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Abstract
Is this article simulation of statistical measurements is performed on the basis of which the analysis of the
standard deviation of the obtained results is carried out. It is shown that the standard deviation is minimum
and independent from measurement duration while an object is in the state of equilibrium. For objects in
a stationary non-equilibrium state the standard deviation depends on the duration measurements and the
parameters of the state. The influence of these factors on the standard deviation is assessed with equation
which includes the relaxation time. The value of the relaxation time is determined by approximating the
energy spectrum of the studied signals. The analysis of energy spectra showed that the spectrum of white
noise is inherent in objects in equilibrium; the flicker component of the spectrum occurs when the state of
the object deviates from equilibrium.
Keywords: standard deviation, measurement, relaxation time, energy spectrum.
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1. Introduction

In statistical measurements of the physical quantity 𝑋 (𝑡), the measurement results are obtained
in the form of time series 𝑥1 (𝑡), 𝑥2 (𝑡), . . . , 𝑥𝑘 (𝑡) [1, 2], looking graphically as the deviations of
the measured value from the mean, and carry some information [3–5]. While processing such
results, first of all the mean value 𝑋 and its variance 𝐷

𝑋
are determined. If the obtained results

are independent, then according to the central limit theorem, the variance should decrease with

the number of measurements 𝑁 as 𝐷
𝑋
=

𝜎2
𝑥

𝑁
[1, 6]. Here 𝜎𝑥 is the standard deviation (SD) of

the single measurement. That is, for the independent multiple measurements, the random error
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characterized by the variance 𝐷
𝑋

or SD 𝜎𝑥 =
√
𝐷

𝑋
=

𝜎𝑥√
𝑁

can be reduced to an arbitrarily small

value by increasing the number of measurements 𝑁 .
However, an increase in the number of 𝑁 requires the prolongation of measurements 𝑇𝑚, and

the condition of independence of the measurement results does not unambiguously consider the
drift of the measured value over time. While measuring, the physical quantities alter permanently.
Thus, the statistical stability of the obtained means is broken. In addition, in [7] has been found that
the variance of the mean value first decreases and later stabilizes with the number of measurements
or their duration enlargement.

This article aims to simulate statistical measurements and analyze the dependence of the
standard deviation on their duration and also experimental verification of theoretical statements.

2. Simulation of statistic measurements

Statistical measurements of “potential difference” or “voltage” were simulated by the differ-
ence in the number of moving elementary balls Δ𝑛, which within Δ𝑡 have touched the left and
right rectangle sides. While computing, it was deployed the inner vertical partitions that change
the structure of the object under study (Fig. 1).

Fig. 1. View of the computer model of the “potential difference” measurement.

Before starting the simulation, the following is set: rectangle size, number of balls, number
and coordinates of partitions, partition lengths, parameters of velocity, parameters of balls normal
distribution (mean value 𝜗 and standard deviationΔ𝜗), measurement duration𝑇meas, and sampling
interval Δ𝑡.

In the process of chaotic movement of balls over the considered area, it happens that, due to
their elasticity, they bounce from the sides of the rectangle and partitions. This model is similar to
the model [8] of the snooker applied to generate random noise of arbitrary statistical properties.

First, simulations were performed for a model simulating an equilibrium system – a rectangle
without partitions, in which the probability of finding an elementary ball in any place of the
rectangle is the same. Later, we consider a model that simulates a stationary non-equilibrium
system – a rectangle with partitions where the probability of finding an elementary sphere in
any place of the rectangle is not the same due to the presence of partitions. It takes some time
𝜏0 to restore equal probability. Figure 2 shows the appearance of the models of equilibrium
and stationary non-equilibrium systems, as well as corresponding histograms of measurement
results.

When modeling statistical measurements, the variable parameters of the models were only
the number, length, and location of partitions. Other simulation parameters 𝑖.𝑒., the size of the
rectangle, the number of elementary balls, mean velocity and its standard deviation, duration
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Fig. 2. Models of equilibrium (X0) and stationary non-equilibrium systems (X1–X4) and corresponding histograms
of measurement results.

of the simulation, and number of results – were permanent for all models. The time series of
simulated results of statistical measurements are as shown in Fig. 3, where 𝑚 is the number of
samples.

