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Abstract 
 

This paper identifies and describes the parameters of a numerical model generating the microstructure in the integrated heating-remelting-

cooling process of steel specimens. The numerical model allows the heating-remelting-cooling process to be simulated comprehensively. 

The model is based on the Monte Carlo (MC) method and the finite element method (FEM), and works within the entire volume of the steel 

sample, contrary to previous studies, in which calculations were carried out for selected, relatively small areas. Experimental studies 

constituting the basis for the identification and description of model parameters such as: probability function, initial number of orientations, 

number of cells and number of MC steps were carried out using the Gleeble 3800 thermo-mechanical simulator. The use of GPU capabilities 

improved the performance of the numerical model and significantly reduced the simulation time. Thanks to the significant acceleration of 

simulation times, it became possible to comprehensively implement a numerical model of the heating-transformation-cooling process in the 

entire volume of the test sample. The paper is supplemented by results of performance tests of the numerical model and results of simulation 

tests. 
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1. Introduction 
 

Prediction of the parameters of the structure subjected to heat 

treatment, such as recrystallization kinetics or grain size, is 

necessary to optimize the process conditions and properties of the 

final product. The micro model of the grain growth is based on the 

Monte Carlo (MC) method and minimizing the energy of the 

system [1, 2]. Physical simulations of the heating-remelting-

cooling process were carried out on the thermo-mechanical 

simulator, Gleeble 3800 series.  

Experimental studies constituted the basis for the identification and 

description of model parameters such as: probability function, 

initial number of orientations, number of cells and number of MC 

steps. The probability function, 𝐵𝑚, influences the probability of 

changing the value of a cell in the whole space of MC. If the 

function 𝐵𝑚 takes a value of 0, then the probability of changing the 

value of the cell takes a value of 0. The greater the value of the 

probability function for a given temperature, the higher the 

probability of changing the value of the cell. Controlling the range 

of the exponent, n, of the 𝐵𝑚 function allows the grain distribution 

to be changed, which influences controlling the ranges of the 
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sample zones. Increasing the exponent shifts the zone ranges 

(ignoring the remelting zone) towards the center of the sample. The 

influence of the exponent on the simulation decreases as the 

exponent value increases. If the value of the exponent is 0, the 

probability function takes a constant value of 1, which causes the 

number of grains to be constant in the whole sample (ignoring the 

melting zone). The number of MC steps has an impact on the 

number of grains. The number of grains decreases as the number of 

MC steps increases. The number of cells in the MC space 

influences the change in the number of grains. As the number of 

cells increases, the number of grains in the sample increases as 

well. The number of orientations has an impact on the number of 

grains. As the number of orientations increases, the number of 

grains increases as well. Our model is distinguished by including 

the remelting process (the formation of the liquid and solid phase 

mixture), and the impact of the temperature distribution and 

gradient, which is diversified in the whole sample volume, on the 

grain growth dynamics. This effect has been achieved by applying 

a special boundary probability function, which takes into account 

the change in probability depending on the temperature. This 

approach allowed us to include the whole volume of the sample and 

estimate the grain size in each sample zone. In the center of the 

sample the highest dynamics of the temperature changes are 

achieved. The probability function changes from a value of 1 to 0 

(to the areas with a lower temperature). The kinetics of the grain 

growth is simulated by a random selection of cells from all possible 

cells, and an attempt to change their states by replacing a specific 

parameter describing their affinity to a specific grain orientation 

with a parameter of the neighboring grain. Cells located within a 

grain that do not have a neighborhood belonging to a different grain 

type, cannot change their state. When the chosen cell is subjected 

to an attempt at state change, a random choice is made from of one 

state from all the neighboring states and assigned to it. 
The MC method [3 - 6] was introduced into general use in the 

1940s by scientists working on the development of nuclear 

weapons at the Los Alamos Institute. The method was used to 

simulate the random behavior of neutrons in fissionable materials. 

