐻 – the coordinates of transformed points ( 𝑗) following the Hausbrandt
correction.
Then, we extracted the maximum and minimum values (for standard deviations of

differences) from the set of plane coordinates and their resultant and calculated their
basic statistics: standard deviation (𝜎), mean deviation (𝐷), and range (𝑅).
Measures of dispersion of coordinate differences and their resultant around the

mean demonstrated a significant consistency of the solutions achieved with the proposed
method and the classical transformation procedure (Table 8). The maximum differences
between the coordinates were around ±25 mm. The differences in transformation results
clustered around the mean within ±15 mm and deviated from it not more than ±12 mm
on average. The variability range of the features did not exceed 38 mm.
The measures of variability demonstrated a consistency of the results of the classical

transformation using the Hausbrandt corrections with each of the four proposed variants
of reference point coordinates weighing (Table 8). The differences in the coordinates
varied within the mean error of each sample for all four weighing variants (Fig. 2).

Fig. 2. Scatter plot of differences in coordinates of the transformed points for fourweighing variants compared
to the classical transformation (mean error bars for variant I)
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Table 8.Measures of variability in differences among plane coordinates of points following the transformation
and their resultant, in meters

Variant |Max| |Min| Mean 𝜎 𝐷 𝑅

𝑑𝑋 𝑗 0.0245 0.0058 0.0076 0.0143 0.0117 0.0328
I 𝑑𝑌 𝑗 0.0091 0.0008 –0.0033 0.0059 0.0045 0.0147

𝑑 𝑗 0.0262 0.0059 0.0145 0.0080 0.0064
𝑑𝑋 𝑗 0.0265 0.0032 0.0084 0.0150 0.0122 0.0371

II 𝑑𝑌 𝑗 0.0101 0.0010 –0.0037 0.0062 0.0049 0.0140
𝑑 𝑗 0.0283 0.0033 0.0150 0.0093 0.0068
𝑑𝑋 𝑗 0.0239 0.0062 0.0074 0.0143 0.0117 0.0321

III 𝑑𝑌 𝑗 0.0076 0.0007 –0.0027 0.0054 0.0041 0.0132
𝑑 𝑗 0.0251 0.0082 0.0142 0.0077 0.0065
𝑑𝑋 𝑗 0.0232 0.0057 0.0071 0.0142 0.0115 0.0320

IV 𝑑𝑌 𝑗 0.0076 0.0015 –0.0026 0.0055 0.0040 0.0139
𝑑 𝑗 0.0244 0.0085 0.0141 0.0073 0.0063

5. Summary and conclusions

The proposed algorithm for solving the plane Helmert transformation for 𝑛 > 2 ref-
erence points simplifies the computing stages compared to the classical approach. The
assignment of adjustment corrections to coordinates of reference points in the source
system helps avoid correcting coordinates of the reference points in the target system and
additional corrections for transformed points. Such reduced computations do not affect
the qualitative or quantitative characteristics of the outcome. The procedural advantage
of the proposed algorithm is summarized in the table with similarities and differences
between the two approaches (Table 9).

Table 9. Similarities and differences between the classical and proposed approaches to solving the Helmert
transformation

SIMILARITIES BETWEEN THE CLASSICAL TRANSFORMATION PROCEDURE AND
THE NEW ADJUSTMENT ALGORITHM

The number of reference points (𝑛 > 2) for calculations using the least-squares method
Adjustment results are unique parameters of the transformation between the source and target systems

Accuracy assessment
Values of coordinates in the target system

DIFFERENCES
Classical approach Proposed adjustment algorithm

Corrections are assigned to coordinates of reference
points in the target system as a result of the transfor-
mation

Corrections are assigned to coordinates of reference
points in the source system as a result of the trans-
formation

The transformation problem is solved using the in-
termediate observations method

The transformation problem is solved using the con-
ditioned observations with unknowns method

Coordinates of transformed points in the target sys-
tem require the Hausbrandt correction after the
transformation

Coordinates of transformed points in the target sys-
tem after the transformation are final
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