Fig. 3. Time series of simulated results of statistical measurements.

Before starting the model, the number, length and location of the partitions are fixed and
remain unchanged until the end of the simulation. Therefore, we obtain time series of results of
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measuring “potential difference” or “voltage” with time-invariant parameters of the object. If the
measurement results are independent, then, according to the central limit theorem, the law of
distribution of such results approaches the normal law. Figure 2 shows that the histograms for
models X0 and X1 are similar to the normal distribution law. That is, for balanced (X0) and weakly
unbalanced objects (X1) independence of measurement results and their normal distribution law
are characteristic. Some difference between the histograms for models of unbalanced objects
X2–X4 from the normal distribution law may indicate a certain interdependence of measurement
results obtained for unbalanced objects.

From the total number of 11000 measurement results 50 groups were selected (𝑁 = 50
groups of measurements have been performed). It should be explained here that within each
group 𝑘 = 100 consecutive measurements at time intervals Δ𝑡 were performed. The considered
groups were placed randomly along the 𝑡 axis in Fig. 4.

Fig. 4. Placement of sample groups.

While processing the results of measurements for each model based on the sampling of 50
groups, the means 𝑋 and SD 𝜎𝑥 of means at different Δ𝑡 (at different 𝑇𝑚) were determined
(Table 1):

Table 1. Dependence of the standard deviation 𝜎𝑥 of the mean value of 50 sample groups on the measurement
duration 𝑇𝑚.

Δ𝑡 [s]
𝑇𝑚 =

𝑘Δ𝑡

𝑋0: 𝑋0 = 0.036;
𝜎𝑥 = 9.800

X1: 𝑋1 = −0.286;
𝜎𝑥 = 9.930

X2: 𝑋2 = 0.967;
𝜎𝑥 = 9.716

X3: 𝑋3 = 0.148;
𝜎𝑥 = 9.982

X4: 𝑋4 = −1.059;
𝜎𝑥 = 10.649

[s] 𝑋 𝜎𝑥 𝑋 𝜎𝑥 𝑋 𝜎𝑥 𝑋 𝜎𝑥 𝑋 𝜎𝑥

0.01 1 0.036 0.922 –0.254 1.917 1.031 2.122 0.286 3.333 –0.715 3.736

0.05 5 0.136 0.860 –0.920 1.162 0.917 1.295 0.476 1.748 0.850 1.471

0.1 10 0.112 0.920 –0.771 1.121 0.565 1.568 0.415 1.438 0.105 1.969

0.5 50 0.060 0.793 –0.668 0.854 0.902 0.798 0.448 1.103 0.608 1.274

1 100 0.152 0.869 –0.417 0.944 1.043 0.803 0.184 0.806 -0.794 1.188

The upper row of Table 1 shows the means and their SDs of the whole set of measurement
results (11000 results at Δ𝑡 = 0.01 s, 𝑇𝑚 = 110 s) for each model. The dependence of 𝜎𝑥 on 𝑇𝑚
is shown in Fig. 5. Analyzing these results, we can conclude that:
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1. For the model of the equilibrium system X0, the value of 𝜎𝑥 ≈ 0.9 almost does not depend
on 𝑇𝑚.

2. For models of non-equilibrium systems X1–X4 the value of 𝜎𝑥 decreases with 𝑇𝑚, and for
X4 the value of 𝜎𝑥 at 𝑇𝑚 = 1 s is the largest.

3. At 𝑇𝑚 = 100 s, the value of 𝜎𝑥 is approximately the same for the models of equilibrium X0
and non-equilibrium X1–X4 systems.

Fig. 5. Dependence of the standard deviation 𝜎𝑥 of the mean of models X0–X4 on the measurement duration 𝑇𝑚.
(Data are received from the above Table 1)

Figure 5 testifies that the more partitions contains the model, the more evident becomes the
dependence of 𝜎𝑥 on 𝑇𝑚.

Table 2 and Fig. 6 show the dependences of SD 𝜎𝑥 on the number of measurements 𝑘 at the
same duration of 𝑇𝑚 (for instance, for models X0, X3, and X4).

Table 2. Dependences of SD 𝜎𝑥 on the number of measurements 𝑘 at the same duration of 𝑇𝑚.