As computer processing power developed, it has begun to be used 

to simulate many physical and mathematical issues. The name MC 

does not designate a single specific computational method, but a 

whole class of similar methods, the basic assumptions of which are 

based on a single algorithm [7, 8]. Due to its advantages, the MC 

method is widely used in the simulation of many different physical 

processes. There is a lot of information in the literature describing 

the application of the MC method in the process of solidification [9 

- 11] and welding [12 - 16]. Due to the presented ways of using the 

MC method, it can be concluded that this method allows a 

comprehensive simulation of the heating-remelting-cooling 

process and the phenomena occurring during this process to be 

carried out [2]. The main disadvantage of the MC method is the 

very long calculation time. For the sake of the accuracy and 

correctness of the MC method, a random number generator is used. 

The MC time steps are not typical time steps, therefore, it is 

difficult to determine the actual calculation time in the MC method.  
To compensate for the significant calculation time, GPU 

capabilities were used. Currently, more and more simulation 

programs are taking advantage of GPU's capabilities thanks to the 

continued development of graphics cards. The GPU allows 

complex calculations to be performed in much less time than on a 

CPU. One of the requirements is to properly parallelize the 

algorithm so that calculations are performed on multiple threads. 

With the use of GPU technology, it becomes possible to obtain 

results in a much shorter time, making it possible to repeatedly test 

the implemented algorithm. In order to use the GPU, the CUDA 

architecture is used, which is based on C and C++ language. The 

CUDA architecture has extensive documentation, its own libraries 

and, most importantly, is developed and supported [17]. Currently, 

there are many solutions using the GPU to accelerate simulations 

previously performed with a CPU only. The paper [18] describes 

the use of GPU to enhance the performance of a simulation using 

the MC method for chemotherapy dosing. In [19], differences in 

the CPU and GPU performances in calculating particle trajectories 

under static and dynamic force fields were presented. It was found 

there that the calculation of a large number of particle trajectories 

was about 356 times faster than in a CPU-only solution. In general, 

the use of GPUs usually allows calculations for ion deployment 

simulations to be 10 to 100 times faster than in CPU-based 

solutions [20 - 23]. 

The main goals of the study are the identification and 

description of the parameters of a numerical model generating a 

microstructure as similar to the experimental as possible, in the 

integrated heating-remelting-cooling process of steel specimens, 

and the transfer from a CPU-based model to a GPU-based one. 

 

 

2. Numerical model 
 

Details of the numerical model that generates a digital 

representation of the microstructure are presented in the papers [1 

- 2]. 

 

 
Fig. 1. Schematic diagram of the sample 

 

Fig. 1 shows a schematic diagram of the location of five heat 

exchange zones. These locations are marked from Z1 to Z5. Z2 and 

Z4 define the contact area between the sample and the copper grips, 

where intense heat dissipation into the tool occurs. Zones Z1, Z3, 

and Z5 define the areas of the sample where there is free heat 

exchange with the environment. A flow of electric current through 

a conductor is always accompanied by a release of heat. This means 

that in elements with a certain resistance, the electrical energy is 

converted into heat energy. 

The macro-scale numerical model is based on the solution of 

the Fourier-Kirchhoff differential equation, with an internal heat 

source. The micro-model of grain growth is based on the MC 

method. The MC method is a probabilistic method and is based on 

minimizing the energy of the system. 

The micro model is characterized by including the remelting 

process (formation of the liquid-solid phase) and the effect of the 
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temperature gradient that forms in the volume of the element on the 

dynamics of grain growth in the simulation. This effect is achieved 

by using a special boundary mobility function that takes into 

account the temperature-dependent probability change, 𝐵𝑚(𝑇).  
This approach allowed the sample volume to be included 

comprehensively in numerical simulations, and the grain size to be 

estimated in each of the sample zones. The central (middle) region 

of the sample shows the greatest dynamics of temperature change. 

In this area, the maximum temperature values are reached 

(𝐵𝑚(𝑇) = 1) and they decrease towards the areas where the 

temperature, as a result of intensive cooling, reaches much lower 

values (𝐵𝑚(𝑇) = 0). The kinetics of grain growth is simulated by 

randomly selecting cells and attempting to change their states by 

changing the Q describing the orientation of a grain to a 

neighboring grain. Cells belonging to a grain, which does not have 

a neighbor belonging to another grain, cannot change their state. 

When a selected cell is subjected to a state change, a random 

change to the state of any of its neighbors is generated. 

The simulation of the heating-remelting-cooling process 

proceeds as follows: when the temperature of a given cell is equal 

to or greater than the assumed melting temperature, melting is 

simulated by randomly assigning a state to the cell, different than 

the states of its neighbors' cells. The grain degradation and growth 

result in an increase in energy. The grain algorithm applied in the 

solidification process randomly selects the state out of the 

neighboring cell states, reduces the energy, and forms a new grain 

of at least two neighboring cells.  

The multi-scale model of the heating-remelting-cooling 

process presented in [1 - 2] is an innovative and original approach 

to the simulation of the first stage preceding the deformation in the 

semi-solid state, i.e. heating a sample to a set nominal test 

temperature. Its numerical implementation was included in the 

original DEFFEM3D [1 - 2] software. Its main purpose is to 

effectively support physical simulations performed with Gleeble 

3800 simulators by limiting, among others, the number of costly 

experimental tests. The integrated DEFFEM3D software proposed 

the use of a multi-scale model involving thermal calculations at the 

macro scale using the finite element method. Calculations related 

to modeling the grain growth dynamics were carried out on the 

micro scale using the MC method.  

 

  
Fig. 2. Sample image showing how the temperature is interpolated 

from a FEM to an MC cell 

 

The temperature field is calculated using the finite element 

method (FEM), and then the temperature values are interpolated 

using a shape function to each cell of the MC space. 

The numerical model applied was subjected to the 

identification and verification of the parameters that have a 

decisive influence on the course of the simulation. For this purpose, 

an experiment was performed. 

 

 

3. Experiment 
 

Physical simulations of the heating-remelting-cooling process 

were carried out on a thermo-mechanical simulator of the Gleeble 

3800 series, presented in [2]. The tested material was steel S355 

with its chemical composition shown in Tab. 1. 

 

Table 1.  

Chemical composition of steel S355, % 

C Mn Si P S Cr Ni 

0.16 1.26 0.26 0.011 0.009 0.14 0.06 

 

The tests used rectangular-shaped specimens with dimensions 

of 10x10x124 mm. In addition, the use of a quartz shield to protect 

the interior of the simulator from liquid metal was abandoned to 

avoid disturbances affecting the heat transfer mechanism. The first 

step was to heat the sample to 1400 ℃ at a constant heating rate of 

5 ℃/𝑠 and then to 1440 ℃ at a rate of 1 ℃/𝑠. The next step was 

controlled cooling at a rate of 10 ℃/𝑠 to a temperature of 800 ℃. 

The final stage of the experiment was the free cooling of the sample 

in the Gleeble 3800 simulator tool system to the ambient 

temperature. During the experiment, the temperature was recorded. 

In addition, the current intensity was recorded. Fig. 3 shows an 

actual preview of the experiment. 

 

 
Fig. 3. Preview of the experiment on the Gleeble 3800 

simulator 

 

Microstructure studies were carried out on selected 

longitudinal sections in the axis of the sample, counting from the 

center of the heating zone marked as 0 mm, at a distance of 5, 10, 

15, 20, 25, and 30 mm, respectively. The analysis of the obtained 

microstructure images shows the existence of differentiated zones, 

with different densities (sizes) of cells. The coarse-grained 

structure was revealed at the sample center and at a distance of 5 

mm from it (coarse-grained structure). Moving towards the copper 

grips (decreasing temperature) at distances of 10, 15 and 20 mm 

from the sample center, the structure becomes more fine-grained 

with a fading visible grain boundary. At a distance of 25 mm from 

the center of the sample, the resulting structure is practically the 

same as the initial structure. 
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4. Simulation  
 

The simulations were conducted for the selected sample 

volume, due to the existence of symmetry planes. The simulation 

range was limited to a distance of 40 mm from the center of the 

sample. At large distances from the center of the sample, where the 

temperature does not exceed 𝑇0, there are no changes from the 

initial random state of the cells. For the simulations two ranges 

were used:  

• A - with a volume of 40 mm x 10 mm x 10 mm, using 20 x 5 

x 5 = 500 elements  

• B - with a volume of 40 mm x 2 mm x 2 mm, using 20 x 1x 

1 = 20 elements  

 

Each element is the same, with a size of 2 mm x 2 mm x 2 mm. The 

same results were observed when comparing the microstructures in 

the longitudinal section of the sample for Ranges A and B. Range 

A was used to calculate and simulate the exponent of the 

probability function and the number of the MC steps. Range B was 

used to calculate the number of cells and the orientations of cells in 

the MC space. Range B allows a higher cell density to be studied 

in the simulation. The number of elements is crucial for the 

simulation time, the higher the number of elements, the longer the 

simulation time. For the simulation, we decided to use both ranges.  