Δ𝑡 [s] 𝑘 𝑇𝑚 [s] 𝑁
X0 X3 X4

𝜎𝑥

0.01 100 1 50 0.922 3.333 3.736

0.05 20 1 50 1.854 3.361 3.679

0.1 10 1 50 3.202 4.434 3.442

0.05 100 5 50 0.860 1.748 1.471

0.1 50 5 50 1.328 2.359 2.441

0.5 10 5 50 2.989 3.211 2.778

0.1 100 10 50 0.920 1.434 1.945

0.5 20 10 50 2.440 2.427 1.954

1.0 10 10 50 3.036 3.188 3.080

0.5 100 50 50 0.793 1.103 1.274

1 50 50 50 1.105 1.474 1.409

Note: here 𝑁 is the number of measurements/groups, which determines the means and their SDs.
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Fig. 6. Dependence of the standard deviation 𝜎𝑥 on the number of results 𝑘 at the same measurement
duration 𝑇𝑚 for a particular group.

It can be seen (Table 2 and Fig. 6) that only for model X0 the dependence of 𝜎 on the number

of measurements 𝑘 is close to that previously estimated by the formula: 𝜎 =

√√√
1
𝑘

𝑘∑︁
𝑖=1

(𝑥𝑖 − 𝑥)2,

regardless of the duration 𝑇𝑚. For models X3 and X4, the dependences of 𝜎 on the number of
measurements at small values of 𝑇𝑚 are not similar to model X0 [9].

Analysis of the data (Table 1 and Table 2, Fig. 5 and Fig. 6) gives grounds to check the well-
known expressions for SD applied for assessing results of measurements for the objects in a state
of equilibrium [10, 11]. To evaluate similar results for objects in a stationary non-equilibrium
state, it seems necessary to take into account the error Δ𝜎𝑥 caused by the measurement duration.
The value of the latter decreases (Fig. 5) with 𝑇𝑚 as [12]:

Δ𝜎𝑥 ≈ 𝐶
√
𝐹𝑒𝑇𝑚

(1)

where 𝐹𝑒 is the equivalent band of the signal stochastic spectrum (the time series in Fig. 3 is an
example of such signal); 𝐶 is a constant, dependent on the shape of the spectrum.

The additional error depends on the state of the object under study [13–15] (Fig. 5). If we
estimate the non-equilibrium of the model by the number of partitions, then the farther from the
equilibrium the model (X4) is, the greater the additional error. Depending on the state of the
object, this error could be estimated applying a parameter for non-equilibrium. Such parameter
is considered to be the relaxation time 𝜏. It goes to infinity for the equilibrium system. So, for the
equilibrium system the additional error Δ𝜎𝑥 with its inversely proportional to 𝜏 go to zero.

Since the SD of the measured parameters of the equilibrium object is independent of mea-
surement duration (Table 1, Fig. 5), it becomes minimal for this method of measurement (with
the given number of measurements and obtained results). Then the general expression for SD of
the parameters of the stationary non-equilibrium object must contain 2 components. One is the
minimal value of SD inherent in the equilibrium object; the other component is the SD, dependent
on measurement duration (1) and the state of the object:

𝜎𝐻 = 𝜎0

(
1 + 𝐶√︁

(𝑇𝑚 + 𝜏)Δ 𝑓

)
, (2)
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where 𝜎0 =
𝜎
√
𝑁

, 𝑁 is the number of measurement groups; Δ 𝑓 is the bandwidth of the studied

process. From (2), the additional error, which depends on the object state with 0 < 𝜏 � ∞,
becomes noticeable at 𝑇𝑚 ≤ 𝜏, 𝑖.𝑒., at small values of 𝑇𝑚 (Fig. 4). For 𝑇𝑚 > 𝜏, 𝜎𝐻 → 𝜎0.

Formula (2) makes it possible to correctly estimate the measurement error of parameters of
real objects (non-equilibrium objects). With known 𝑇𝑚, Δ 𝑓 and determined 𝜏, the measurement
error can be calculated a priori. Analysis of Formula (2) shows that in order to reduce 𝜎𝐻 with
a short duration of 𝑇𝑚 measurements, it is necessary to increase the equilibrium of the research
object itself (𝜏 � 0).