 

 
Fig. 4. Range A and B 

 

Table 2. 

Sample simulation times (CPU-based) for different number of 

elements 

Number of elements Time, s 

1 452 

20 604 

500 4827 

 

Table 3. 

Information about all parameters, which were used in the 

simulations 

Type of 

simulation 

Simulation parameters 

n p c o 

Exponent of 

probability 

function, n 

0, 10, 12, 

32 

100 100 54 

Number of MC 

steps, p 

12 1, 10, 

100 

100 54 

Number of MC 

cells, c 

12 100 50, 200, 

350 

54 

Number of cell 

orientation, o 

12 100 100 3, 54, 

104 

4.1. Exponent of the mobility/probability 

function 
 

Increasing the exponent n shifts the zone ranges (ignoring the 

melting zone) toward the center of the simulation. The impact of 

changing the exponent decreases as the exponent increases. For the 

parameter 𝑛 =  0, the mobility function takes a constant 𝑣𝑎𝑙𝑢𝑒 =
 1, making the number of grains constant throughout the sample 

(ignoring the remelting zone). Fig. 5 shows the calculated 

microstructure of the sample for n equal to 0, 10, 12 and 32, which 

illustrate the shift of zone ranges within the sample as the value of 

n changes. For 𝑛 =  0, a coarse-grained microstructure was 

obtained throughout the longitudinal section of the sample. 

 

 
Fig. 5. Longitudinal sections for different values  

of the exponent, n 

 

 

4.2. The number of steps in the MC method 
 

As the number of steps p increases, the number of grains 

becomes smaller. Fig. 6 shows the calculated microstructure for the 

number of steps 𝑝 =  1.10 𝑎𝑛𝑑 100. From the longitudinal 

sections of the sample shown, it is clear that the number of grains 

decreases as the number of steps p increases. For 𝑝 =  1, a fine-

grained microstructure was obtained, and for 𝑝 =  100 the 

macrostructure obtained was coarse-grained. 
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Fig. 6. Longitudinal sections for different values of the number of 

steps, p 
 

 

4.3. The number of cells in the MC method 
 

The calculated macrostructures for the number of cells  

𝑐 =  50, 200 𝑎𝑛𝑑 350 are shown in Fig. 9. From the cross sections 

shown, it is apparent that increasing the number of cells has an 

effect on increasing the number of grains in the sample. For  

𝑐 =  50, a coarse-grained microstructure was obtained, and for 

𝑐 =  350 – a fine-grained one. 

 

 
Fig. 7. Longitudinal sections for different values of the number of 

cells, c 
 

 

4.4. The number of orientations in the MC 

method 
 

As the number of orientations increases, the number of grains 

increases. The effect of the number of orientations on the number 

of grains decreases with the higher values of the number of 

orientations. Fig. 8 shows the microstructures on the longitudinal 

cross-section of the simulated sample for orientations  

𝑜 =  3, 54, 104. We can see an increase in the number of grains in 

the cross-section and a change in the number of orientations. As 

can be seen from the cross sections shown, the number of grains 

increases as the number of orientations increases. 

 

 
Fig. 8. Longitudinal sections for different values of the number of 

orientations, o 

 

5. Identification of model parameters - 

experimental verification 
 

The applied numerical model of the simulation of heating-

remelting-cooling process was subjected to experimental 

verification. The main objective of the verification was to 

appropriately select the parameters of the simulation so that it 

reproduced the actual conditions of the process as accurately as 

possible. The obtained results in the form of images of 

microstructures were further analyzed. 