The simulation results collected in Table 1 and depicted in Fig. 5 were compared with the
results of analysis of measurements of the means and SDs for stochastic signals of electroen-
cephalogram (EEG) measurements of 6 patients. The signals EEG-2, EEG-2-1, EEG-2-2 were
recorded from the problem area of the brain (tumor) and the signals EEG-3, EEG-3-1, EEG-3- 2
were recorded from a healthy area of the brain. The duration of the recording of each EEG was 23
s at the sampling frequency of 178 Hz. The number of digitized EEG results was 4094 (Fig. 7).

Fig. 7. Time series of electroencephalogram measurement results.

Similarly to computer models, while processing the results of EEG measurements of each
patient based on the means of 50 groups of 100 results in each group were calculated by the mean
𝑈 and SDs 𝜎

𝑈
of means at different 𝑇𝑚 (Table 3, Table 4).

Table 3. Dependence of the standard deviations 𝜎
𝑈

of the mean value of electroencephalograms
recorded from the problem area of the brain on the measurement duration 𝑇𝑚.

Δ𝑡 [s] 𝑇𝑚 [s]
EEG-2 EEG-2-1 EEG-2-2

𝑈 [μV] 𝜎
𝑈

[μV] 𝑈 [μV] 𝜎
𝑈

[μV] 𝑈 [μV] 𝜎
𝑈

[μV]

0.0056 0.56 –31.77 13.64 22.92 20.41 12.68 17.52

0.028 2.8 –32.32 3.63 25.15 4.41 11.79 9.90

0.056 5.6 –32.14 2.33 24.00 3.86 10.75 4.71

0.112 11.2 –32.17 1.793 24.34 3.68 11.80 2.14

0.225 22.5 –31.07 4.623 21.95 3.89 13.53 1.58
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Table 4. The dependence of the standard deviations 𝜎
𝑈

of the mean value of electroencephalograms
recorded from a healthy area of the brain on the measurement duration 𝑇𝑚.

Δ𝑡 [s] 𝑇𝑚 [s]
EEG-3 EEG-3-1 EEG-3-2

𝑈 [μV] 𝜎
𝑈

[μV] 𝑈 [μV] 𝜎
𝑈

[μV] 𝑈 [μV] 𝜎
𝑈

[μV]

0.0056 0.56 –4.21 10.44 1.51 27.51 –40.69 15.83

0.028 2.8 –4.26 2.34 4.33 11.34 –36.03 7.77

0.056 5.6 –3.46 2.22 3.77 7.19 –39.91 4.60

0.112 11.2 –4.30 1.49 3.43 2.78 –38.19 3.87

0.225 22.5 –4.25 1.72 0.39 2.73 –38.95 1.29

The maximum value of Δ𝑡max = 0.225 s in each group is limited by the condition of the same
number of results for both model and EEG that is 50 groups of 100 measurement results with
a total EEG duration of 23 s. The value of Δ𝑡min = Δ𝑡𝛿 = 1/ 𝑓𝛿 = 0.0056 s. The graphs of the
dependence of SD 𝜎

𝑈
of the EEG means on the measurement duration 𝑇𝑚 are indicated in Fig. 8.

Fig. 8. Dependence of the standard deviation 𝜎𝑥 of the EEG mean value on the measurement duration 𝑇𝑚.

The comparison of Fig. 5 and Fig. 8 shows that the dependence SD on the duration of
EEG measurement is quite similar to the model of the stationary non-equilibrium system, 𝑖.𝑒.,
decreases with𝑇𝑚. Such dependence is specific for each EEG. The individuality of the 𝜎𝑥 (𝑇𝑚) for
the studied and simulated (X1–X4) dependences is especially noticeable at initial values of 𝑇𝑚.
Based on the above-mentioned obtained results for simulated and studied dependences (Fig. 5,
Fig. 8), we propose to determine (according to Formula (2)) the random error caused by the finite
measurement duration. This permits us to consider the peculiarity of each studied process through
the relaxation time.

The latter being within interval 0 < 𝜏 � ∞ is characteristic of the non-equilibrium system.
The criterion of equilibrity corresponds to the invariance of energy spectrum of the studied signals
in the whole bandwidth, starting from 𝑓 → 0. The definition of the energy spectrum may be
recommended based on [7], in which it “is established that the violation of the statistical stability
of the mean is associated with the peculiarities of the spectrum of the considered process”. The
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energy spectrum of 𝑊 ( 𝑓 ) signals of models X0–X4 was determined in two ways. One is the
modeling of the signal energy spectra. The other consists of computing the energy spectra with
help of correlation functions. The block scheme of the measurement model is shown in Fig. 9.

Fig. 9. Block-scheme of the measurement model of the signals’ energy spectra.

The bandpass filter is modeled as a digital non-recursive filter with the quality factor of 50.0
within the measured bandwidth and attenuation ~60 dB of the signal at the edges. The squarer,
integrator and spectrum analyzer are implemented in the software. Table 5 presents the results of
energy spectra of models X0–X4 (Fig. 10).

Table 5. Energy spectra of signals of models X0–X4.

𝑓0
[Hz]

Δ 𝑓

[Hz]
X0 X1 X2 X3 X4

𝑊 ( 𝑓 ) [conditional units]

1.01 0.02 1.88 5.47 7.04 10.24 22.89

2.02 0.04 1.97 4.23 5.19 6.68 6.18

5.05 0.1 1.92 3.97 4.12 3.42 4.66

+10.1 0.2 1.93 2.60 2.84 2.62 2.91

25.25 0.5 2.06 2.38 2.16 1.62 1.97

40.4 0.8 1.90 2.09 1.81 1.77 1.65

𝑓0 is average frequency; Δ 𝑓 is the bandwidth of the bandpass filter.

Figure 10 shows the graphs of signal energy spectra of models X0–X4, measured with a digital
filter and determined by correlation functions.

Analyzing the energy spectra (Fig. 10), we can note the following features:
1. Energy spectra 𝑊 ( 𝑓 ), determined with help of the digital filter, are similar to the spectra

determined by autocorrelation functions. This indicates the acceptability of both methods
as well as correct consideration of energy spectra.

2. The energy spectrum of model X0 is permanent within the bandwidth of 1.0–40.0 Hz
(which is similar to the white noise spectrum); so, model X0 represents an equilibrium
object.

3. The energy spectra of models X1–X4 increase with the falling frequency which is highly
noticeable for model X4. Enhancement of the spectrum with decreasing frequency is
characteristic of flicker noise [16–19] (see Fig. 10, dependence 1/ 𝑓 ). Fig. 10 also shows
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Fig. 10. Signals’ energy spectra of models X0–X4, measured using a digital filter (blue) and determined
by their correlation functions (red).

the approximation of the obtained energy spectra by the formula [20]:

𝑊 ( 𝑓 ) = 𝑊0𝑒
𝑓 𝜏

𝑒 𝑓 𝜏 − 1
, (3)

which, in our opinion, corresponds to the given spectra of models X0–X4. The values of
𝑊0 (minimum of the spectrum) and relaxation time 𝜏 were determined according to [21].

4. The inequality of energy spectra of models X1–X4 in the studied frequency band gives
grounds to classify these models as non-equilibrium objects.

5. The value of 𝜏 in the approximation dependence (3) decreases with the partition number
of models X1–X4.

For verification of the spectra behavior as in Fig. 10, the time series x0, x1, x2, x3, x4
(Fig. 7) were converted into soundtracks with their subsequent listening. At the same time,
the soundtracks x0 and x4 mutually differ the most: for x0 the sound is uniform, for x4 the
low-frequency components are of greater intensity.

The methods above were applied to determine the energy spectra for EEGs: 2, 2–1, 2–2, 3,
3–1, 3–2 (Fig. 11). Spectra amplify with decreasing frequency, similar to the computer models
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X1–X4 [22,23]. For comparison, Fig. 11 shows the flicker-noise spectrum of the 𝐴/ 𝑓 type (factor
𝐴 was determined by selection) and the approximation of the spectra by Equation (3). Finally,
we can conclude that EEGs of Fig. 11, as well as models X1–X4, are described by the signals of
non-equilibrium systems.