The Saltykov Rectangle method [24] was used to calculate the 

number of grains in the 𝑚𝑚2 in images of microstructures from the 

experiment. According to this method, the number of grains in a 

square section is counted. The number of grains in the studied 

cross-section was taken as a sum: 

 

𝑛 = 𝑛𝑖𝑛𝑠𝑖𝑑𝑒 +
𝑛𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑒𝑑

2
+ 1        (1) 

where: 

• 𝑛𝑖𝑛𝑠𝑖𝑑𝑒- number of grains inside the cross section 

• 
𝑛𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑒𝑑

2
 – half of the number of grains passing through 

the edge of the section, not including the grains passing 

through the vertex 

• 1 – the assumed number of grains passing through the 

vertices of the section 

 

Using the above method, the number of grains in the cross-sections 

of the experimental sample was counted based on the images of the 

microstructure examined at distances of 0, 5, 10 and 15 mm. For 

distances of 20, 25, and 30 mm, the study was not carried out due 

to the size of the grains, as these grains were too small to be counted 

manually. The results of the grain counts are presented in Tab. 4. 

 

Table 4.  

The number of grains in the cross section of the experimental 

sample 

Distance, 

mm 

𝑛𝑖𝑛𝑠𝑖𝑑𝑒 𝑛𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑒𝑑  𝑛 

0 16 12 23 

5 10 9 15.5 

10 23 20 34 

15 118 43 140.5 
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Fig. 9. Sample using the Saltykov Rectangle method 

 

Fig. 9 shows a sample using the Saltykov Rectangle method. All 

grains were selected by the manual method only. 16 grains are 

inside the cross section and 12 pass through the edge of the section. 

The parameters of the numerical model were identified by 

comparing the number of grains at distances of 0, 5, 10, and 15 mm 

from the center of the sample. Based on the study, the parameters 

were identified showing the agreement between the experimental 

results and the simulation. The following magnitudes of the 

examined parameters were assumed: 

• Exponent of the mobility function: 𝑛 =  24 

• Number of steps of the MC method: 𝑝 =  100 

• Number of MC cells: 𝑐 =  100 

• Number of MC orientations: 𝑜 =  54 

 

Tab. 5 presents a comparison of the number of grains obtained 

by the experiment and by the simulation. The absolute and relative 

error values were also determined. 

 

Table 5.  

The number of grains in the cross section of the sample 

(experiment and simulation) 

Distance, 

mm 

Number  

of the grains 

Error 

exp.  sim.  absolute, 

mm 

relative, 

% 

0 23 22.7 0.3 1.3 

5 15,5 13.9 1.6 10.3 

10 34 30.3 3.7 10.8 

15 140,5 135.2 5.3 3.7 

Based on the results of the number of grains and the relative 

error values, it can be concluded that the accuracy is at a very high 

level. Error values of 10% were obtained for distances of 5 and 10 

mm. For distances of 0 and 15 mm, these values were 1.3% and 

3.7%, respectively. 

 

 
Fig. 10. Dependence of the grain number on distance for 

simulation and selected parameters and experiment 

 

Fig. 10 shows a curve of the dependence of the number of grains 

on distance for experimental data and for the simulation with the 

assumed parameters of the process simulation. It can be seen here 

that there is a very high convergence of results, which allows us to 

find that the selection of the parameters of the simulation process 

and its further use were correct. Fig. 11 presents a comparison of 

the longitudinal cross sections of the samples obtained by the 

simulation and experiment. 

 

 
Fig. 11. Range of zones on longitudinal sections of the samples: 

simulation and experiment 

 

Proprietary software was applied for determining the zones. 

Due to the complexity of the operation, an evaluation was 

performed to select the filter binarization levels for extracting the 

remelting zone, intermediate, heat affected and grip zones. 

Microscopic images are characterized by the presence of fine 

grains with varying levels of brightness of structural elements, it 

was decided to reduce the number of image details and filter out 

the so-called noise. Further image processing made it possible to 

extract the recognized areas and to obtain an image of zones with  

a continuous, uniform distribution of shades of gray, and with a 

degree of brightness different from the neighboring zones. 

Operations were performed in the following steps: median filter, 

morphological closure filter and, finally, contrast stretching. For 

such a filtering methodology, an image with highlighted zone areas 
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and a significant reduction in noise was obtained. As a result, the 

parameters defining individual areas, along the cross-section of the 

sample, were obtained on the basis of a histogram of brightness 

changes along the studied vector. Finally, the individual zones can 

be determined. 

Fig. 12 shows the distribution of cells whose initial orientation is 

different from the final one (yellow). 