Fig. 11. Energy spectra of electroencephalograms.

The determined values of 𝜏 (Fig. 10, Fig. 11) were substituted in (2) for estimating the error
𝜎𝐻 of measuring the means of the signals X0–X4 and EEGs. Factor 𝐶 of (2) was selected
experimentally, considering the shape of the spectra of Fig. 10, Fig. 11. Table 6 shows the values
of SD determined by (2) for the signals of models X1–X4, where 𝜎0 is defined as the SD mean
for model X0 (Table 1). The bandwidth is counted as Δ 𝑓 = 1/2Δ𝑡min = 1/2 · 0.01 = 50 Hz.

In Table 6, the parentheses have specified the deviations of𝜎𝐻 from the values of𝜎𝑥 (Table 1).
Significant deviations (46%, 54%) are most likely related to the inexactness of the determination
of 𝜎0 and𝐶. Table 7 shows the 𝜎𝐻 values determined according to (2) for EEG-3; EEG 3-1, since
the spectra of these signals are marked by fewer peaks compared to the spectra of the other EEGs
(Fig. 11). This makes it possible to determine 𝜏more accurately. The deviations of 𝜎𝐻 from the
values in Table 4 may be caused by the approximation of 𝜎0 and 𝐶.

The results of the current work are valuable for estimating the errors of the object parameters,
especially at small measurement duration.
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Table 6. SD means of the results for models X1–X4 considering the relaxation time 𝜏.

𝑇𝑚
[s]

Δ 𝑓

[Hz]

X1: 𝜏 = 4.0 [s]
𝐶 = 10, 𝜎0 = 0.9

X2: 𝜏 = 1.0 [s]
𝐶 = 15, 𝜎0 = 0.9

X3: 𝜏 = 0.6 [s]
𝐶 = 20, 𝜎0 = 0.9

X4: 𝜏 = 0.4 [s]
𝐶 = 25, 𝜎0 = 0.9

𝜎𝐻

1 50 1.47 (-24%) 2.25 (6%) 2.91 (–13%) 3.59 (–4%)

5 50 1.32 (14%) 1.68 (30%) 1.98 (13%) 2.27 (54%)

10 50 1.24 (10%) 1.48 (–6%) 1.68 (17%) 1.89 (–4%)

50 50 1.07 (25%) 1.17 (46%) 1.26 (14%) 1.35 (6%)

100 50 1.02 (9%) 1.09 (36%) 1.15 (43%) 1.22 (3%)

Table 7. SD means of the EEG measurements considering the relaxation time 𝜏.

𝑇𝑚
[s]

Δ 𝑓

[Hz]

EEG-3: 𝜏 = 0.022 [s],
𝐶 = 30, 𝜎0 = 1.72 [μV]

EEG-3-1: 𝜏 = 0.025 [s],
𝐶 = 55, 𝜎0 = 2.73 [μV]

𝜎𝐻 [μV]

0.56 89 8.90 (–15%) 23.54 (–15%)

2.8 89 4.98 (113%) 12.20 (8%)

5.6 89 4.03 (81%) 9.44 (31%)

11.2 89 3.36 (125%) 7.48 (169%)

22.5 89 2.87 (67%) 6.08 (122%)

3. Conclusions

The standard deviation (SD) of the means of the objects’ parameters in the state of equilibrium
does not depend on the measurement duration and, with the selected number of measurement
series and results, it becomes minimal.

For non-equilibrium objects, SD depends on the measurement duration: as the measurement
duration increases, SD decreases to the level of the SD for objects in the equilibrium state. SD
depends on the degree of the object under study deviation from the equilibrium: the farther from
it the object is, the greater the standard deviation, especially at low measurement durations. An
expression for the standard deviation of the means of the parameters of objects in a stationary non-
equilibrium state contains two components: the first one applied to the object in an equilibrium
state, is minimal; the second one is inversely proportional to the measurement duration and
relaxation time as well as the bandwidth of the signal spectrum.

From the analysis of simulation results it follows that fluctuations in the parameters of the
object at equilibrium acquire the form of white noise, and a rise of the energy spectrum at 𝑓 → 0
𝑖.𝑒., the flicker component of the spectrum occurs for an object in a non-equilibrium state.
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