 

 
Fig. 12. Longitudinal cross-section of a sample in which the final 

orientation is different than the initial one 

 

 

6. GPU-based simulations 
 

The second goal of the study was to implement the CPU-based 

program to the GPU-based one and to compare both of them. The 

use of GPU capabilities improves the performance of the numerical 

model and significantly reduces the simulation time. A computer 

with a graphic card GeForce GTX 750 Ti with 2 GB RAM and 

processor i3 6th 2.8 GHz was used for the simulations. Tab. 6 shows 

a comparison of the result simulation time for the CPU-based and 

GPU-based implemented model. The model parameters were the 

same in both models: exponent of probability function, 𝑛 =  24; 

number of MC steps, 𝑝 =  100; number of MC cells, 𝑐 =  100; 
and number of cell orientations, 𝑜 =  54. 

 

Table 6. 

Simulations time on CPU-based and GPU-based model 

 Architecture 

CPU-based GPU-based 

Time of simulation, s 1219.38 23.47 

 

For comparison, simulation times between GPU and CPU showed 

a more than 52-fold acceleration in favor of the GPU. 

 

 

7. Discussion of results 
 

Analyzing the microstructures of the test specimen on the 

longitudinal section, four main zones are visible (Fig. 11): 

 

Table 7. 

Distance from center for four zones 

Zone Experiment  

 

Simulation 

 

Remelting zone 0-5 mm 0-4.5 mm 

Intermediate zone 5-12.5 mm 4.5-15 mm 

Heat-affected zone 12.5-25.5 mm 15-25.5 mm 

Grip zone 25.5-40 mm 25.5-40 mm 

 

• remelting zone: where local remelting of the sample takes 

place followed by the growth of new grains, depending on 

the local cooling rates achieved, 

• intermediate zone: where local remelting does not occur, but 

it features a dynamic grain growth as a result of the high 

temperatures achieved in this area, 

• heat-affected zone: characterized by low grain growth 

dynamics due to a much smaller range of temperatures 

reached, 

• grip zone: characterized by negligible grain growth dynamics 

due to the low range of temperatures reached. 

The intermediate zone is much longer in the simulation (7.5 mm) 

than in the experiment (10.5 mm). The heat-affected zone is shorter 

in the simulation (10.5 mm) than in the experiment (13 mm). These 

results depend on the model parameters. Future work on a new way 

to approximate those parameters can bring better results. 

The positions of the zones presented in Fig. 11 show results 

that are very similar to each other. In Fig. 12, it can be seen that 

changes in the cell orientation occur from 0 to 25.5 mm from the 

sample center. This corresponds to the range from the remelting 

zone to the heat affected zone. This confirms that the selection of 

process parameters is consistent. 

 

 

8. Conclusion 
 

The most important aspect of the paper was the identification 

and description of the parameters of a complex numerical model of 

the heating-remelting-cooling process based on experimental data. 

Physical simulations of the heating-remelting-cooling process were 

carried out on the thermo-mechanical simulator, Gleeble 3800 

series. 

The obtained results made it possible to identify the parameters 

of the numerical model, which exists in the form of the author's 

DEFFEM3D software [1, 2]. Therefore, it is possible to effectively 

support physical simulations carried out using the Gleeble 3800 

simulator by reducing the number of expensive experimental trials. 

It also enables additional information to be obtained, such as local 

cooling rates at any point in the volume of the sample tested. 

Correctly verified and identified parameters of the numerical model 

significantly improved the performance of simulations and allowed 

us to obtain very accurate results. 

The second aspect was the use of GPU capabilities in 

improving the performance of the numerical model and 

significantly reducing simulation time. The numerical model was 

adjusted for the use of modern GPU technologies, so that 

calculation times were significantly accelerated. For comparison, 

simulation times between the GPU and CPU showed a more than 

52-fold acceleration in favor of the GPU. Thanks to the significant 

acceleration of simulation times, it became possible to 

comprehensively implement a numerical model of the heating-

transformation-cooling process through the entire volume of the 

test sample. 

The optimized simulation system allows the grain growth 

model of heated samples to be computed, and allows additional 

information to be acquired such as local cooling rates at any point 

within the volume of the test sample. The compatibility of 

simulation results with the experimental data, combined with the 
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short execution time of the simulation, indicates that the software 

can be used in practice for microstructure studies. 
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